core/sync/
atomic.rs

1//! Atomic types
2//!
3//! Atomic types provide primitive shared-memory communication between
4//! threads, and are the building blocks of other concurrent
5//! types.
6//!
7//! This module defines atomic versions of a select number of primitive
8//! types, including [`AtomicBool`], [`AtomicIsize`], [`AtomicUsize`],
9//! [`AtomicI8`], [`AtomicU16`], etc.
10//! Atomic types present operations that, when used correctly, synchronize
11//! updates between threads.
12//!
13//! Atomic variables are safe to share between threads (they implement [`Sync`])
14//! but they do not themselves provide the mechanism for sharing and follow the
15//! [threading model](../../../std/thread/index.html#the-threading-model) of Rust.
16//! The most common way to share an atomic variable is to put it into an [`Arc`][arc] (an
17//! atomically-reference-counted shared pointer).
18//!
19//! [arc]: ../../../std/sync/struct.Arc.html
20//!
21//! Atomic types may be stored in static variables, initialized using
22//! the constant initializers like [`AtomicBool::new`]. Atomic statics
23//! are often used for lazy global initialization.
24//!
25//! ## Memory model for atomic accesses
26//!
27//! Rust atomics currently follow the same rules as [C++20 atomics][cpp], specifically the rules
28//! from the [`intro.races`][cpp-intro.races] section, without the "consume" memory ordering. Since
29//! C++ uses an object-based memory model whereas Rust is access-based, a bit of translation work
30//! has to be done to apply the C++ rules to Rust: whenever C++ talks about "the value of an
31//! object", we understand that to mean the resulting bytes obtained when doing a read. When the C++
32//! standard talks about "the value of an atomic object", this refers to the result of doing an
33//! atomic load (via the operations provided in this module). A "modification of an atomic object"
34//! refers to an atomic store.
35//!
36//! The end result is *almost* equivalent to saying that creating a *shared reference* to one of the
37//! Rust atomic types corresponds to creating an `atomic_ref` in C++, with the `atomic_ref` being
38//! destroyed when the lifetime of the shared reference ends. The main difference is that Rust
39//! permits concurrent atomic and non-atomic reads to the same memory as those cause no issue in the
40//! C++ memory model, they are just forbidden in C++ because memory is partitioned into "atomic
41//! objects" and "non-atomic objects" (with `atomic_ref` temporarily converting a non-atomic object
42//! into an atomic object).
43//!
44//! The most important aspect of this model is that *data races* are undefined behavior. A data race
45//! is defined as conflicting non-synchronized accesses where at least one of the accesses is
46//! non-atomic. Here, accesses are *conflicting* if they affect overlapping regions of memory and at
47//! least one of them is a write. (A `compare_exchange` or `compare_exchange_weak` that does not
48//! succeed is not considered a write.) They are *non-synchronized* if neither of them
49//! *happens-before* the other, according to the happens-before order of the memory model.
50//!
51//! The other possible cause of undefined behavior in the memory model are mixed-size accesses: Rust
52//! inherits the C++ limitation that non-synchronized conflicting atomic accesses may not partially
53//! overlap. In other words, every pair of non-synchronized atomic accesses must be either disjoint,
54//! access the exact same memory (including using the same access size), or both be reads.
55//!
56//! Each atomic access takes an [`Ordering`] which defines how the operation interacts with the
57//! happens-before order. These orderings behave the same as the corresponding [C++20 atomic
58//! orderings][cpp_memory_order]. For more information, see the [nomicon].
59//!
60//! [cpp]: https://en.cppreference.com/w/cpp/atomic
61//! [cpp-intro.races]: https://timsong-cpp.github.io/cppwp/n4868/intro.multithread#intro.races
62//! [cpp_memory_order]: https://en.cppreference.com/w/cpp/atomic/memory_order
63//! [nomicon]: ../../../nomicon/atomics.html
64//!
65//! ```rust,no_run undefined_behavior
66//! use std::sync::atomic::{AtomicU16, AtomicU8, Ordering};
67//! use std::mem::transmute;
68//! use std::thread;
69//!
70//! let atomic = AtomicU16::new(0);
71//!
72//! thread::scope(|s| {
73//!     // This is UB: conflicting non-synchronized accesses, at least one of which is non-atomic.
74//!     s.spawn(|| atomic.store(1, Ordering::Relaxed)); // atomic store
75//!     s.spawn(|| unsafe { atomic.as_ptr().write(2) }); // non-atomic write
76//! });
77//!
78//! thread::scope(|s| {
79//!     // This is fine: the accesses do not conflict (as none of them performs any modification).
80//!     // In C++ this would be disallowed since creating an `atomic_ref` precludes
81//!     // further non-atomic accesses, but Rust does not have that limitation.
82//!     s.spawn(|| atomic.load(Ordering::Relaxed)); // atomic load
83//!     s.spawn(|| unsafe { atomic.as_ptr().read() }); // non-atomic read
84//! });
85//!
86//! thread::scope(|s| {
87//!     // This is fine: `join` synchronizes the code in a way such that the atomic
88//!     // store happens-before the non-atomic write.
89//!     let handle = s.spawn(|| atomic.store(1, Ordering::Relaxed)); // atomic store
90//!     handle.join().expect("thread won't panic"); // synchronize
91//!     s.spawn(|| unsafe { atomic.as_ptr().write(2) }); // non-atomic write
92//! });
93//!
94//! thread::scope(|s| {
95//!     // This is UB: non-synchronized conflicting differently-sized atomic accesses.
96//!     s.spawn(|| atomic.store(1, Ordering::Relaxed));
97//!     s.spawn(|| unsafe {
98//!         let differently_sized = transmute::<&AtomicU16, &AtomicU8>(&atomic);
99//!         differently_sized.store(2, Ordering::Relaxed);
100//!     });
101//! });
102//!
103//! thread::scope(|s| {
104//!     // This is fine: `join` synchronizes the code in a way such that
105//!     // the 1-byte store happens-before the 2-byte store.
106//!     let handle = s.spawn(|| atomic.store(1, Ordering::Relaxed));
107//!     handle.join().expect("thread won't panic");
108//!     s.spawn(|| unsafe {
109//!         let differently_sized = transmute::<&AtomicU16, &AtomicU8>(&atomic);
110//!         differently_sized.store(2, Ordering::Relaxed);
111//!     });
112//! });
113//! ```
114//!
115//! # Portability
116//!
117//! All atomic types in this module are guaranteed to be [lock-free] if they're
118//! available. This means they don't internally acquire a global mutex. Atomic
119//! types and operations are not guaranteed to be wait-free. This means that
120//! operations like `fetch_or` may be implemented with a compare-and-swap loop.
121//!
122//! Atomic operations may be implemented at the instruction layer with
123//! larger-size atomics. For example some platforms use 4-byte atomic
124//! instructions to implement `AtomicI8`. Note that this emulation should not
125//! have an impact on correctness of code, it's just something to be aware of.
126//!
127//! The atomic types in this module might not be available on all platforms. The
128//! atomic types here are all widely available, however, and can generally be
129//! relied upon existing. Some notable exceptions are:
130//!
131//! * PowerPC and MIPS platforms with 32-bit pointers do not have `AtomicU64` or
132//!   `AtomicI64` types.
133//! * ARM platforms like `armv5te` that aren't for Linux only provide `load`
134//!   and `store` operations, and do not support Compare and Swap (CAS)
135//!   operations, such as `swap`, `fetch_add`, etc. Additionally on Linux,
136//!   these CAS operations are implemented via [operating system support], which
137//!   may come with a performance penalty.
138//! * ARM targets with `thumbv6m` only provide `load` and `store` operations,
139//!   and do not support Compare and Swap (CAS) operations, such as `swap`,
140//!   `fetch_add`, etc.
141//!
142//! [operating system support]: https://www.kernel.org/doc/Documentation/arm/kernel_user_helpers.txt
143//!
144//! Note that future platforms may be added that also do not have support for
145//! some atomic operations. Maximally portable code will want to be careful
146//! about which atomic types are used. `AtomicUsize` and `AtomicIsize` are
147//! generally the most portable, but even then they're not available everywhere.
148//! For reference, the `std` library requires `AtomicBool`s and pointer-sized atomics, although
149//! `core` does not.
150//!
151//! The `#[cfg(target_has_atomic)]` attribute can be used to conditionally
152//! compile based on the target's supported bit widths. It is a key-value
153//! option set for each supported size, with values "8", "16", "32", "64",
154//! "128", and "ptr" for pointer-sized atomics.
155//!
156//! [lock-free]: https://en.wikipedia.org/wiki/Non-blocking_algorithm
157//!
158//! # Atomic accesses to read-only memory
159//!
160//! In general, *all* atomic accesses on read-only memory are undefined behavior. For instance, attempting
161//! to do a `compare_exchange` that will definitely fail (making it conceptually a read-only
162//! operation) can still cause a segmentation fault if the underlying memory page is mapped read-only. Since
163//! atomic `load`s might be implemented using compare-exchange operations, even a `load` can fault
164//! on read-only memory.
165//!
166//! For the purpose of this section, "read-only memory" is defined as memory that is read-only in
167//! the underlying target, i.e., the pages are mapped with a read-only flag and any attempt to write
168//! will cause a page fault. In particular, an `&u128` reference that points to memory that is
169//! read-write mapped is *not* considered to point to "read-only memory". In Rust, almost all memory
170//! is read-write; the only exceptions are memory created by `const` items or `static` items without
171//! interior mutability, and memory that was specifically marked as read-only by the operating
172//! system via platform-specific APIs.
173//!
174//! As an exception from the general rule stated above, "sufficiently small" atomic loads with
175//! `Ordering::Relaxed` are implemented in a way that works on read-only memory, and are hence not
176//! undefined behavior. The exact size limit for what makes a load "sufficiently small" varies
177//! depending on the target:
178//!
179//! | `target_arch` | Size limit |
180//! |---------------|---------|
181//! | `x86`, `arm`, `loongarch32`, `mips`, `mips32r6`, `powerpc`, `riscv32`, `sparc`, `hexagon` | 4 bytes |
182//! | `x86_64`, `aarch64`, `loongarch64`, `mips64`, `mips64r6`, `powerpc64`, `riscv64`, `sparc64`, `s390x` | 8 bytes |
183//!
184//! Atomics loads that are larger than this limit as well as atomic loads with ordering other
185//! than `Relaxed`, as well as *all* atomic loads on targets not listed in the table, might still be
186//! read-only under certain conditions, but that is not a stable guarantee and should not be relied
187//! upon.
188//!
189//! If you need to do an acquire load on read-only memory, you can do a relaxed load followed by an
190//! acquire fence instead.
191//!
192//! # Examples
193//!
194//! A simple spinlock:
195//!
196//! ```ignore-wasm
197//! use std::sync::Arc;
198//! use std::sync::atomic::{AtomicUsize, Ordering};
199//! use std::{hint, thread};
200//!
201//! fn main() {
202//!     let spinlock = Arc::new(AtomicUsize::new(1));
203//!
204//!     let spinlock_clone = Arc::clone(&spinlock);
205//!
206//!     let thread = thread::spawn(move || {
207//!         spinlock_clone.store(0, Ordering::Release);
208//!     });
209//!
210//!     // Wait for the other thread to release the lock
211//!     while spinlock.load(Ordering::Acquire) != 0 {
212//!         hint::spin_loop();
213//!     }
214//!
215//!     if let Err(panic) = thread.join() {
216//!         println!("Thread had an error: {panic:?}");
217//!     }
218//! }
219//! ```
220//!
221//! Keep a global count of live threads:
222//!
223//! ```
224//! use std::sync::atomic::{AtomicUsize, Ordering};
225//!
226//! static GLOBAL_THREAD_COUNT: AtomicUsize = AtomicUsize::new(0);
227//!
228//! // Note that Relaxed ordering doesn't synchronize anything
229//! // except the global thread counter itself.
230//! let old_thread_count = GLOBAL_THREAD_COUNT.fetch_add(1, Ordering::Relaxed);
231//! // Note that this number may not be true at the moment of printing
232//! // because some other thread may have changed static value already.
233//! println!("live threads: {}", old_thread_count + 1);
234//! ```
235
236#![stable(feature = "rust1", since = "1.0.0")]
237#![cfg_attr(not(target_has_atomic_load_store = "8"), allow(dead_code))]
238#![cfg_attr(not(target_has_atomic_load_store = "8"), allow(unused_imports))]
239#![rustc_diagnostic_item = "atomic_mod"]
240// Clippy complains about the pattern of "safe function calling unsafe function taking pointers".
241// This happens with AtomicPtr intrinsics but is fine, as the pointers clippy is concerned about
242// are just normal values that get loaded/stored, but not dereferenced.
243#![allow(clippy::not_unsafe_ptr_arg_deref)]
244
245use self::Ordering::*;
246use crate::cell::UnsafeCell;
247use crate::hint::spin_loop;
248use crate::intrinsics::AtomicOrdering as AO;
249use crate::{fmt, intrinsics};
250
251trait Sealed {}
252
253/// A marker trait for primitive types which can be modified atomically.
254///
255/// This is an implementation detail for <code>[Atomic]\<T></code> which may disappear or be replaced at any time.
256///
257/// # Safety
258///
259/// Types implementing this trait must be primitives that can be modified atomically.
260///
261/// The associated `Self::AtomicInner` type must have the same size and bit validity as `Self`,
262/// but may have a higher alignment requirement, so the following `transmute`s are sound:
263///
264/// - `&mut Self::AtomicInner` as `&mut Self`
265/// - `Self` as `Self::AtomicInner` or the reverse
266#[unstable(
267    feature = "atomic_internals",
268    reason = "implementation detail which may disappear or be replaced at any time",
269    issue = "none"
270)]
271#[expect(private_bounds)]
272pub unsafe trait AtomicPrimitive: Sized + Copy + Sealed {
273    /// Temporary implementation detail.
274    type AtomicInner: Sized;
275}
276
277macro impl_atomic_primitive(
278    $Atom:ident $(<$T:ident>)? ($Primitive:ty),
279    size($size:literal),
280    align($align:literal) $(,)?
281) {
282    impl $(<$T>)? Sealed for $Primitive {}
283
284    #[unstable(
285        feature = "atomic_internals",
286        reason = "implementation detail which may disappear or be replaced at any time",
287        issue = "none"
288    )]
289    #[cfg(target_has_atomic_load_store = $size)]
290    unsafe impl $(<$T>)? AtomicPrimitive for $Primitive {
291        type AtomicInner = $Atom $(<$T>)?;
292    }
293}
294
295impl_atomic_primitive!(AtomicBool(bool), size("8"), align(1));
296impl_atomic_primitive!(AtomicI8(i8), size("8"), align(1));
297impl_atomic_primitive!(AtomicU8(u8), size("8"), align(1));
298impl_atomic_primitive!(AtomicI16(i16), size("16"), align(2));
299impl_atomic_primitive!(AtomicU16(u16), size("16"), align(2));
300impl_atomic_primitive!(AtomicI32(i32), size("32"), align(4));
301impl_atomic_primitive!(AtomicU32(u32), size("32"), align(4));
302impl_atomic_primitive!(AtomicI64(i64), size("64"), align(8));
303impl_atomic_primitive!(AtomicU64(u64), size("64"), align(8));
304impl_atomic_primitive!(AtomicI128(i128), size("128"), align(16));
305impl_atomic_primitive!(AtomicU128(u128), size("128"), align(16));
306
307#[cfg(target_pointer_width = "16")]
308impl_atomic_primitive!(AtomicIsize(isize), size("ptr"), align(2));
309#[cfg(target_pointer_width = "32")]
310impl_atomic_primitive!(AtomicIsize(isize), size("ptr"), align(4));
311#[cfg(target_pointer_width = "64")]
312impl_atomic_primitive!(AtomicIsize(isize), size("ptr"), align(8));
313
314#[cfg(target_pointer_width = "16")]
315impl_atomic_primitive!(AtomicUsize(usize), size("ptr"), align(2));
316#[cfg(target_pointer_width = "32")]
317impl_atomic_primitive!(AtomicUsize(usize), size("ptr"), align(4));
318#[cfg(target_pointer_width = "64")]
319impl_atomic_primitive!(AtomicUsize(usize), size("ptr"), align(8));
320
321#[cfg(target_pointer_width = "16")]
322impl_atomic_primitive!(AtomicPtr<T>(*mut T), size("ptr"), align(2));
323#[cfg(target_pointer_width = "32")]
324impl_atomic_primitive!(AtomicPtr<T>(*mut T), size("ptr"), align(4));
325#[cfg(target_pointer_width = "64")]
326impl_atomic_primitive!(AtomicPtr<T>(*mut T), size("ptr"), align(8));
327
328/// A memory location which can be safely modified from multiple threads.
329///
330/// This has the same size and bit validity as the underlying type `T`. However,
331/// the alignment of this type is always equal to its size, even on targets where
332/// `T` has alignment less than its size.
333///
334/// For more about the differences between atomic types and non-atomic types as
335/// well as information about the portability of this type, please see the
336/// [module-level documentation].
337///
338/// **Note:** This type is only available on platforms that support atomic loads
339/// and stores of `T`.
340///
341/// [module-level documentation]: crate::sync::atomic
342#[unstable(feature = "generic_atomic", issue = "130539")]
343pub type Atomic<T> = <T as AtomicPrimitive>::AtomicInner;
344
345// Some architectures don't have byte-sized atomics, which results in LLVM
346// emulating them using a LL/SC loop. However for AtomicBool we can take
347// advantage of the fact that it only ever contains 0 or 1 and use atomic OR/AND
348// instead, which LLVM can emulate using a larger atomic OR/AND operation.
349//
350// This list should only contain architectures which have word-sized atomic-or/
351// atomic-and instructions but don't natively support byte-sized atomics.
352#[cfg(target_has_atomic = "8")]
353const EMULATE_ATOMIC_BOOL: bool = cfg!(any(
354    target_arch = "riscv32",
355    target_arch = "riscv64",
356    target_arch = "loongarch32",
357    target_arch = "loongarch64"
358));
359
360/// A boolean type which can be safely shared between threads.
361///
362/// This type has the same size, alignment, and bit validity as a [`bool`].
363///
364/// **Note**: This type is only available on platforms that support atomic
365/// loads and stores of `u8`.
366#[cfg(target_has_atomic_load_store = "8")]
367#[stable(feature = "rust1", since = "1.0.0")]
368#[rustc_diagnostic_item = "AtomicBool"]
369#[repr(C, align(1))]
370pub struct AtomicBool {
371    v: UnsafeCell<u8>,
372}
373
374#[cfg(target_has_atomic_load_store = "8")]
375#[stable(feature = "rust1", since = "1.0.0")]
376impl Default for AtomicBool {
377    /// Creates an `AtomicBool` initialized to `false`.
378    #[inline]
379    fn default() -> Self {
380        Self::new(false)
381    }
382}
383
384// Send is implicitly implemented for AtomicBool.
385#[cfg(target_has_atomic_load_store = "8")]
386#[stable(feature = "rust1", since = "1.0.0")]
387unsafe impl Sync for AtomicBool {}
388
389/// A raw pointer type which can be safely shared between threads.
390///
391/// This type has the same size and bit validity as a `*mut T`.
392///
393/// **Note**: This type is only available on platforms that support atomic
394/// loads and stores of pointers. Its size depends on the target pointer's size.
395#[cfg(target_has_atomic_load_store = "ptr")]
396#[stable(feature = "rust1", since = "1.0.0")]
397#[rustc_diagnostic_item = "AtomicPtr"]
398#[cfg_attr(target_pointer_width = "16", repr(C, align(2)))]
399#[cfg_attr(target_pointer_width = "32", repr(C, align(4)))]
400#[cfg_attr(target_pointer_width = "64", repr(C, align(8)))]
401pub struct AtomicPtr<T> {
402    p: UnsafeCell<*mut T>,
403}
404
405#[cfg(target_has_atomic_load_store = "ptr")]
406#[stable(feature = "rust1", since = "1.0.0")]
407impl<T> Default for AtomicPtr<T> {
408    /// Creates a null `AtomicPtr<T>`.
409    fn default() -> AtomicPtr<T> {
410        AtomicPtr::new(crate::ptr::null_mut())
411    }
412}
413
414#[cfg(target_has_atomic_load_store = "ptr")]
415#[stable(feature = "rust1", since = "1.0.0")]
416unsafe impl<T> Send for AtomicPtr<T> {}
417#[cfg(target_has_atomic_load_store = "ptr")]
418#[stable(feature = "rust1", since = "1.0.0")]
419unsafe impl<T> Sync for AtomicPtr<T> {}
420
421/// Atomic memory orderings
422///
423/// Memory orderings specify the way atomic operations synchronize memory.
424/// In its weakest [`Ordering::Relaxed`], only the memory directly touched by the
425/// operation is synchronized. On the other hand, a store-load pair of [`Ordering::SeqCst`]
426/// operations synchronize other memory while additionally preserving a total order of such
427/// operations across all threads.
428///
429/// Rust's memory orderings are [the same as those of
430/// C++20](https://en.cppreference.com/w/cpp/atomic/memory_order).
431///
432/// For more information see the [nomicon].
433///
434/// [nomicon]: ../../../nomicon/atomics.html
435#[stable(feature = "rust1", since = "1.0.0")]
436#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
437#[non_exhaustive]
438#[rustc_diagnostic_item = "Ordering"]
439pub enum Ordering {
440    /// No ordering constraints, only atomic operations.
441    ///
442    /// Corresponds to [`memory_order_relaxed`] in C++20.
443    ///
444    /// [`memory_order_relaxed`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Relaxed_ordering
445    #[stable(feature = "rust1", since = "1.0.0")]
446    Relaxed,
447    /// When coupled with a store, all previous operations become ordered
448    /// before any load of this value with [`Acquire`] (or stronger) ordering.
449    /// In particular, all previous writes become visible to all threads
450    /// that perform an [`Acquire`] (or stronger) load of this value.
451    ///
452    /// Notice that using this ordering for an operation that combines loads
453    /// and stores leads to a [`Relaxed`] load operation!
454    ///
455    /// This ordering is only applicable for operations that can perform a store.
456    ///
457    /// Corresponds to [`memory_order_release`] in C++20.
458    ///
459    /// [`memory_order_release`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Acquire_ordering
460    #[stable(feature = "rust1", since = "1.0.0")]
461    Release,
462    /// When coupled with a load, if the loaded value was written by a store operation with
463    /// [`Release`] (or stronger) ordering, then all subsequent operations
464    /// become ordered after that store. In particular, all subsequent loads will see data
465    /// written before the store.
466    ///
467    /// Notice that using this ordering for an operation that combines loads
468    /// and stores leads to a [`Relaxed`] store operation!
469    ///
470    /// This ordering is only applicable for operations that can perform a load.
471    ///
472    /// Corresponds to [`memory_order_acquire`] in C++20.
473    ///
474    /// [`memory_order_acquire`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Acquire_ordering
475    #[stable(feature = "rust1", since = "1.0.0")]
476    Acquire,
477    /// Has the effects of both [`Acquire`] and [`Release`] together:
478    /// For loads it uses [`Acquire`] ordering. For stores it uses the [`Release`] ordering.
479    ///
480    /// Notice that in the case of `compare_and_swap`, it is possible that the operation ends up
481    /// not performing any store and hence it has just [`Acquire`] ordering. However,
482    /// `AcqRel` will never perform [`Relaxed`] accesses.
483    ///
484    /// This ordering is only applicable for operations that combine both loads and stores.
485    ///
486    /// Corresponds to [`memory_order_acq_rel`] in C++20.
487    ///
488    /// [`memory_order_acq_rel`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Release-Acquire_ordering
489    #[stable(feature = "rust1", since = "1.0.0")]
490    AcqRel,
491    /// Like [`Acquire`]/[`Release`]/[`AcqRel`] (for load, store, and load-with-store
492    /// operations, respectively) with the additional guarantee that all threads see all
493    /// sequentially consistent operations in the same order.
494    ///
495    /// Corresponds to [`memory_order_seq_cst`] in C++20.
496    ///
497    /// [`memory_order_seq_cst`]: https://en.cppreference.com/w/cpp/atomic/memory_order#Sequentially-consistent_ordering
498    #[stable(feature = "rust1", since = "1.0.0")]
499    SeqCst,
500}
501
502/// An [`AtomicBool`] initialized to `false`.
503#[cfg(target_has_atomic_load_store = "8")]
504#[stable(feature = "rust1", since = "1.0.0")]
505#[deprecated(
506    since = "1.34.0",
507    note = "the `new` function is now preferred",
508    suggestion = "AtomicBool::new(false)"
509)]
510pub const ATOMIC_BOOL_INIT: AtomicBool = AtomicBool::new(false);
511
512#[cfg(target_has_atomic_load_store = "8")]
513impl AtomicBool {
514    /// Creates a new `AtomicBool`.
515    ///
516    /// # Examples
517    ///
518    /// ```
519    /// use std::sync::atomic::AtomicBool;
520    ///
521    /// let atomic_true = AtomicBool::new(true);
522    /// let atomic_false = AtomicBool::new(false);
523    /// ```
524    #[inline]
525    #[stable(feature = "rust1", since = "1.0.0")]
526    #[rustc_const_stable(feature = "const_atomic_new", since = "1.24.0")]
527    #[must_use]
528    pub const fn new(v: bool) -> AtomicBool {
529        AtomicBool { v: UnsafeCell::new(v as u8) }
530    }
531
532    /// Creates a new `AtomicBool` from a pointer.
533    ///
534    /// # Examples
535    ///
536    /// ```
537    /// use std::sync::atomic::{self, AtomicBool};
538    ///
539    /// // Get a pointer to an allocated value
540    /// let ptr: *mut bool = Box::into_raw(Box::new(false));
541    ///
542    /// assert!(ptr.cast::<AtomicBool>().is_aligned());
543    ///
544    /// {
545    ///     // Create an atomic view of the allocated value
546    ///     let atomic = unsafe { AtomicBool::from_ptr(ptr) };
547    ///
548    ///     // Use `atomic` for atomic operations, possibly share it with other threads
549    ///     atomic.store(true, atomic::Ordering::Relaxed);
550    /// }
551    ///
552    /// // It's ok to non-atomically access the value behind `ptr`,
553    /// // since the reference to the atomic ended its lifetime in the block above
554    /// assert_eq!(unsafe { *ptr }, true);
555    ///
556    /// // Deallocate the value
557    /// unsafe { drop(Box::from_raw(ptr)) }
558    /// ```
559    ///
560    /// # Safety
561    ///
562    /// * `ptr` must be aligned to `align_of::<AtomicBool>()` (note that this is always true, since
563    ///   `align_of::<AtomicBool>() == 1`).
564    /// * `ptr` must be [valid] for both reads and writes for the whole lifetime `'a`.
565    /// * You must adhere to the [Memory model for atomic accesses]. In particular, it is not
566    ///   allowed to mix conflicting atomic and non-atomic accesses, or atomic accesses of different
567    ///   sizes, without synchronization.
568    ///
569    /// [valid]: crate::ptr#safety
570    /// [Memory model for atomic accesses]: self#memory-model-for-atomic-accesses
571    #[inline]
572    #[stable(feature = "atomic_from_ptr", since = "1.75.0")]
573    #[rustc_const_stable(feature = "const_atomic_from_ptr", since = "1.84.0")]
574    pub const unsafe fn from_ptr<'a>(ptr: *mut bool) -> &'a AtomicBool {
575        // SAFETY: guaranteed by the caller
576        unsafe { &*ptr.cast() }
577    }
578
579    /// Returns a mutable reference to the underlying [`bool`].
580    ///
581    /// This is safe because the mutable reference guarantees that no other threads are
582    /// concurrently accessing the atomic data.
583    ///
584    /// # Examples
585    ///
586    /// ```
587    /// use std::sync::atomic::{AtomicBool, Ordering};
588    ///
589    /// let mut some_bool = AtomicBool::new(true);
590    /// assert_eq!(*some_bool.get_mut(), true);
591    /// *some_bool.get_mut() = false;
592    /// assert_eq!(some_bool.load(Ordering::SeqCst), false);
593    /// ```
594    #[inline]
595    #[stable(feature = "atomic_access", since = "1.15.0")]
596    pub fn get_mut(&mut self) -> &mut bool {
597        // SAFETY: the mutable reference guarantees unique ownership.
598        unsafe { &mut *(self.v.get() as *mut bool) }
599    }
600
601    /// Gets atomic access to a `&mut bool`.
602    ///
603    /// # Examples
604    ///
605    /// ```
606    /// #![feature(atomic_from_mut)]
607    /// use std::sync::atomic::{AtomicBool, Ordering};
608    ///
609    /// let mut some_bool = true;
610    /// let a = AtomicBool::from_mut(&mut some_bool);
611    /// a.store(false, Ordering::Relaxed);
612    /// assert_eq!(some_bool, false);
613    /// ```
614    #[inline]
615    #[cfg(target_has_atomic_equal_alignment = "8")]
616    #[unstable(feature = "atomic_from_mut", issue = "76314")]
617    pub fn from_mut(v: &mut bool) -> &mut Self {
618        // SAFETY: the mutable reference guarantees unique ownership, and
619        // alignment of both `bool` and `Self` is 1.
620        unsafe { &mut *(v as *mut bool as *mut Self) }
621    }
622
623    /// Gets non-atomic access to a `&mut [AtomicBool]` slice.
624    ///
625    /// This is safe because the mutable reference guarantees that no other threads are
626    /// concurrently accessing the atomic data.
627    ///
628    /// # Examples
629    ///
630    /// ```ignore-wasm
631    /// #![feature(atomic_from_mut)]
632    /// use std::sync::atomic::{AtomicBool, Ordering};
633    ///
634    /// let mut some_bools = [const { AtomicBool::new(false) }; 10];
635    ///
636    /// let view: &mut [bool] = AtomicBool::get_mut_slice(&mut some_bools);
637    /// assert_eq!(view, [false; 10]);
638    /// view[..5].copy_from_slice(&[true; 5]);
639    ///
640    /// std::thread::scope(|s| {
641    ///     for t in &some_bools[..5] {
642    ///         s.spawn(move || assert_eq!(t.load(Ordering::Relaxed), true));
643    ///     }
644    ///
645    ///     for f in &some_bools[5..] {
646    ///         s.spawn(move || assert_eq!(f.load(Ordering::Relaxed), false));
647    ///     }
648    /// });
649    /// ```
650    #[inline]
651    #[unstable(feature = "atomic_from_mut", issue = "76314")]
652    pub fn get_mut_slice(this: &mut [Self]) -> &mut [bool] {
653        // SAFETY: the mutable reference guarantees unique ownership.
654        unsafe { &mut *(this as *mut [Self] as *mut [bool]) }
655    }
656
657    /// Gets atomic access to a `&mut [bool]` slice.
658    ///
659    /// # Examples
660    ///
661    /// ```rust,ignore-wasm
662    /// #![feature(atomic_from_mut)]
663    /// use std::sync::atomic::{AtomicBool, Ordering};
664    ///
665    /// let mut some_bools = [false; 10];
666    /// let a = &*AtomicBool::from_mut_slice(&mut some_bools);
667    /// std::thread::scope(|s| {
668    ///     for i in 0..a.len() {
669    ///         s.spawn(move || a[i].store(true, Ordering::Relaxed));
670    ///     }
671    /// });
672    /// assert_eq!(some_bools, [true; 10]);
673    /// ```
674    #[inline]
675    #[cfg(target_has_atomic_equal_alignment = "8")]
676    #[unstable(feature = "atomic_from_mut", issue = "76314")]
677    pub fn from_mut_slice(v: &mut [bool]) -> &mut [Self] {
678        // SAFETY: the mutable reference guarantees unique ownership, and
679        // alignment of both `bool` and `Self` is 1.
680        unsafe { &mut *(v as *mut [bool] as *mut [Self]) }
681    }
682
683    /// Consumes the atomic and returns the contained value.
684    ///
685    /// This is safe because passing `self` by value guarantees that no other threads are
686    /// concurrently accessing the atomic data.
687    ///
688    /// # Examples
689    ///
690    /// ```
691    /// use std::sync::atomic::AtomicBool;
692    ///
693    /// let some_bool = AtomicBool::new(true);
694    /// assert_eq!(some_bool.into_inner(), true);
695    /// ```
696    #[inline]
697    #[stable(feature = "atomic_access", since = "1.15.0")]
698    #[rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0")]
699    pub const fn into_inner(self) -> bool {
700        self.v.into_inner() != 0
701    }
702
703    /// Loads a value from the bool.
704    ///
705    /// `load` takes an [`Ordering`] argument which describes the memory ordering
706    /// of this operation. Possible values are [`SeqCst`], [`Acquire`] and [`Relaxed`].
707    ///
708    /// # Panics
709    ///
710    /// Panics if `order` is [`Release`] or [`AcqRel`].
711    ///
712    /// # Examples
713    ///
714    /// ```
715    /// use std::sync::atomic::{AtomicBool, Ordering};
716    ///
717    /// let some_bool = AtomicBool::new(true);
718    ///
719    /// assert_eq!(some_bool.load(Ordering::Relaxed), true);
720    /// ```
721    #[inline]
722    #[stable(feature = "rust1", since = "1.0.0")]
723    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
724    pub fn load(&self, order: Ordering) -> bool {
725        // SAFETY: any data races are prevented by atomic intrinsics and the raw
726        // pointer passed in is valid because we got it from a reference.
727        unsafe { atomic_load(self.v.get(), order) != 0 }
728    }
729
730    /// Stores a value into the bool.
731    ///
732    /// `store` takes an [`Ordering`] argument which describes the memory ordering
733    /// of this operation. Possible values are [`SeqCst`], [`Release`] and [`Relaxed`].
734    ///
735    /// # Panics
736    ///
737    /// Panics if `order` is [`Acquire`] or [`AcqRel`].
738    ///
739    /// # Examples
740    ///
741    /// ```
742    /// use std::sync::atomic::{AtomicBool, Ordering};
743    ///
744    /// let some_bool = AtomicBool::new(true);
745    ///
746    /// some_bool.store(false, Ordering::Relaxed);
747    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
748    /// ```
749    #[inline]
750    #[stable(feature = "rust1", since = "1.0.0")]
751    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
752    pub fn store(&self, val: bool, order: Ordering) {
753        // SAFETY: any data races are prevented by atomic intrinsics and the raw
754        // pointer passed in is valid because we got it from a reference.
755        unsafe {
756            atomic_store(self.v.get(), val as u8, order);
757        }
758    }
759
760    /// Stores a value into the bool, returning the previous value.
761    ///
762    /// `swap` takes an [`Ordering`] argument which describes the memory ordering
763    /// of this operation. All ordering modes are possible. Note that using
764    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
765    /// using [`Release`] makes the load part [`Relaxed`].
766    ///
767    /// **Note:** This method is only available on platforms that support atomic
768    /// operations on `u8`.
769    ///
770    /// # Examples
771    ///
772    /// ```
773    /// use std::sync::atomic::{AtomicBool, Ordering};
774    ///
775    /// let some_bool = AtomicBool::new(true);
776    ///
777    /// assert_eq!(some_bool.swap(false, Ordering::Relaxed), true);
778    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
779    /// ```
780    #[inline]
781    #[stable(feature = "rust1", since = "1.0.0")]
782    #[cfg(target_has_atomic = "8")]
783    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
784    pub fn swap(&self, val: bool, order: Ordering) -> bool {
785        if EMULATE_ATOMIC_BOOL {
786            if val { self.fetch_or(true, order) } else { self.fetch_and(false, order) }
787        } else {
788            // SAFETY: data races are prevented by atomic intrinsics.
789            unsafe { atomic_swap(self.v.get(), val as u8, order) != 0 }
790        }
791    }
792
793    /// Stores a value into the [`bool`] if the current value is the same as the `current` value.
794    ///
795    /// The return value is always the previous value. If it is equal to `current`, then the value
796    /// was updated.
797    ///
798    /// `compare_and_swap` also takes an [`Ordering`] argument which describes the memory
799    /// ordering of this operation. Notice that even when using [`AcqRel`], the operation
800    /// might fail and hence just perform an `Acquire` load, but not have `Release` semantics.
801    /// Using [`Acquire`] makes the store part of this operation [`Relaxed`] if it
802    /// happens, and using [`Release`] makes the load part [`Relaxed`].
803    ///
804    /// **Note:** This method is only available on platforms that support atomic
805    /// operations on `u8`.
806    ///
807    /// # Migrating to `compare_exchange` and `compare_exchange_weak`
808    ///
809    /// `compare_and_swap` is equivalent to `compare_exchange` with the following mapping for
810    /// memory orderings:
811    ///
812    /// Original | Success | Failure
813    /// -------- | ------- | -------
814    /// Relaxed  | Relaxed | Relaxed
815    /// Acquire  | Acquire | Acquire
816    /// Release  | Release | Relaxed
817    /// AcqRel   | AcqRel  | Acquire
818    /// SeqCst   | SeqCst  | SeqCst
819    ///
820    /// `compare_and_swap` and `compare_exchange` also differ in their return type. You can use
821    /// `compare_exchange(...).unwrap_or_else(|x| x)` to recover the behavior of `compare_and_swap`,
822    /// but in most cases it is more idiomatic to check whether the return value is `Ok` or `Err`
823    /// rather than to infer success vs failure based on the value that was read.
824    ///
825    /// During migration, consider whether it makes sense to use `compare_exchange_weak` instead.
826    /// `compare_exchange_weak` is allowed to fail spuriously even when the comparison succeeds,
827    /// which allows the compiler to generate better assembly code when the compare and swap
828    /// is used in a loop.
829    ///
830    /// # Examples
831    ///
832    /// ```
833    /// use std::sync::atomic::{AtomicBool, Ordering};
834    ///
835    /// let some_bool = AtomicBool::new(true);
836    ///
837    /// assert_eq!(some_bool.compare_and_swap(true, false, Ordering::Relaxed), true);
838    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
839    ///
840    /// assert_eq!(some_bool.compare_and_swap(true, true, Ordering::Relaxed), false);
841    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
842    /// ```
843    #[inline]
844    #[stable(feature = "rust1", since = "1.0.0")]
845    #[deprecated(
846        since = "1.50.0",
847        note = "Use `compare_exchange` or `compare_exchange_weak` instead"
848    )]
849    #[cfg(target_has_atomic = "8")]
850    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
851    pub fn compare_and_swap(&self, current: bool, new: bool, order: Ordering) -> bool {
852        match self.compare_exchange(current, new, order, strongest_failure_ordering(order)) {
853            Ok(x) => x,
854            Err(x) => x,
855        }
856    }
857
858    /// Stores a value into the [`bool`] if the current value is the same as the `current` value.
859    ///
860    /// The return value is a result indicating whether the new value was written and containing
861    /// the previous value. On success this value is guaranteed to be equal to `current`.
862    ///
863    /// `compare_exchange` takes two [`Ordering`] arguments to describe the memory
864    /// ordering of this operation. `success` describes the required ordering for the
865    /// read-modify-write operation that takes place if the comparison with `current` succeeds.
866    /// `failure` describes the required ordering for the load operation that takes place when
867    /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
868    /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
869    /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
870    ///
871    /// **Note:** This method is only available on platforms that support atomic
872    /// operations on `u8`.
873    ///
874    /// # Examples
875    ///
876    /// ```
877    /// use std::sync::atomic::{AtomicBool, Ordering};
878    ///
879    /// let some_bool = AtomicBool::new(true);
880    ///
881    /// assert_eq!(some_bool.compare_exchange(true,
882    ///                                       false,
883    ///                                       Ordering::Acquire,
884    ///                                       Ordering::Relaxed),
885    ///            Ok(true));
886    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
887    ///
888    /// assert_eq!(some_bool.compare_exchange(true, true,
889    ///                                       Ordering::SeqCst,
890    ///                                       Ordering::Acquire),
891    ///            Err(false));
892    /// assert_eq!(some_bool.load(Ordering::Relaxed), false);
893    /// ```
894    ///
895    /// # Considerations
896    ///
897    /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
898    /// of CAS operations. In particular, a load of the value followed by a successful
899    /// `compare_exchange` with the previous load *does not ensure* that other threads have not
900    /// changed the value in the interim. This is usually important when the *equality* check in
901    /// the `compare_exchange` is being used to check the *identity* of a value, but equality
902    /// does not necessarily imply identity. In this case, `compare_exchange` can lead to the
903    /// [ABA problem].
904    ///
905    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
906    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
907    #[inline]
908    #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
909    #[doc(alias = "compare_and_swap")]
910    #[cfg(target_has_atomic = "8")]
911    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
912    pub fn compare_exchange(
913        &self,
914        current: bool,
915        new: bool,
916        success: Ordering,
917        failure: Ordering,
918    ) -> Result<bool, bool> {
919        if EMULATE_ATOMIC_BOOL {
920            // Pick the strongest ordering from success and failure.
921            let order = match (success, failure) {
922                (SeqCst, _) => SeqCst,
923                (_, SeqCst) => SeqCst,
924                (AcqRel, _) => AcqRel,
925                (_, AcqRel) => {
926                    panic!("there is no such thing as an acquire-release failure ordering")
927                }
928                (Release, Acquire) => AcqRel,
929                (Acquire, _) => Acquire,
930                (_, Acquire) => Acquire,
931                (Release, Relaxed) => Release,
932                (_, Release) => panic!("there is no such thing as a release failure ordering"),
933                (Relaxed, Relaxed) => Relaxed,
934            };
935            let old = if current == new {
936                // This is a no-op, but we still need to perform the operation
937                // for memory ordering reasons.
938                self.fetch_or(false, order)
939            } else {
940                // This sets the value to the new one and returns the old one.
941                self.swap(new, order)
942            };
943            if old == current { Ok(old) } else { Err(old) }
944        } else {
945            // SAFETY: data races are prevented by atomic intrinsics.
946            match unsafe {
947                atomic_compare_exchange(self.v.get(), current as u8, new as u8, success, failure)
948            } {
949                Ok(x) => Ok(x != 0),
950                Err(x) => Err(x != 0),
951            }
952        }
953    }
954
955    /// Stores a value into the [`bool`] if the current value is the same as the `current` value.
956    ///
957    /// Unlike [`AtomicBool::compare_exchange`], this function is allowed to spuriously fail even when the
958    /// comparison succeeds, which can result in more efficient code on some platforms. The
959    /// return value is a result indicating whether the new value was written and containing the
960    /// previous value.
961    ///
962    /// `compare_exchange_weak` takes two [`Ordering`] arguments to describe the memory
963    /// ordering of this operation. `success` describes the required ordering for the
964    /// read-modify-write operation that takes place if the comparison with `current` succeeds.
965    /// `failure` describes the required ordering for the load operation that takes place when
966    /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
967    /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
968    /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
969    ///
970    /// **Note:** This method is only available on platforms that support atomic
971    /// operations on `u8`.
972    ///
973    /// # Examples
974    ///
975    /// ```
976    /// use std::sync::atomic::{AtomicBool, Ordering};
977    ///
978    /// let val = AtomicBool::new(false);
979    ///
980    /// let new = true;
981    /// let mut old = val.load(Ordering::Relaxed);
982    /// loop {
983    ///     match val.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
984    ///         Ok(_) => break,
985    ///         Err(x) => old = x,
986    ///     }
987    /// }
988    /// ```
989    ///
990    /// # Considerations
991    ///
992    /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
993    /// of CAS operations. In particular, a load of the value followed by a successful
994    /// `compare_exchange` with the previous load *does not ensure* that other threads have not
995    /// changed the value in the interim. This is usually important when the *equality* check in
996    /// the `compare_exchange` is being used to check the *identity* of a value, but equality
997    /// does not necessarily imply identity. In this case, `compare_exchange` can lead to the
998    /// [ABA problem].
999    ///
1000    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1001    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1002    #[inline]
1003    #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
1004    #[doc(alias = "compare_and_swap")]
1005    #[cfg(target_has_atomic = "8")]
1006    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1007    pub fn compare_exchange_weak(
1008        &self,
1009        current: bool,
1010        new: bool,
1011        success: Ordering,
1012        failure: Ordering,
1013    ) -> Result<bool, bool> {
1014        if EMULATE_ATOMIC_BOOL {
1015            return self.compare_exchange(current, new, success, failure);
1016        }
1017
1018        // SAFETY: data races are prevented by atomic intrinsics.
1019        match unsafe {
1020            atomic_compare_exchange_weak(self.v.get(), current as u8, new as u8, success, failure)
1021        } {
1022            Ok(x) => Ok(x != 0),
1023            Err(x) => Err(x != 0),
1024        }
1025    }
1026
1027    /// Logical "and" with a boolean value.
1028    ///
1029    /// Performs a logical "and" operation on the current value and the argument `val`, and sets
1030    /// the new value to the result.
1031    ///
1032    /// Returns the previous value.
1033    ///
1034    /// `fetch_and` takes an [`Ordering`] argument which describes the memory ordering
1035    /// of this operation. All ordering modes are possible. Note that using
1036    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1037    /// using [`Release`] makes the load part [`Relaxed`].
1038    ///
1039    /// **Note:** This method is only available on platforms that support atomic
1040    /// operations on `u8`.
1041    ///
1042    /// # Examples
1043    ///
1044    /// ```
1045    /// use std::sync::atomic::{AtomicBool, Ordering};
1046    ///
1047    /// let foo = AtomicBool::new(true);
1048    /// assert_eq!(foo.fetch_and(false, Ordering::SeqCst), true);
1049    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1050    ///
1051    /// let foo = AtomicBool::new(true);
1052    /// assert_eq!(foo.fetch_and(true, Ordering::SeqCst), true);
1053    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1054    ///
1055    /// let foo = AtomicBool::new(false);
1056    /// assert_eq!(foo.fetch_and(false, Ordering::SeqCst), false);
1057    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1058    /// ```
1059    #[inline]
1060    #[stable(feature = "rust1", since = "1.0.0")]
1061    #[cfg(target_has_atomic = "8")]
1062    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1063    pub fn fetch_and(&self, val: bool, order: Ordering) -> bool {
1064        // SAFETY: data races are prevented by atomic intrinsics.
1065        unsafe { atomic_and(self.v.get(), val as u8, order) != 0 }
1066    }
1067
1068    /// Logical "nand" with a boolean value.
1069    ///
1070    /// Performs a logical "nand" operation on the current value and the argument `val`, and sets
1071    /// the new value to the result.
1072    ///
1073    /// Returns the previous value.
1074    ///
1075    /// `fetch_nand` takes an [`Ordering`] argument which describes the memory ordering
1076    /// of this operation. All ordering modes are possible. Note that using
1077    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1078    /// using [`Release`] makes the load part [`Relaxed`].
1079    ///
1080    /// **Note:** This method is only available on platforms that support atomic
1081    /// operations on `u8`.
1082    ///
1083    /// # Examples
1084    ///
1085    /// ```
1086    /// use std::sync::atomic::{AtomicBool, Ordering};
1087    ///
1088    /// let foo = AtomicBool::new(true);
1089    /// assert_eq!(foo.fetch_nand(false, Ordering::SeqCst), true);
1090    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1091    ///
1092    /// let foo = AtomicBool::new(true);
1093    /// assert_eq!(foo.fetch_nand(true, Ordering::SeqCst), true);
1094    /// assert_eq!(foo.load(Ordering::SeqCst) as usize, 0);
1095    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1096    ///
1097    /// let foo = AtomicBool::new(false);
1098    /// assert_eq!(foo.fetch_nand(false, Ordering::SeqCst), false);
1099    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1100    /// ```
1101    #[inline]
1102    #[stable(feature = "rust1", since = "1.0.0")]
1103    #[cfg(target_has_atomic = "8")]
1104    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1105    pub fn fetch_nand(&self, val: bool, order: Ordering) -> bool {
1106        // We can't use atomic_nand here because it can result in a bool with
1107        // an invalid value. This happens because the atomic operation is done
1108        // with an 8-bit integer internally, which would set the upper 7 bits.
1109        // So we just use fetch_xor or swap instead.
1110        if val {
1111            // !(x & true) == !x
1112            // We must invert the bool.
1113            self.fetch_xor(true, order)
1114        } else {
1115            // !(x & false) == true
1116            // We must set the bool to true.
1117            self.swap(true, order)
1118        }
1119    }
1120
1121    /// Logical "or" with a boolean value.
1122    ///
1123    /// Performs a logical "or" operation on the current value and the argument `val`, and sets the
1124    /// new value to the result.
1125    ///
1126    /// Returns the previous value.
1127    ///
1128    /// `fetch_or` takes an [`Ordering`] argument which describes the memory ordering
1129    /// of this operation. All ordering modes are possible. Note that using
1130    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1131    /// using [`Release`] makes the load part [`Relaxed`].
1132    ///
1133    /// **Note:** This method is only available on platforms that support atomic
1134    /// operations on `u8`.
1135    ///
1136    /// # Examples
1137    ///
1138    /// ```
1139    /// use std::sync::atomic::{AtomicBool, Ordering};
1140    ///
1141    /// let foo = AtomicBool::new(true);
1142    /// assert_eq!(foo.fetch_or(false, Ordering::SeqCst), true);
1143    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1144    ///
1145    /// let foo = AtomicBool::new(true);
1146    /// assert_eq!(foo.fetch_or(true, Ordering::SeqCst), true);
1147    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1148    ///
1149    /// let foo = AtomicBool::new(false);
1150    /// assert_eq!(foo.fetch_or(false, Ordering::SeqCst), false);
1151    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1152    /// ```
1153    #[inline]
1154    #[stable(feature = "rust1", since = "1.0.0")]
1155    #[cfg(target_has_atomic = "8")]
1156    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1157    pub fn fetch_or(&self, val: bool, order: Ordering) -> bool {
1158        // SAFETY: data races are prevented by atomic intrinsics.
1159        unsafe { atomic_or(self.v.get(), val as u8, order) != 0 }
1160    }
1161
1162    /// Logical "xor" with a boolean value.
1163    ///
1164    /// Performs a logical "xor" operation on the current value and the argument `val`, and sets
1165    /// the new value to the result.
1166    ///
1167    /// Returns the previous value.
1168    ///
1169    /// `fetch_xor` takes an [`Ordering`] argument which describes the memory ordering
1170    /// of this operation. All ordering modes are possible. Note that using
1171    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1172    /// using [`Release`] makes the load part [`Relaxed`].
1173    ///
1174    /// **Note:** This method is only available on platforms that support atomic
1175    /// operations on `u8`.
1176    ///
1177    /// # Examples
1178    ///
1179    /// ```
1180    /// use std::sync::atomic::{AtomicBool, Ordering};
1181    ///
1182    /// let foo = AtomicBool::new(true);
1183    /// assert_eq!(foo.fetch_xor(false, Ordering::SeqCst), true);
1184    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1185    ///
1186    /// let foo = AtomicBool::new(true);
1187    /// assert_eq!(foo.fetch_xor(true, Ordering::SeqCst), true);
1188    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1189    ///
1190    /// let foo = AtomicBool::new(false);
1191    /// assert_eq!(foo.fetch_xor(false, Ordering::SeqCst), false);
1192    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1193    /// ```
1194    #[inline]
1195    #[stable(feature = "rust1", since = "1.0.0")]
1196    #[cfg(target_has_atomic = "8")]
1197    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1198    pub fn fetch_xor(&self, val: bool, order: Ordering) -> bool {
1199        // SAFETY: data races are prevented by atomic intrinsics.
1200        unsafe { atomic_xor(self.v.get(), val as u8, order) != 0 }
1201    }
1202
1203    /// Logical "not" with a boolean value.
1204    ///
1205    /// Performs a logical "not" operation on the current value, and sets
1206    /// the new value to the result.
1207    ///
1208    /// Returns the previous value.
1209    ///
1210    /// `fetch_not` takes an [`Ordering`] argument which describes the memory ordering
1211    /// of this operation. All ordering modes are possible. Note that using
1212    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1213    /// using [`Release`] makes the load part [`Relaxed`].
1214    ///
1215    /// **Note:** This method is only available on platforms that support atomic
1216    /// operations on `u8`.
1217    ///
1218    /// # Examples
1219    ///
1220    /// ```
1221    /// use std::sync::atomic::{AtomicBool, Ordering};
1222    ///
1223    /// let foo = AtomicBool::new(true);
1224    /// assert_eq!(foo.fetch_not(Ordering::SeqCst), true);
1225    /// assert_eq!(foo.load(Ordering::SeqCst), false);
1226    ///
1227    /// let foo = AtomicBool::new(false);
1228    /// assert_eq!(foo.fetch_not(Ordering::SeqCst), false);
1229    /// assert_eq!(foo.load(Ordering::SeqCst), true);
1230    /// ```
1231    #[inline]
1232    #[stable(feature = "atomic_bool_fetch_not", since = "1.81.0")]
1233    #[cfg(target_has_atomic = "8")]
1234    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1235    pub fn fetch_not(&self, order: Ordering) -> bool {
1236        self.fetch_xor(true, order)
1237    }
1238
1239    /// Returns a mutable pointer to the underlying [`bool`].
1240    ///
1241    /// Doing non-atomic reads and writes on the resulting boolean can be a data race.
1242    /// This method is mostly useful for FFI, where the function signature may use
1243    /// `*mut bool` instead of `&AtomicBool`.
1244    ///
1245    /// Returning an `*mut` pointer from a shared reference to this atomic is safe because the
1246    /// atomic types work with interior mutability. All modifications of an atomic change the value
1247    /// through a shared reference, and can do so safely as long as they use atomic operations. Any
1248    /// use of the returned raw pointer requires an `unsafe` block and still has to uphold the
1249    /// requirements of the [memory model].
1250    ///
1251    /// # Examples
1252    ///
1253    /// ```ignore (extern-declaration)
1254    /// # fn main() {
1255    /// use std::sync::atomic::AtomicBool;
1256    ///
1257    /// extern "C" {
1258    ///     fn my_atomic_op(arg: *mut bool);
1259    /// }
1260    ///
1261    /// let mut atomic = AtomicBool::new(true);
1262    /// unsafe {
1263    ///     my_atomic_op(atomic.as_ptr());
1264    /// }
1265    /// # }
1266    /// ```
1267    ///
1268    /// [memory model]: self#memory-model-for-atomic-accesses
1269    #[inline]
1270    #[stable(feature = "atomic_as_ptr", since = "1.70.0")]
1271    #[rustc_const_stable(feature = "atomic_as_ptr", since = "1.70.0")]
1272    #[rustc_never_returns_null_ptr]
1273    pub const fn as_ptr(&self) -> *mut bool {
1274        self.v.get().cast()
1275    }
1276
1277    /// Fetches the value, and applies a function to it that returns an optional
1278    /// new value. Returns a `Result` of `Ok(previous_value)` if the function
1279    /// returned `Some(_)`, else `Err(previous_value)`.
1280    ///
1281    /// Note: This may call the function multiple times if the value has been
1282    /// changed from other threads in the meantime, as long as the function
1283    /// returns `Some(_)`, but the function will have been applied only once to
1284    /// the stored value.
1285    ///
1286    /// `fetch_update` takes two [`Ordering`] arguments to describe the memory
1287    /// ordering of this operation. The first describes the required ordering for
1288    /// when the operation finally succeeds while the second describes the
1289    /// required ordering for loads. These correspond to the success and failure
1290    /// orderings of [`AtomicBool::compare_exchange`] respectively.
1291    ///
1292    /// Using [`Acquire`] as success ordering makes the store part of this
1293    /// operation [`Relaxed`], and using [`Release`] makes the final successful
1294    /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
1295    /// [`Acquire`] or [`Relaxed`].
1296    ///
1297    /// **Note:** This method is only available on platforms that support atomic
1298    /// operations on `u8`.
1299    ///
1300    /// # Considerations
1301    ///
1302    /// This method is not magic; it is not provided by the hardware, and does not act like a
1303    /// critical section or mutex.
1304    ///
1305    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
1306    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem].
1307    ///
1308    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1309    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1310    ///
1311    /// # Examples
1312    ///
1313    /// ```rust
1314    /// use std::sync::atomic::{AtomicBool, Ordering};
1315    ///
1316    /// let x = AtomicBool::new(false);
1317    /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(false));
1318    /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(false));
1319    /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(true));
1320    /// assert_eq!(x.load(Ordering::SeqCst), false);
1321    /// ```
1322    #[inline]
1323    #[stable(feature = "atomic_fetch_update", since = "1.53.0")]
1324    #[cfg(target_has_atomic = "8")]
1325    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1326    pub fn fetch_update<F>(
1327        &self,
1328        set_order: Ordering,
1329        fetch_order: Ordering,
1330        mut f: F,
1331    ) -> Result<bool, bool>
1332    where
1333        F: FnMut(bool) -> Option<bool>,
1334    {
1335        let mut prev = self.load(fetch_order);
1336        while let Some(next) = f(prev) {
1337            match self.compare_exchange_weak(prev, next, set_order, fetch_order) {
1338                x @ Ok(_) => return x,
1339                Err(next_prev) => prev = next_prev,
1340            }
1341        }
1342        Err(prev)
1343    }
1344
1345    /// Fetches the value, and applies a function to it that returns an optional
1346    /// new value. Returns a `Result` of `Ok(previous_value)` if the function
1347    /// returned `Some(_)`, else `Err(previous_value)`.
1348    ///
1349    /// See also: [`update`](`AtomicBool::update`).
1350    ///
1351    /// Note: This may call the function multiple times if the value has been
1352    /// changed from other threads in the meantime, as long as the function
1353    /// returns `Some(_)`, but the function will have been applied only once to
1354    /// the stored value.
1355    ///
1356    /// `try_update` takes two [`Ordering`] arguments to describe the memory
1357    /// ordering of this operation. The first describes the required ordering for
1358    /// when the operation finally succeeds while the second describes the
1359    /// required ordering for loads. These correspond to the success and failure
1360    /// orderings of [`AtomicBool::compare_exchange`] respectively.
1361    ///
1362    /// Using [`Acquire`] as success ordering makes the store part of this
1363    /// operation [`Relaxed`], and using [`Release`] makes the final successful
1364    /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
1365    /// [`Acquire`] or [`Relaxed`].
1366    ///
1367    /// **Note:** This method is only available on platforms that support atomic
1368    /// operations on `u8`.
1369    ///
1370    /// # Considerations
1371    ///
1372    /// This method is not magic; it is not provided by the hardware, and does not act like a
1373    /// critical section or mutex.
1374    ///
1375    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
1376    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem].
1377    ///
1378    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1379    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1380    ///
1381    /// # Examples
1382    ///
1383    /// ```rust
1384    /// #![feature(atomic_try_update)]
1385    /// use std::sync::atomic::{AtomicBool, Ordering};
1386    ///
1387    /// let x = AtomicBool::new(false);
1388    /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(false));
1389    /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(false));
1390    /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(!x)), Ok(true));
1391    /// assert_eq!(x.load(Ordering::SeqCst), false);
1392    /// ```
1393    #[inline]
1394    #[unstable(feature = "atomic_try_update", issue = "135894")]
1395    #[cfg(target_has_atomic = "8")]
1396    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1397    pub fn try_update(
1398        &self,
1399        set_order: Ordering,
1400        fetch_order: Ordering,
1401        f: impl FnMut(bool) -> Option<bool>,
1402    ) -> Result<bool, bool> {
1403        // FIXME(atomic_try_update): this is currently an unstable alias to `fetch_update`;
1404        //      when stabilizing, turn `fetch_update` into a deprecated alias to `try_update`.
1405        self.fetch_update(set_order, fetch_order, f)
1406    }
1407
1408    /// Fetches the value, applies a function to it that it return a new value.
1409    /// The new value is stored and the old value is returned.
1410    ///
1411    /// See also: [`try_update`](`AtomicBool::try_update`).
1412    ///
1413    /// Note: This may call the function multiple times if the value has been changed from other threads in
1414    /// the meantime, but the function will have been applied only once to the stored value.
1415    ///
1416    /// `update` takes two [`Ordering`] arguments to describe the memory
1417    /// ordering of this operation. The first describes the required ordering for
1418    /// when the operation finally succeeds while the second describes the
1419    /// required ordering for loads. These correspond to the success and failure
1420    /// orderings of [`AtomicBool::compare_exchange`] respectively.
1421    ///
1422    /// Using [`Acquire`] as success ordering makes the store part
1423    /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
1424    /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
1425    ///
1426    /// **Note:** This method is only available on platforms that support atomic operations on `u8`.
1427    ///
1428    /// # Considerations
1429    ///
1430    /// This method is not magic; it is not provided by the hardware, and does not act like a
1431    /// critical section or mutex.
1432    ///
1433    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
1434    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem].
1435    ///
1436    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1437    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1438    ///
1439    /// # Examples
1440    ///
1441    /// ```rust
1442    /// #![feature(atomic_try_update)]
1443    ///
1444    /// use std::sync::atomic::{AtomicBool, Ordering};
1445    ///
1446    /// let x = AtomicBool::new(false);
1447    /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| !x), false);
1448    /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| !x), true);
1449    /// assert_eq!(x.load(Ordering::SeqCst), false);
1450    /// ```
1451    #[inline]
1452    #[unstable(feature = "atomic_try_update", issue = "135894")]
1453    #[cfg(target_has_atomic = "8")]
1454    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1455    pub fn update(
1456        &self,
1457        set_order: Ordering,
1458        fetch_order: Ordering,
1459        mut f: impl FnMut(bool) -> bool,
1460    ) -> bool {
1461        let mut prev = self.load(fetch_order);
1462        loop {
1463            match self.compare_exchange_weak(prev, f(prev), set_order, fetch_order) {
1464                Ok(x) => break x,
1465                Err(next_prev) => prev = next_prev,
1466            }
1467        }
1468    }
1469}
1470
1471#[cfg(target_has_atomic_load_store = "ptr")]
1472impl<T> AtomicPtr<T> {
1473    /// Creates a new `AtomicPtr`.
1474    ///
1475    /// # Examples
1476    ///
1477    /// ```
1478    /// use std::sync::atomic::AtomicPtr;
1479    ///
1480    /// let ptr = &mut 5;
1481    /// let atomic_ptr = AtomicPtr::new(ptr);
1482    /// ```
1483    #[inline]
1484    #[stable(feature = "rust1", since = "1.0.0")]
1485    #[rustc_const_stable(feature = "const_atomic_new", since = "1.24.0")]
1486    pub const fn new(p: *mut T) -> AtomicPtr<T> {
1487        AtomicPtr { p: UnsafeCell::new(p) }
1488    }
1489
1490    /// Creates a new `AtomicPtr` from a pointer.
1491    ///
1492    /// # Examples
1493    ///
1494    /// ```
1495    /// use std::sync::atomic::{self, AtomicPtr};
1496    ///
1497    /// // Get a pointer to an allocated value
1498    /// let ptr: *mut *mut u8 = Box::into_raw(Box::new(std::ptr::null_mut()));
1499    ///
1500    /// assert!(ptr.cast::<AtomicPtr<u8>>().is_aligned());
1501    ///
1502    /// {
1503    ///     // Create an atomic view of the allocated value
1504    ///     let atomic = unsafe { AtomicPtr::from_ptr(ptr) };
1505    ///
1506    ///     // Use `atomic` for atomic operations, possibly share it with other threads
1507    ///     atomic.store(std::ptr::NonNull::dangling().as_ptr(), atomic::Ordering::Relaxed);
1508    /// }
1509    ///
1510    /// // It's ok to non-atomically access the value behind `ptr`,
1511    /// // since the reference to the atomic ended its lifetime in the block above
1512    /// assert!(!unsafe { *ptr }.is_null());
1513    ///
1514    /// // Deallocate the value
1515    /// unsafe { drop(Box::from_raw(ptr)) }
1516    /// ```
1517    ///
1518    /// # Safety
1519    ///
1520    /// * `ptr` must be aligned to `align_of::<AtomicPtr<T>>()` (note that on some platforms this
1521    ///   can be bigger than `align_of::<*mut T>()`).
1522    /// * `ptr` must be [valid] for both reads and writes for the whole lifetime `'a`.
1523    /// * You must adhere to the [Memory model for atomic accesses]. In particular, it is not
1524    ///   allowed to mix conflicting atomic and non-atomic accesses, or atomic accesses of different
1525    ///   sizes, without synchronization.
1526    ///
1527    /// [valid]: crate::ptr#safety
1528    /// [Memory model for atomic accesses]: self#memory-model-for-atomic-accesses
1529    #[inline]
1530    #[stable(feature = "atomic_from_ptr", since = "1.75.0")]
1531    #[rustc_const_stable(feature = "const_atomic_from_ptr", since = "1.84.0")]
1532    pub const unsafe fn from_ptr<'a>(ptr: *mut *mut T) -> &'a AtomicPtr<T> {
1533        // SAFETY: guaranteed by the caller
1534        unsafe { &*ptr.cast() }
1535    }
1536
1537    /// Returns a mutable reference to the underlying pointer.
1538    ///
1539    /// This is safe because the mutable reference guarantees that no other threads are
1540    /// concurrently accessing the atomic data.
1541    ///
1542    /// # Examples
1543    ///
1544    /// ```
1545    /// use std::sync::atomic::{AtomicPtr, Ordering};
1546    ///
1547    /// let mut data = 10;
1548    /// let mut atomic_ptr = AtomicPtr::new(&mut data);
1549    /// let mut other_data = 5;
1550    /// *atomic_ptr.get_mut() = &mut other_data;
1551    /// assert_eq!(unsafe { *atomic_ptr.load(Ordering::SeqCst) }, 5);
1552    /// ```
1553    #[inline]
1554    #[stable(feature = "atomic_access", since = "1.15.0")]
1555    pub fn get_mut(&mut self) -> &mut *mut T {
1556        self.p.get_mut()
1557    }
1558
1559    /// Gets atomic access to a pointer.
1560    ///
1561    /// # Examples
1562    ///
1563    /// ```
1564    /// #![feature(atomic_from_mut)]
1565    /// use std::sync::atomic::{AtomicPtr, Ordering};
1566    ///
1567    /// let mut data = 123;
1568    /// let mut some_ptr = &mut data as *mut i32;
1569    /// let a = AtomicPtr::from_mut(&mut some_ptr);
1570    /// let mut other_data = 456;
1571    /// a.store(&mut other_data, Ordering::Relaxed);
1572    /// assert_eq!(unsafe { *some_ptr }, 456);
1573    /// ```
1574    #[inline]
1575    #[cfg(target_has_atomic_equal_alignment = "ptr")]
1576    #[unstable(feature = "atomic_from_mut", issue = "76314")]
1577    pub fn from_mut(v: &mut *mut T) -> &mut Self {
1578        let [] = [(); align_of::<AtomicPtr<()>>() - align_of::<*mut ()>()];
1579        // SAFETY:
1580        //  - the mutable reference guarantees unique ownership.
1581        //  - the alignment of `*mut T` and `Self` is the same on all platforms
1582        //    supported by rust, as verified above.
1583        unsafe { &mut *(v as *mut *mut T as *mut Self) }
1584    }
1585
1586    /// Gets non-atomic access to a `&mut [AtomicPtr]` slice.
1587    ///
1588    /// This is safe because the mutable reference guarantees that no other threads are
1589    /// concurrently accessing the atomic data.
1590    ///
1591    /// # Examples
1592    ///
1593    /// ```ignore-wasm
1594    /// #![feature(atomic_from_mut)]
1595    /// use std::ptr::null_mut;
1596    /// use std::sync::atomic::{AtomicPtr, Ordering};
1597    ///
1598    /// let mut some_ptrs = [const { AtomicPtr::new(null_mut::<String>()) }; 10];
1599    ///
1600    /// let view: &mut [*mut String] = AtomicPtr::get_mut_slice(&mut some_ptrs);
1601    /// assert_eq!(view, [null_mut::<String>(); 10]);
1602    /// view
1603    ///     .iter_mut()
1604    ///     .enumerate()
1605    ///     .for_each(|(i, ptr)| *ptr = Box::into_raw(Box::new(format!("iteration#{i}"))));
1606    ///
1607    /// std::thread::scope(|s| {
1608    ///     for ptr in &some_ptrs {
1609    ///         s.spawn(move || {
1610    ///             let ptr = ptr.load(Ordering::Relaxed);
1611    ///             assert!(!ptr.is_null());
1612    ///
1613    ///             let name = unsafe { Box::from_raw(ptr) };
1614    ///             println!("Hello, {name}!");
1615    ///         });
1616    ///     }
1617    /// });
1618    /// ```
1619    #[inline]
1620    #[unstable(feature = "atomic_from_mut", issue = "76314")]
1621    pub fn get_mut_slice(this: &mut [Self]) -> &mut [*mut T] {
1622        // SAFETY: the mutable reference guarantees unique ownership.
1623        unsafe { &mut *(this as *mut [Self] as *mut [*mut T]) }
1624    }
1625
1626    /// Gets atomic access to a slice of pointers.
1627    ///
1628    /// # Examples
1629    ///
1630    /// ```ignore-wasm
1631    /// #![feature(atomic_from_mut)]
1632    /// use std::ptr::null_mut;
1633    /// use std::sync::atomic::{AtomicPtr, Ordering};
1634    ///
1635    /// let mut some_ptrs = [null_mut::<String>(); 10];
1636    /// let a = &*AtomicPtr::from_mut_slice(&mut some_ptrs);
1637    /// std::thread::scope(|s| {
1638    ///     for i in 0..a.len() {
1639    ///         s.spawn(move || {
1640    ///             let name = Box::new(format!("thread{i}"));
1641    ///             a[i].store(Box::into_raw(name), Ordering::Relaxed);
1642    ///         });
1643    ///     }
1644    /// });
1645    /// for p in some_ptrs {
1646    ///     assert!(!p.is_null());
1647    ///     let name = unsafe { Box::from_raw(p) };
1648    ///     println!("Hello, {name}!");
1649    /// }
1650    /// ```
1651    #[inline]
1652    #[cfg(target_has_atomic_equal_alignment = "ptr")]
1653    #[unstable(feature = "atomic_from_mut", issue = "76314")]
1654    pub fn from_mut_slice(v: &mut [*mut T]) -> &mut [Self] {
1655        // SAFETY:
1656        //  - the mutable reference guarantees unique ownership.
1657        //  - the alignment of `*mut T` and `Self` is the same on all platforms
1658        //    supported by rust, as verified above.
1659        unsafe { &mut *(v as *mut [*mut T] as *mut [Self]) }
1660    }
1661
1662    /// Consumes the atomic and returns the contained value.
1663    ///
1664    /// This is safe because passing `self` by value guarantees that no other threads are
1665    /// concurrently accessing the atomic data.
1666    ///
1667    /// # Examples
1668    ///
1669    /// ```
1670    /// use std::sync::atomic::AtomicPtr;
1671    ///
1672    /// let mut data = 5;
1673    /// let atomic_ptr = AtomicPtr::new(&mut data);
1674    /// assert_eq!(unsafe { *atomic_ptr.into_inner() }, 5);
1675    /// ```
1676    #[inline]
1677    #[stable(feature = "atomic_access", since = "1.15.0")]
1678    #[rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0")]
1679    pub const fn into_inner(self) -> *mut T {
1680        self.p.into_inner()
1681    }
1682
1683    /// Loads a value from the pointer.
1684    ///
1685    /// `load` takes an [`Ordering`] argument which describes the memory ordering
1686    /// of this operation. Possible values are [`SeqCst`], [`Acquire`] and [`Relaxed`].
1687    ///
1688    /// # Panics
1689    ///
1690    /// Panics if `order` is [`Release`] or [`AcqRel`].
1691    ///
1692    /// # Examples
1693    ///
1694    /// ```
1695    /// use std::sync::atomic::{AtomicPtr, Ordering};
1696    ///
1697    /// let ptr = &mut 5;
1698    /// let some_ptr = AtomicPtr::new(ptr);
1699    ///
1700    /// let value = some_ptr.load(Ordering::Relaxed);
1701    /// ```
1702    #[inline]
1703    #[stable(feature = "rust1", since = "1.0.0")]
1704    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1705    pub fn load(&self, order: Ordering) -> *mut T {
1706        // SAFETY: data races are prevented by atomic intrinsics.
1707        unsafe { atomic_load(self.p.get(), order) }
1708    }
1709
1710    /// Stores a value into the pointer.
1711    ///
1712    /// `store` takes an [`Ordering`] argument which describes the memory ordering
1713    /// of this operation. Possible values are [`SeqCst`], [`Release`] and [`Relaxed`].
1714    ///
1715    /// # Panics
1716    ///
1717    /// Panics if `order` is [`Acquire`] or [`AcqRel`].
1718    ///
1719    /// # Examples
1720    ///
1721    /// ```
1722    /// use std::sync::atomic::{AtomicPtr, Ordering};
1723    ///
1724    /// let ptr = &mut 5;
1725    /// let some_ptr = AtomicPtr::new(ptr);
1726    ///
1727    /// let other_ptr = &mut 10;
1728    ///
1729    /// some_ptr.store(other_ptr, Ordering::Relaxed);
1730    /// ```
1731    #[inline]
1732    #[stable(feature = "rust1", since = "1.0.0")]
1733    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1734    pub fn store(&self, ptr: *mut T, order: Ordering) {
1735        // SAFETY: data races are prevented by atomic intrinsics.
1736        unsafe {
1737            atomic_store(self.p.get(), ptr, order);
1738        }
1739    }
1740
1741    /// Stores a value into the pointer, returning the previous value.
1742    ///
1743    /// `swap` takes an [`Ordering`] argument which describes the memory ordering
1744    /// of this operation. All ordering modes are possible. Note that using
1745    /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
1746    /// using [`Release`] makes the load part [`Relaxed`].
1747    ///
1748    /// **Note:** This method is only available on platforms that support atomic
1749    /// operations on pointers.
1750    ///
1751    /// # Examples
1752    ///
1753    /// ```
1754    /// use std::sync::atomic::{AtomicPtr, Ordering};
1755    ///
1756    /// let ptr = &mut 5;
1757    /// let some_ptr = AtomicPtr::new(ptr);
1758    ///
1759    /// let other_ptr = &mut 10;
1760    ///
1761    /// let value = some_ptr.swap(other_ptr, Ordering::Relaxed);
1762    /// ```
1763    #[inline]
1764    #[stable(feature = "rust1", since = "1.0.0")]
1765    #[cfg(target_has_atomic = "ptr")]
1766    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1767    pub fn swap(&self, ptr: *mut T, order: Ordering) -> *mut T {
1768        // SAFETY: data races are prevented by atomic intrinsics.
1769        unsafe { atomic_swap(self.p.get(), ptr, order) }
1770    }
1771
1772    /// Stores a value into the pointer if the current value is the same as the `current` value.
1773    ///
1774    /// The return value is always the previous value. If it is equal to `current`, then the value
1775    /// was updated.
1776    ///
1777    /// `compare_and_swap` also takes an [`Ordering`] argument which describes the memory
1778    /// ordering of this operation. Notice that even when using [`AcqRel`], the operation
1779    /// might fail and hence just perform an `Acquire` load, but not have `Release` semantics.
1780    /// Using [`Acquire`] makes the store part of this operation [`Relaxed`] if it
1781    /// happens, and using [`Release`] makes the load part [`Relaxed`].
1782    ///
1783    /// **Note:** This method is only available on platforms that support atomic
1784    /// operations on pointers.
1785    ///
1786    /// # Migrating to `compare_exchange` and `compare_exchange_weak`
1787    ///
1788    /// `compare_and_swap` is equivalent to `compare_exchange` with the following mapping for
1789    /// memory orderings:
1790    ///
1791    /// Original | Success | Failure
1792    /// -------- | ------- | -------
1793    /// Relaxed  | Relaxed | Relaxed
1794    /// Acquire  | Acquire | Acquire
1795    /// Release  | Release | Relaxed
1796    /// AcqRel   | AcqRel  | Acquire
1797    /// SeqCst   | SeqCst  | SeqCst
1798    ///
1799    /// `compare_and_swap` and `compare_exchange` also differ in their return type. You can use
1800    /// `compare_exchange(...).unwrap_or_else(|x| x)` to recover the behavior of `compare_and_swap`,
1801    /// but in most cases it is more idiomatic to check whether the return value is `Ok` or `Err`
1802    /// rather than to infer success vs failure based on the value that was read.
1803    ///
1804    /// During migration, consider whether it makes sense to use `compare_exchange_weak` instead.
1805    /// `compare_exchange_weak` is allowed to fail spuriously even when the comparison succeeds,
1806    /// which allows the compiler to generate better assembly code when the compare and swap
1807    /// is used in a loop.
1808    ///
1809    /// # Examples
1810    ///
1811    /// ```
1812    /// use std::sync::atomic::{AtomicPtr, Ordering};
1813    ///
1814    /// let ptr = &mut 5;
1815    /// let some_ptr = AtomicPtr::new(ptr);
1816    ///
1817    /// let other_ptr = &mut 10;
1818    ///
1819    /// let value = some_ptr.compare_and_swap(ptr, other_ptr, Ordering::Relaxed);
1820    /// ```
1821    #[inline]
1822    #[stable(feature = "rust1", since = "1.0.0")]
1823    #[deprecated(
1824        since = "1.50.0",
1825        note = "Use `compare_exchange` or `compare_exchange_weak` instead"
1826    )]
1827    #[cfg(target_has_atomic = "ptr")]
1828    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1829    pub fn compare_and_swap(&self, current: *mut T, new: *mut T, order: Ordering) -> *mut T {
1830        match self.compare_exchange(current, new, order, strongest_failure_ordering(order)) {
1831            Ok(x) => x,
1832            Err(x) => x,
1833        }
1834    }
1835
1836    /// Stores a value into the pointer if the current value is the same as the `current` value.
1837    ///
1838    /// The return value is a result indicating whether the new value was written and containing
1839    /// the previous value. On success this value is guaranteed to be equal to `current`.
1840    ///
1841    /// `compare_exchange` takes two [`Ordering`] arguments to describe the memory
1842    /// ordering of this operation. `success` describes the required ordering for the
1843    /// read-modify-write operation that takes place if the comparison with `current` succeeds.
1844    /// `failure` describes the required ordering for the load operation that takes place when
1845    /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
1846    /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
1847    /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
1848    ///
1849    /// **Note:** This method is only available on platforms that support atomic
1850    /// operations on pointers.
1851    ///
1852    /// # Examples
1853    ///
1854    /// ```
1855    /// use std::sync::atomic::{AtomicPtr, Ordering};
1856    ///
1857    /// let ptr = &mut 5;
1858    /// let some_ptr = AtomicPtr::new(ptr);
1859    ///
1860    /// let other_ptr = &mut 10;
1861    ///
1862    /// let value = some_ptr.compare_exchange(ptr, other_ptr,
1863    ///                                       Ordering::SeqCst, Ordering::Relaxed);
1864    /// ```
1865    ///
1866    /// # Considerations
1867    ///
1868    /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
1869    /// of CAS operations. In particular, a load of the value followed by a successful
1870    /// `compare_exchange` with the previous load *does not ensure* that other threads have not
1871    /// changed the value in the interim. This is usually important when the *equality* check in
1872    /// the `compare_exchange` is being used to check the *identity* of a value, but equality
1873    /// does not necessarily imply identity. This is a particularly common case for pointers, as
1874    /// a pointer holding the same address does not imply that the same object exists at that
1875    /// address! In this case, `compare_exchange` can lead to the [ABA problem].
1876    ///
1877    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1878    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1879    #[inline]
1880    #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
1881    #[cfg(target_has_atomic = "ptr")]
1882    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1883    pub fn compare_exchange(
1884        &self,
1885        current: *mut T,
1886        new: *mut T,
1887        success: Ordering,
1888        failure: Ordering,
1889    ) -> Result<*mut T, *mut T> {
1890        // SAFETY: data races are prevented by atomic intrinsics.
1891        unsafe { atomic_compare_exchange(self.p.get(), current, new, success, failure) }
1892    }
1893
1894    /// Stores a value into the pointer if the current value is the same as the `current` value.
1895    ///
1896    /// Unlike [`AtomicPtr::compare_exchange`], this function is allowed to spuriously fail even when the
1897    /// comparison succeeds, which can result in more efficient code on some platforms. The
1898    /// return value is a result indicating whether the new value was written and containing the
1899    /// previous value.
1900    ///
1901    /// `compare_exchange_weak` takes two [`Ordering`] arguments to describe the memory
1902    /// ordering of this operation. `success` describes the required ordering for the
1903    /// read-modify-write operation that takes place if the comparison with `current` succeeds.
1904    /// `failure` describes the required ordering for the load operation that takes place when
1905    /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
1906    /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
1907    /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
1908    ///
1909    /// **Note:** This method is only available on platforms that support atomic
1910    /// operations on pointers.
1911    ///
1912    /// # Examples
1913    ///
1914    /// ```
1915    /// use std::sync::atomic::{AtomicPtr, Ordering};
1916    ///
1917    /// let some_ptr = AtomicPtr::new(&mut 5);
1918    ///
1919    /// let new = &mut 10;
1920    /// let mut old = some_ptr.load(Ordering::Relaxed);
1921    /// loop {
1922    ///     match some_ptr.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
1923    ///         Ok(_) => break,
1924    ///         Err(x) => old = x,
1925    ///     }
1926    /// }
1927    /// ```
1928    ///
1929    /// # Considerations
1930    ///
1931    /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
1932    /// of CAS operations. In particular, a load of the value followed by a successful
1933    /// `compare_exchange` with the previous load *does not ensure* that other threads have not
1934    /// changed the value in the interim. This is usually important when the *equality* check in
1935    /// the `compare_exchange` is being used to check the *identity* of a value, but equality
1936    /// does not necessarily imply identity. This is a particularly common case for pointers, as
1937    /// a pointer holding the same address does not imply that the same object exists at that
1938    /// address! In this case, `compare_exchange` can lead to the [ABA problem].
1939    ///
1940    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1941    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1942    #[inline]
1943    #[stable(feature = "extended_compare_and_swap", since = "1.10.0")]
1944    #[cfg(target_has_atomic = "ptr")]
1945    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1946    pub fn compare_exchange_weak(
1947        &self,
1948        current: *mut T,
1949        new: *mut T,
1950        success: Ordering,
1951        failure: Ordering,
1952    ) -> Result<*mut T, *mut T> {
1953        // SAFETY: This intrinsic is unsafe because it operates on a raw pointer
1954        // but we know for sure that the pointer is valid (we just got it from
1955        // an `UnsafeCell` that we have by reference) and the atomic operation
1956        // itself allows us to safely mutate the `UnsafeCell` contents.
1957        unsafe { atomic_compare_exchange_weak(self.p.get(), current, new, success, failure) }
1958    }
1959
1960    /// Fetches the value, and applies a function to it that returns an optional
1961    /// new value. Returns a `Result` of `Ok(previous_value)` if the function
1962    /// returned `Some(_)`, else `Err(previous_value)`.
1963    ///
1964    /// Note: This may call the function multiple times if the value has been
1965    /// changed from other threads in the meantime, as long as the function
1966    /// returns `Some(_)`, but the function will have been applied only once to
1967    /// the stored value.
1968    ///
1969    /// `fetch_update` takes two [`Ordering`] arguments to describe the memory
1970    /// ordering of this operation. The first describes the required ordering for
1971    /// when the operation finally succeeds while the second describes the
1972    /// required ordering for loads. These correspond to the success and failure
1973    /// orderings of [`AtomicPtr::compare_exchange`] respectively.
1974    ///
1975    /// Using [`Acquire`] as success ordering makes the store part of this
1976    /// operation [`Relaxed`], and using [`Release`] makes the final successful
1977    /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
1978    /// [`Acquire`] or [`Relaxed`].
1979    ///
1980    /// **Note:** This method is only available on platforms that support atomic
1981    /// operations on pointers.
1982    ///
1983    /// # Considerations
1984    ///
1985    /// This method is not magic; it is not provided by the hardware, and does not act like a
1986    /// critical section or mutex.
1987    ///
1988    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
1989    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem],
1990    /// which is a particularly common pitfall for pointers!
1991    ///
1992    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
1993    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
1994    ///
1995    /// # Examples
1996    ///
1997    /// ```rust
1998    /// use std::sync::atomic::{AtomicPtr, Ordering};
1999    ///
2000    /// let ptr: *mut _ = &mut 5;
2001    /// let some_ptr = AtomicPtr::new(ptr);
2002    ///
2003    /// let new: *mut _ = &mut 10;
2004    /// assert_eq!(some_ptr.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(ptr));
2005    /// let result = some_ptr.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| {
2006    ///     if x == ptr {
2007    ///         Some(new)
2008    ///     } else {
2009    ///         None
2010    ///     }
2011    /// });
2012    /// assert_eq!(result, Ok(ptr));
2013    /// assert_eq!(some_ptr.load(Ordering::SeqCst), new);
2014    /// ```
2015    #[inline]
2016    #[stable(feature = "atomic_fetch_update", since = "1.53.0")]
2017    #[cfg(target_has_atomic = "ptr")]
2018    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2019    pub fn fetch_update<F>(
2020        &self,
2021        set_order: Ordering,
2022        fetch_order: Ordering,
2023        mut f: F,
2024    ) -> Result<*mut T, *mut T>
2025    where
2026        F: FnMut(*mut T) -> Option<*mut T>,
2027    {
2028        let mut prev = self.load(fetch_order);
2029        while let Some(next) = f(prev) {
2030            match self.compare_exchange_weak(prev, next, set_order, fetch_order) {
2031                x @ Ok(_) => return x,
2032                Err(next_prev) => prev = next_prev,
2033            }
2034        }
2035        Err(prev)
2036    }
2037    /// Fetches the value, and applies a function to it that returns an optional
2038    /// new value. Returns a `Result` of `Ok(previous_value)` if the function
2039    /// returned `Some(_)`, else `Err(previous_value)`.
2040    ///
2041    /// See also: [`update`](`AtomicPtr::update`).
2042    ///
2043    /// Note: This may call the function multiple times if the value has been
2044    /// changed from other threads in the meantime, as long as the function
2045    /// returns `Some(_)`, but the function will have been applied only once to
2046    /// the stored value.
2047    ///
2048    /// `try_update` takes two [`Ordering`] arguments to describe the memory
2049    /// ordering of this operation. The first describes the required ordering for
2050    /// when the operation finally succeeds while the second describes the
2051    /// required ordering for loads. These correspond to the success and failure
2052    /// orderings of [`AtomicPtr::compare_exchange`] respectively.
2053    ///
2054    /// Using [`Acquire`] as success ordering makes the store part of this
2055    /// operation [`Relaxed`], and using [`Release`] makes the final successful
2056    /// load [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`],
2057    /// [`Acquire`] or [`Relaxed`].
2058    ///
2059    /// **Note:** This method is only available on platforms that support atomic
2060    /// operations on pointers.
2061    ///
2062    /// # Considerations
2063    ///
2064    /// This method is not magic; it is not provided by the hardware, and does not act like a
2065    /// critical section or mutex.
2066    ///
2067    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
2068    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem],
2069    /// which is a particularly common pitfall for pointers!
2070    ///
2071    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
2072    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
2073    ///
2074    /// # Examples
2075    ///
2076    /// ```rust
2077    /// #![feature(atomic_try_update)]
2078    /// use std::sync::atomic::{AtomicPtr, Ordering};
2079    ///
2080    /// let ptr: *mut _ = &mut 5;
2081    /// let some_ptr = AtomicPtr::new(ptr);
2082    ///
2083    /// let new: *mut _ = &mut 10;
2084    /// assert_eq!(some_ptr.try_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(ptr));
2085    /// let result = some_ptr.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| {
2086    ///     if x == ptr {
2087    ///         Some(new)
2088    ///     } else {
2089    ///         None
2090    ///     }
2091    /// });
2092    /// assert_eq!(result, Ok(ptr));
2093    /// assert_eq!(some_ptr.load(Ordering::SeqCst), new);
2094    /// ```
2095    #[inline]
2096    #[unstable(feature = "atomic_try_update", issue = "135894")]
2097    #[cfg(target_has_atomic = "ptr")]
2098    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2099    pub fn try_update(
2100        &self,
2101        set_order: Ordering,
2102        fetch_order: Ordering,
2103        f: impl FnMut(*mut T) -> Option<*mut T>,
2104    ) -> Result<*mut T, *mut T> {
2105        // FIXME(atomic_try_update): this is currently an unstable alias to `fetch_update`;
2106        //      when stabilizing, turn `fetch_update` into a deprecated alias to `try_update`.
2107        self.fetch_update(set_order, fetch_order, f)
2108    }
2109
2110    /// Fetches the value, applies a function to it that it return a new value.
2111    /// The new value is stored and the old value is returned.
2112    ///
2113    /// See also: [`try_update`](`AtomicPtr::try_update`).
2114    ///
2115    /// Note: This may call the function multiple times if the value has been changed from other threads in
2116    /// the meantime, but the function will have been applied only once to the stored value.
2117    ///
2118    /// `update` takes two [`Ordering`] arguments to describe the memory
2119    /// ordering of this operation. The first describes the required ordering for
2120    /// when the operation finally succeeds while the second describes the
2121    /// required ordering for loads. These correspond to the success and failure
2122    /// orderings of [`AtomicPtr::compare_exchange`] respectively.
2123    ///
2124    /// Using [`Acquire`] as success ordering makes the store part
2125    /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
2126    /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
2127    ///
2128    /// **Note:** This method is only available on platforms that support atomic
2129    /// operations on pointers.
2130    ///
2131    /// # Considerations
2132    ///
2133    /// This method is not magic; it is not provided by the hardware, and does not act like a
2134    /// critical section or mutex.
2135    ///
2136    /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
2137    /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem],
2138    /// which is a particularly common pitfall for pointers!
2139    ///
2140    /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
2141    /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
2142    ///
2143    /// # Examples
2144    ///
2145    /// ```rust
2146    /// #![feature(atomic_try_update)]
2147    ///
2148    /// use std::sync::atomic::{AtomicPtr, Ordering};
2149    ///
2150    /// let ptr: *mut _ = &mut 5;
2151    /// let some_ptr = AtomicPtr::new(ptr);
2152    ///
2153    /// let new: *mut _ = &mut 10;
2154    /// let result = some_ptr.update(Ordering::SeqCst, Ordering::SeqCst, |_| new);
2155    /// assert_eq!(result, ptr);
2156    /// assert_eq!(some_ptr.load(Ordering::SeqCst), new);
2157    /// ```
2158    #[inline]
2159    #[unstable(feature = "atomic_try_update", issue = "135894")]
2160    #[cfg(target_has_atomic = "8")]
2161    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2162    pub fn update(
2163        &self,
2164        set_order: Ordering,
2165        fetch_order: Ordering,
2166        mut f: impl FnMut(*mut T) -> *mut T,
2167    ) -> *mut T {
2168        let mut prev = self.load(fetch_order);
2169        loop {
2170            match self.compare_exchange_weak(prev, f(prev), set_order, fetch_order) {
2171                Ok(x) => break x,
2172                Err(next_prev) => prev = next_prev,
2173            }
2174        }
2175    }
2176
2177    /// Offsets the pointer's address by adding `val` (in units of `T`),
2178    /// returning the previous pointer.
2179    ///
2180    /// This is equivalent to using [`wrapping_add`] to atomically perform the
2181    /// equivalent of `ptr = ptr.wrapping_add(val);`.
2182    ///
2183    /// This method operates in units of `T`, which means that it cannot be used
2184    /// to offset the pointer by an amount which is not a multiple of
2185    /// `size_of::<T>()`. This can sometimes be inconvenient, as you may want to
2186    /// work with a deliberately misaligned pointer. In such cases, you may use
2187    /// the [`fetch_byte_add`](Self::fetch_byte_add) method instead.
2188    ///
2189    /// `fetch_ptr_add` takes an [`Ordering`] argument which describes the
2190    /// memory ordering of this operation. All ordering modes are possible. Note
2191    /// that using [`Acquire`] makes the store part of this operation
2192    /// [`Relaxed`], and using [`Release`] makes the load part [`Relaxed`].
2193    ///
2194    /// **Note**: This method is only available on platforms that support atomic
2195    /// operations on [`AtomicPtr`].
2196    ///
2197    /// [`wrapping_add`]: pointer::wrapping_add
2198    ///
2199    /// # Examples
2200    ///
2201    /// ```
2202    /// #![feature(strict_provenance_atomic_ptr)]
2203    /// use core::sync::atomic::{AtomicPtr, Ordering};
2204    ///
2205    /// let atom = AtomicPtr::<i64>::new(core::ptr::null_mut());
2206    /// assert_eq!(atom.fetch_ptr_add(1, Ordering::Relaxed).addr(), 0);
2207    /// // Note: units of `size_of::<i64>()`.
2208    /// assert_eq!(atom.load(Ordering::Relaxed).addr(), 8);
2209    /// ```
2210    #[inline]
2211    #[cfg(target_has_atomic = "ptr")]
2212    #[unstable(feature = "strict_provenance_atomic_ptr", issue = "99108")]
2213    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2214    pub fn fetch_ptr_add(&self, val: usize, order: Ordering) -> *mut T {
2215        self.fetch_byte_add(val.wrapping_mul(size_of::<T>()), order)
2216    }
2217
2218    /// Offsets the pointer's address by subtracting `val` (in units of `T`),
2219    /// returning the previous pointer.
2220    ///
2221    /// This is equivalent to using [`wrapping_sub`] to atomically perform the
2222    /// equivalent of `ptr = ptr.wrapping_sub(val);`.
2223    ///
2224    /// This method operates in units of `T`, which means that it cannot be used
2225    /// to offset the pointer by an amount which is not a multiple of
2226    /// `size_of::<T>()`. This can sometimes be inconvenient, as you may want to
2227    /// work with a deliberately misaligned pointer. In such cases, you may use
2228    /// the [`fetch_byte_sub`](Self::fetch_byte_sub) method instead.
2229    ///
2230    /// `fetch_ptr_sub` takes an [`Ordering`] argument which describes the memory
2231    /// ordering of this operation. All ordering modes are possible. Note that
2232    /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2233    /// and using [`Release`] makes the load part [`Relaxed`].
2234    ///
2235    /// **Note**: This method is only available on platforms that support atomic
2236    /// operations on [`AtomicPtr`].
2237    ///
2238    /// [`wrapping_sub`]: pointer::wrapping_sub
2239    ///
2240    /// # Examples
2241    ///
2242    /// ```
2243    /// #![feature(strict_provenance_atomic_ptr)]
2244    /// use core::sync::atomic::{AtomicPtr, Ordering};
2245    ///
2246    /// let array = [1i32, 2i32];
2247    /// let atom = AtomicPtr::new(array.as_ptr().wrapping_add(1) as *mut _);
2248    ///
2249    /// assert!(core::ptr::eq(
2250    ///     atom.fetch_ptr_sub(1, Ordering::Relaxed),
2251    ///     &array[1],
2252    /// ));
2253    /// assert!(core::ptr::eq(atom.load(Ordering::Relaxed), &array[0]));
2254    /// ```
2255    #[inline]
2256    #[cfg(target_has_atomic = "ptr")]
2257    #[unstable(feature = "strict_provenance_atomic_ptr", issue = "99108")]
2258    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2259    pub fn fetch_ptr_sub(&self, val: usize, order: Ordering) -> *mut T {
2260        self.fetch_byte_sub(val.wrapping_mul(size_of::<T>()), order)
2261    }
2262
2263    /// Offsets the pointer's address by adding `val` *bytes*, returning the
2264    /// previous pointer.
2265    ///
2266    /// This is equivalent to using [`wrapping_byte_add`] to atomically
2267    /// perform `ptr = ptr.wrapping_byte_add(val)`.
2268    ///
2269    /// `fetch_byte_add` takes an [`Ordering`] argument which describes the
2270    /// memory ordering of this operation. All ordering modes are possible. Note
2271    /// that using [`Acquire`] makes the store part of this operation
2272    /// [`Relaxed`], and using [`Release`] makes the load part [`Relaxed`].
2273    ///
2274    /// **Note**: This method is only available on platforms that support atomic
2275    /// operations on [`AtomicPtr`].
2276    ///
2277    /// [`wrapping_byte_add`]: pointer::wrapping_byte_add
2278    ///
2279    /// # Examples
2280    ///
2281    /// ```
2282    /// #![feature(strict_provenance_atomic_ptr)]
2283    /// use core::sync::atomic::{AtomicPtr, Ordering};
2284    ///
2285    /// let atom = AtomicPtr::<i64>::new(core::ptr::null_mut());
2286    /// assert_eq!(atom.fetch_byte_add(1, Ordering::Relaxed).addr(), 0);
2287    /// // Note: in units of bytes, not `size_of::<i64>()`.
2288    /// assert_eq!(atom.load(Ordering::Relaxed).addr(), 1);
2289    /// ```
2290    #[inline]
2291    #[cfg(target_has_atomic = "ptr")]
2292    #[unstable(feature = "strict_provenance_atomic_ptr", issue = "99108")]
2293    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2294    pub fn fetch_byte_add(&self, val: usize, order: Ordering) -> *mut T {
2295        // SAFETY: data races are prevented by atomic intrinsics.
2296        unsafe { atomic_add(self.p.get(), val, order).cast() }
2297    }
2298
2299    /// Offsets the pointer's address by subtracting `val` *bytes*, returning the
2300    /// previous pointer.
2301    ///
2302    /// This is equivalent to using [`wrapping_byte_sub`] to atomically
2303    /// perform `ptr = ptr.wrapping_byte_sub(val)`.
2304    ///
2305    /// `fetch_byte_sub` takes an [`Ordering`] argument which describes the
2306    /// memory ordering of this operation. All ordering modes are possible. Note
2307    /// that using [`Acquire`] makes the store part of this operation
2308    /// [`Relaxed`], and using [`Release`] makes the load part [`Relaxed`].
2309    ///
2310    /// **Note**: This method is only available on platforms that support atomic
2311    /// operations on [`AtomicPtr`].
2312    ///
2313    /// [`wrapping_byte_sub`]: pointer::wrapping_byte_sub
2314    ///
2315    /// # Examples
2316    ///
2317    /// ```
2318    /// #![feature(strict_provenance_atomic_ptr)]
2319    /// use core::sync::atomic::{AtomicPtr, Ordering};
2320    ///
2321    /// let mut arr = [0i64, 1];
2322    /// let atom = AtomicPtr::<i64>::new(&raw mut arr[1]);
2323    /// assert_eq!(atom.fetch_byte_sub(8, Ordering::Relaxed).addr(), (&raw const arr[1]).addr());
2324    /// assert_eq!(atom.load(Ordering::Relaxed).addr(), (&raw const arr[0]).addr());
2325    /// ```
2326    #[inline]
2327    #[cfg(target_has_atomic = "ptr")]
2328    #[unstable(feature = "strict_provenance_atomic_ptr", issue = "99108")]
2329    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2330    pub fn fetch_byte_sub(&self, val: usize, order: Ordering) -> *mut T {
2331        // SAFETY: data races are prevented by atomic intrinsics.
2332        unsafe { atomic_sub(self.p.get(), val, order).cast() }
2333    }
2334
2335    /// Performs a bitwise "or" operation on the address of the current pointer,
2336    /// and the argument `val`, and stores a pointer with provenance of the
2337    /// current pointer and the resulting address.
2338    ///
2339    /// This is equivalent to using [`map_addr`] to atomically perform
2340    /// `ptr = ptr.map_addr(|a| a | val)`. This can be used in tagged
2341    /// pointer schemes to atomically set tag bits.
2342    ///
2343    /// **Caveat**: This operation returns the previous value. To compute the
2344    /// stored value without losing provenance, you may use [`map_addr`]. For
2345    /// example: `a.fetch_or(val).map_addr(|a| a | val)`.
2346    ///
2347    /// `fetch_or` takes an [`Ordering`] argument which describes the memory
2348    /// ordering of this operation. All ordering modes are possible. Note that
2349    /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2350    /// and using [`Release`] makes the load part [`Relaxed`].
2351    ///
2352    /// **Note**: This method is only available on platforms that support atomic
2353    /// operations on [`AtomicPtr`].
2354    ///
2355    /// This API and its claimed semantics are part of the Strict Provenance
2356    /// experiment, see the [module documentation for `ptr`][crate::ptr] for
2357    /// details.
2358    ///
2359    /// [`map_addr`]: pointer::map_addr
2360    ///
2361    /// # Examples
2362    ///
2363    /// ```
2364    /// #![feature(strict_provenance_atomic_ptr)]
2365    /// use core::sync::atomic::{AtomicPtr, Ordering};
2366    ///
2367    /// let pointer = &mut 3i64 as *mut i64;
2368    ///
2369    /// let atom = AtomicPtr::<i64>::new(pointer);
2370    /// // Tag the bottom bit of the pointer.
2371    /// assert_eq!(atom.fetch_or(1, Ordering::Relaxed).addr() & 1, 0);
2372    /// // Extract and untag.
2373    /// let tagged = atom.load(Ordering::Relaxed);
2374    /// assert_eq!(tagged.addr() & 1, 1);
2375    /// assert_eq!(tagged.map_addr(|p| p & !1), pointer);
2376    /// ```
2377    #[inline]
2378    #[cfg(target_has_atomic = "ptr")]
2379    #[unstable(feature = "strict_provenance_atomic_ptr", issue = "99108")]
2380    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2381    pub fn fetch_or(&self, val: usize, order: Ordering) -> *mut T {
2382        // SAFETY: data races are prevented by atomic intrinsics.
2383        unsafe { atomic_or(self.p.get(), val, order).cast() }
2384    }
2385
2386    /// Performs a bitwise "and" operation on the address of the current
2387    /// pointer, and the argument `val`, and stores a pointer with provenance of
2388    /// the current pointer and the resulting address.
2389    ///
2390    /// This is equivalent to using [`map_addr`] to atomically perform
2391    /// `ptr = ptr.map_addr(|a| a & val)`. This can be used in tagged
2392    /// pointer schemes to atomically unset tag bits.
2393    ///
2394    /// **Caveat**: This operation returns the previous value. To compute the
2395    /// stored value without losing provenance, you may use [`map_addr`]. For
2396    /// example: `a.fetch_and(val).map_addr(|a| a & val)`.
2397    ///
2398    /// `fetch_and` takes an [`Ordering`] argument which describes the memory
2399    /// ordering of this operation. All ordering modes are possible. Note that
2400    /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2401    /// and using [`Release`] makes the load part [`Relaxed`].
2402    ///
2403    /// **Note**: This method is only available on platforms that support atomic
2404    /// operations on [`AtomicPtr`].
2405    ///
2406    /// This API and its claimed semantics are part of the Strict Provenance
2407    /// experiment, see the [module documentation for `ptr`][crate::ptr] for
2408    /// details.
2409    ///
2410    /// [`map_addr`]: pointer::map_addr
2411    ///
2412    /// # Examples
2413    ///
2414    /// ```
2415    /// #![feature(strict_provenance_atomic_ptr)]
2416    /// use core::sync::atomic::{AtomicPtr, Ordering};
2417    ///
2418    /// let pointer = &mut 3i64 as *mut i64;
2419    /// // A tagged pointer
2420    /// let atom = AtomicPtr::<i64>::new(pointer.map_addr(|a| a | 1));
2421    /// assert_eq!(atom.fetch_or(1, Ordering::Relaxed).addr() & 1, 1);
2422    /// // Untag, and extract the previously tagged pointer.
2423    /// let untagged = atom.fetch_and(!1, Ordering::Relaxed)
2424    ///     .map_addr(|a| a & !1);
2425    /// assert_eq!(untagged, pointer);
2426    /// ```
2427    #[inline]
2428    #[cfg(target_has_atomic = "ptr")]
2429    #[unstable(feature = "strict_provenance_atomic_ptr", issue = "99108")]
2430    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2431    pub fn fetch_and(&self, val: usize, order: Ordering) -> *mut T {
2432        // SAFETY: data races are prevented by atomic intrinsics.
2433        unsafe { atomic_and(self.p.get(), val, order).cast() }
2434    }
2435
2436    /// Performs a bitwise "xor" operation on the address of the current
2437    /// pointer, and the argument `val`, and stores a pointer with provenance of
2438    /// the current pointer and the resulting address.
2439    ///
2440    /// This is equivalent to using [`map_addr`] to atomically perform
2441    /// `ptr = ptr.map_addr(|a| a ^ val)`. This can be used in tagged
2442    /// pointer schemes to atomically toggle tag bits.
2443    ///
2444    /// **Caveat**: This operation returns the previous value. To compute the
2445    /// stored value without losing provenance, you may use [`map_addr`]. For
2446    /// example: `a.fetch_xor(val).map_addr(|a| a ^ val)`.
2447    ///
2448    /// `fetch_xor` takes an [`Ordering`] argument which describes the memory
2449    /// ordering of this operation. All ordering modes are possible. Note that
2450    /// using [`Acquire`] makes the store part of this operation [`Relaxed`],
2451    /// and using [`Release`] makes the load part [`Relaxed`].
2452    ///
2453    /// **Note**: This method is only available on platforms that support atomic
2454    /// operations on [`AtomicPtr`].
2455    ///
2456    /// This API and its claimed semantics are part of the Strict Provenance
2457    /// experiment, see the [module documentation for `ptr`][crate::ptr] for
2458    /// details.
2459    ///
2460    /// [`map_addr`]: pointer::map_addr
2461    ///
2462    /// # Examples
2463    ///
2464    /// ```
2465    /// #![feature(strict_provenance_atomic_ptr)]
2466    /// use core::sync::atomic::{AtomicPtr, Ordering};
2467    ///
2468    /// let pointer = &mut 3i64 as *mut i64;
2469    /// let atom = AtomicPtr::<i64>::new(pointer);
2470    ///
2471    /// // Toggle a tag bit on the pointer.
2472    /// atom.fetch_xor(1, Ordering::Relaxed);
2473    /// assert_eq!(atom.load(Ordering::Relaxed).addr() & 1, 1);
2474    /// ```
2475    #[inline]
2476    #[cfg(target_has_atomic = "ptr")]
2477    #[unstable(feature = "strict_provenance_atomic_ptr", issue = "99108")]
2478    #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2479    pub fn fetch_xor(&self, val: usize, order: Ordering) -> *mut T {
2480        // SAFETY: data races are prevented by atomic intrinsics.
2481        unsafe { atomic_xor(self.p.get(), val, order).cast() }
2482    }
2483
2484    /// Returns a mutable pointer to the underlying pointer.
2485    ///
2486    /// Doing non-atomic reads and writes on the resulting pointer can be a data race.
2487    /// This method is mostly useful for FFI, where the function signature may use
2488    /// `*mut *mut T` instead of `&AtomicPtr<T>`.
2489    ///
2490    /// Returning an `*mut` pointer from a shared reference to this atomic is safe because the
2491    /// atomic types work with interior mutability. All modifications of an atomic change the value
2492    /// through a shared reference, and can do so safely as long as they use atomic operations. Any
2493    /// use of the returned raw pointer requires an `unsafe` block and still has to uphold the
2494    /// requirements of the [memory model].
2495    ///
2496    /// # Examples
2497    ///
2498    /// ```ignore (extern-declaration)
2499    /// use std::sync::atomic::AtomicPtr;
2500    ///
2501    /// extern "C" {
2502    ///     fn my_atomic_op(arg: *mut *mut u32);
2503    /// }
2504    ///
2505    /// let mut value = 17;
2506    /// let atomic = AtomicPtr::new(&mut value);
2507    ///
2508    /// // SAFETY: Safe as long as `my_atomic_op` is atomic.
2509    /// unsafe {
2510    ///     my_atomic_op(atomic.as_ptr());
2511    /// }
2512    /// ```
2513    ///
2514    /// [memory model]: self#memory-model-for-atomic-accesses
2515    #[inline]
2516    #[stable(feature = "atomic_as_ptr", since = "1.70.0")]
2517    #[rustc_const_stable(feature = "atomic_as_ptr", since = "1.70.0")]
2518    #[rustc_never_returns_null_ptr]
2519    pub const fn as_ptr(&self) -> *mut *mut T {
2520        self.p.get()
2521    }
2522}
2523
2524#[cfg(target_has_atomic_load_store = "8")]
2525#[stable(feature = "atomic_bool_from", since = "1.24.0")]
2526#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2527impl const From<bool> for AtomicBool {
2528    /// Converts a `bool` into an `AtomicBool`.
2529    ///
2530    /// # Examples
2531    ///
2532    /// ```
2533    /// use std::sync::atomic::AtomicBool;
2534    /// let atomic_bool = AtomicBool::from(true);
2535    /// assert_eq!(format!("{atomic_bool:?}"), "true")
2536    /// ```
2537    #[inline]
2538    fn from(b: bool) -> Self {
2539        Self::new(b)
2540    }
2541}
2542
2543#[cfg(target_has_atomic_load_store = "ptr")]
2544#[stable(feature = "atomic_from", since = "1.23.0")]
2545impl<T> From<*mut T> for AtomicPtr<T> {
2546    /// Converts a `*mut T` into an `AtomicPtr<T>`.
2547    #[inline]
2548    fn from(p: *mut T) -> Self {
2549        Self::new(p)
2550    }
2551}
2552
2553#[allow(unused_macros)] // This macro ends up being unused on some architectures.
2554macro_rules! if_8_bit {
2555    (u8, $( yes = [$($yes:tt)*], )? $( no = [$($no:tt)*], )? ) => { concat!("", $($($yes)*)?) };
2556    (i8, $( yes = [$($yes:tt)*], )? $( no = [$($no:tt)*], )? ) => { concat!("", $($($yes)*)?) };
2557    ($_:ident, $( yes = [$($yes:tt)*], )? $( no = [$($no:tt)*], )? ) => { concat!("", $($($no)*)?) };
2558}
2559
2560#[cfg(target_has_atomic_load_store)]
2561macro_rules! atomic_int {
2562    ($cfg_cas:meta,
2563     $cfg_align:meta,
2564     $stable:meta,
2565     $stable_cxchg:meta,
2566     $stable_debug:meta,
2567     $stable_access:meta,
2568     $stable_from:meta,
2569     $stable_nand:meta,
2570     $const_stable_new:meta,
2571     $const_stable_into_inner:meta,
2572     $diagnostic_item:meta,
2573     $s_int_type:literal,
2574     $extra_feature:expr,
2575     $min_fn:ident, $max_fn:ident,
2576     $align:expr,
2577     $int_type:ident $atomic_type:ident) => {
2578        /// An integer type which can be safely shared between threads.
2579        ///
2580        /// This type has the same
2581        #[doc = if_8_bit!(
2582            $int_type,
2583            yes = ["size, alignment, and bit validity"],
2584            no = ["size and bit validity"],
2585        )]
2586        /// as the underlying integer type, [`
2587        #[doc = $s_int_type]
2588        /// `].
2589        #[doc = if_8_bit! {
2590            $int_type,
2591            no = [
2592                "However, the alignment of this type is always equal to its ",
2593                "size, even on targets where [`", $s_int_type, "`] has a ",
2594                "lesser alignment."
2595            ],
2596        }]
2597        ///
2598        /// For more about the differences between atomic types and
2599        /// non-atomic types as well as information about the portability of
2600        /// this type, please see the [module-level documentation].
2601        ///
2602        /// **Note:** This type is only available on platforms that support
2603        /// atomic loads and stores of [`
2604        #[doc = $s_int_type]
2605        /// `].
2606        ///
2607        /// [module-level documentation]: crate::sync::atomic
2608        #[$stable]
2609        #[$diagnostic_item]
2610        #[repr(C, align($align))]
2611        pub struct $atomic_type {
2612            v: UnsafeCell<$int_type>,
2613        }
2614
2615        #[$stable]
2616        impl Default for $atomic_type {
2617            #[inline]
2618            fn default() -> Self {
2619                Self::new(Default::default())
2620            }
2621        }
2622
2623        #[$stable_from]
2624        #[rustc_const_unstable(feature = "const_try", issue = "74935")]
2625        impl const From<$int_type> for $atomic_type {
2626            #[doc = concat!("Converts an `", stringify!($int_type), "` into an `", stringify!($atomic_type), "`.")]
2627            #[inline]
2628            fn from(v: $int_type) -> Self { Self::new(v) }
2629        }
2630
2631        #[$stable_debug]
2632        impl fmt::Debug for $atomic_type {
2633            fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2634                fmt::Debug::fmt(&self.load(Ordering::Relaxed), f)
2635            }
2636        }
2637
2638        // Send is implicitly implemented.
2639        #[$stable]
2640        unsafe impl Sync for $atomic_type {}
2641
2642        impl $atomic_type {
2643            /// Creates a new atomic integer.
2644            ///
2645            /// # Examples
2646            ///
2647            /// ```
2648            #[doc = concat!($extra_feature, "use std::sync::atomic::", stringify!($atomic_type), ";")]
2649            ///
2650            #[doc = concat!("let atomic_forty_two = ", stringify!($atomic_type), "::new(42);")]
2651            /// ```
2652            #[inline]
2653            #[$stable]
2654            #[$const_stable_new]
2655            #[must_use]
2656            pub const fn new(v: $int_type) -> Self {
2657                Self {v: UnsafeCell::new(v)}
2658            }
2659
2660            /// Creates a new reference to an atomic integer from a pointer.
2661            ///
2662            /// # Examples
2663            ///
2664            /// ```
2665            #[doc = concat!($extra_feature, "use std::sync::atomic::{self, ", stringify!($atomic_type), "};")]
2666            ///
2667            /// // Get a pointer to an allocated value
2668            #[doc = concat!("let ptr: *mut ", stringify!($int_type), " = Box::into_raw(Box::new(0));")]
2669            ///
2670            #[doc = concat!("assert!(ptr.cast::<", stringify!($atomic_type), ">().is_aligned());")]
2671            ///
2672            /// {
2673            ///     // Create an atomic view of the allocated value
2674            // SAFETY: this is a doc comment, tidy, it can't hurt you (also guaranteed by the construction of `ptr` and the assert above)
2675            #[doc = concat!("    let atomic = unsafe {", stringify!($atomic_type), "::from_ptr(ptr) };")]
2676            ///
2677            ///     // Use `atomic` for atomic operations, possibly share it with other threads
2678            ///     atomic.store(1, atomic::Ordering::Relaxed);
2679            /// }
2680            ///
2681            /// // It's ok to non-atomically access the value behind `ptr`,
2682            /// // since the reference to the atomic ended its lifetime in the block above
2683            /// assert_eq!(unsafe { *ptr }, 1);
2684            ///
2685            /// // Deallocate the value
2686            /// unsafe { drop(Box::from_raw(ptr)) }
2687            /// ```
2688            ///
2689            /// # Safety
2690            ///
2691            /// * `ptr` must be aligned to
2692            #[doc = concat!("  `align_of::<", stringify!($atomic_type), ">()`")]
2693            #[doc = if_8_bit!{
2694                $int_type,
2695                yes = [
2696                    "  (note that this is always true, since `align_of::<",
2697                    stringify!($atomic_type), ">() == 1`)."
2698                ],
2699                no = [
2700                    "  (note that on some platforms this can be bigger than `align_of::<",
2701                    stringify!($int_type), ">()`)."
2702                ],
2703            }]
2704            /// * `ptr` must be [valid] for both reads and writes for the whole lifetime `'a`.
2705            /// * You must adhere to the [Memory model for atomic accesses]. In particular, it is not
2706            ///   allowed to mix conflicting atomic and non-atomic accesses, or atomic accesses of different
2707            ///   sizes, without synchronization.
2708            ///
2709            /// [valid]: crate::ptr#safety
2710            /// [Memory model for atomic accesses]: self#memory-model-for-atomic-accesses
2711            #[inline]
2712            #[stable(feature = "atomic_from_ptr", since = "1.75.0")]
2713            #[rustc_const_stable(feature = "const_atomic_from_ptr", since = "1.84.0")]
2714            pub const unsafe fn from_ptr<'a>(ptr: *mut $int_type) -> &'a $atomic_type {
2715                // SAFETY: guaranteed by the caller
2716                unsafe { &*ptr.cast() }
2717            }
2718
2719
2720            /// Returns a mutable reference to the underlying integer.
2721            ///
2722            /// This is safe because the mutable reference guarantees that no other threads are
2723            /// concurrently accessing the atomic data.
2724            ///
2725            /// # Examples
2726            ///
2727            /// ```
2728            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2729            ///
2730            #[doc = concat!("let mut some_var = ", stringify!($atomic_type), "::new(10);")]
2731            /// assert_eq!(*some_var.get_mut(), 10);
2732            /// *some_var.get_mut() = 5;
2733            /// assert_eq!(some_var.load(Ordering::SeqCst), 5);
2734            /// ```
2735            #[inline]
2736            #[$stable_access]
2737            pub fn get_mut(&mut self) -> &mut $int_type {
2738                self.v.get_mut()
2739            }
2740
2741            #[doc = concat!("Get atomic access to a `&mut ", stringify!($int_type), "`.")]
2742            ///
2743            #[doc = if_8_bit! {
2744                $int_type,
2745                no = [
2746                    "**Note:** This function is only available on targets where `",
2747                    stringify!($atomic_type), "` has the same alignment as `", stringify!($int_type), "`."
2748                ],
2749            }]
2750            ///
2751            /// # Examples
2752            ///
2753            /// ```
2754            /// #![feature(atomic_from_mut)]
2755            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2756            ///
2757            /// let mut some_int = 123;
2758            #[doc = concat!("let a = ", stringify!($atomic_type), "::from_mut(&mut some_int);")]
2759            /// a.store(100, Ordering::Relaxed);
2760            /// assert_eq!(some_int, 100);
2761            /// ```
2762            ///
2763            #[inline]
2764            #[$cfg_align]
2765            #[unstable(feature = "atomic_from_mut", issue = "76314")]
2766            pub fn from_mut(v: &mut $int_type) -> &mut Self {
2767                let [] = [(); align_of::<Self>() - align_of::<$int_type>()];
2768                // SAFETY:
2769                //  - the mutable reference guarantees unique ownership.
2770                //  - the alignment of `$int_type` and `Self` is the
2771                //    same, as promised by $cfg_align and verified above.
2772                unsafe { &mut *(v as *mut $int_type as *mut Self) }
2773            }
2774
2775            #[doc = concat!("Get non-atomic access to a `&mut [", stringify!($atomic_type), "]` slice")]
2776            ///
2777            /// This is safe because the mutable reference guarantees that no other threads are
2778            /// concurrently accessing the atomic data.
2779            ///
2780            /// # Examples
2781            ///
2782            /// ```ignore-wasm
2783            /// #![feature(atomic_from_mut)]
2784            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2785            ///
2786            #[doc = concat!("let mut some_ints = [const { ", stringify!($atomic_type), "::new(0) }; 10];")]
2787            ///
2788            #[doc = concat!("let view: &mut [", stringify!($int_type), "] = ", stringify!($atomic_type), "::get_mut_slice(&mut some_ints);")]
2789            /// assert_eq!(view, [0; 10]);
2790            /// view
2791            ///     .iter_mut()
2792            ///     .enumerate()
2793            ///     .for_each(|(idx, int)| *int = idx as _);
2794            ///
2795            /// std::thread::scope(|s| {
2796            ///     some_ints
2797            ///         .iter()
2798            ///         .enumerate()
2799            ///         .for_each(|(idx, int)| {
2800            ///             s.spawn(move || assert_eq!(int.load(Ordering::Relaxed), idx as _));
2801            ///         })
2802            /// });
2803            /// ```
2804            #[inline]
2805            #[unstable(feature = "atomic_from_mut", issue = "76314")]
2806            pub fn get_mut_slice(this: &mut [Self]) -> &mut [$int_type] {
2807                // SAFETY: the mutable reference guarantees unique ownership.
2808                unsafe { &mut *(this as *mut [Self] as *mut [$int_type]) }
2809            }
2810
2811            #[doc = concat!("Get atomic access to a `&mut [", stringify!($int_type), "]` slice.")]
2812            ///
2813            /// # Examples
2814            ///
2815            /// ```ignore-wasm
2816            /// #![feature(atomic_from_mut)]
2817            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2818            ///
2819            /// let mut some_ints = [0; 10];
2820            #[doc = concat!("let a = &*", stringify!($atomic_type), "::from_mut_slice(&mut some_ints);")]
2821            /// std::thread::scope(|s| {
2822            ///     for i in 0..a.len() {
2823            ///         s.spawn(move || a[i].store(i as _, Ordering::Relaxed));
2824            ///     }
2825            /// });
2826            /// for (i, n) in some_ints.into_iter().enumerate() {
2827            ///     assert_eq!(i, n as usize);
2828            /// }
2829            /// ```
2830            #[inline]
2831            #[$cfg_align]
2832            #[unstable(feature = "atomic_from_mut", issue = "76314")]
2833            pub fn from_mut_slice(v: &mut [$int_type]) -> &mut [Self] {
2834                let [] = [(); align_of::<Self>() - align_of::<$int_type>()];
2835                // SAFETY:
2836                //  - the mutable reference guarantees unique ownership.
2837                //  - the alignment of `$int_type` and `Self` is the
2838                //    same, as promised by $cfg_align and verified above.
2839                unsafe { &mut *(v as *mut [$int_type] as *mut [Self]) }
2840            }
2841
2842            /// Consumes the atomic and returns the contained value.
2843            ///
2844            /// This is safe because passing `self` by value guarantees that no other threads are
2845            /// concurrently accessing the atomic data.
2846            ///
2847            /// # Examples
2848            ///
2849            /// ```
2850            #[doc = concat!($extra_feature, "use std::sync::atomic::", stringify!($atomic_type), ";")]
2851            ///
2852            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2853            /// assert_eq!(some_var.into_inner(), 5);
2854            /// ```
2855            #[inline]
2856            #[$stable_access]
2857            #[$const_stable_into_inner]
2858            pub const fn into_inner(self) -> $int_type {
2859                self.v.into_inner()
2860            }
2861
2862            /// Loads a value from the atomic integer.
2863            ///
2864            /// `load` takes an [`Ordering`] argument which describes the memory ordering of this operation.
2865            /// Possible values are [`SeqCst`], [`Acquire`] and [`Relaxed`].
2866            ///
2867            /// # Panics
2868            ///
2869            /// Panics if `order` is [`Release`] or [`AcqRel`].
2870            ///
2871            /// # Examples
2872            ///
2873            /// ```
2874            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2875            ///
2876            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2877            ///
2878            /// assert_eq!(some_var.load(Ordering::Relaxed), 5);
2879            /// ```
2880            #[inline]
2881            #[$stable]
2882            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2883            pub fn load(&self, order: Ordering) -> $int_type {
2884                // SAFETY: data races are prevented by atomic intrinsics.
2885                unsafe { atomic_load(self.v.get(), order) }
2886            }
2887
2888            /// Stores a value into the atomic integer.
2889            ///
2890            /// `store` takes an [`Ordering`] argument which describes the memory ordering of this operation.
2891            ///  Possible values are [`SeqCst`], [`Release`] and [`Relaxed`].
2892            ///
2893            /// # Panics
2894            ///
2895            /// Panics if `order` is [`Acquire`] or [`AcqRel`].
2896            ///
2897            /// # Examples
2898            ///
2899            /// ```
2900            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2901            ///
2902            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2903            ///
2904            /// some_var.store(10, Ordering::Relaxed);
2905            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
2906            /// ```
2907            #[inline]
2908            #[$stable]
2909            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2910            pub fn store(&self, val: $int_type, order: Ordering) {
2911                // SAFETY: data races are prevented by atomic intrinsics.
2912                unsafe { atomic_store(self.v.get(), val, order); }
2913            }
2914
2915            /// Stores a value into the atomic integer, returning the previous value.
2916            ///
2917            /// `swap` takes an [`Ordering`] argument which describes the memory ordering
2918            /// of this operation. All ordering modes are possible. Note that using
2919            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
2920            /// using [`Release`] makes the load part [`Relaxed`].
2921            ///
2922            /// **Note**: This method is only available on platforms that support atomic operations on
2923            #[doc = concat!("[`", $s_int_type, "`].")]
2924            ///
2925            /// # Examples
2926            ///
2927            /// ```
2928            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2929            ///
2930            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2931            ///
2932            /// assert_eq!(some_var.swap(10, Ordering::Relaxed), 5);
2933            /// ```
2934            #[inline]
2935            #[$stable]
2936            #[$cfg_cas]
2937            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
2938            pub fn swap(&self, val: $int_type, order: Ordering) -> $int_type {
2939                // SAFETY: data races are prevented by atomic intrinsics.
2940                unsafe { atomic_swap(self.v.get(), val, order) }
2941            }
2942
2943            /// Stores a value into the atomic integer if the current value is the same as
2944            /// the `current` value.
2945            ///
2946            /// The return value is always the previous value. If it is equal to `current`, then the
2947            /// value was updated.
2948            ///
2949            /// `compare_and_swap` also takes an [`Ordering`] argument which describes the memory
2950            /// ordering of this operation. Notice that even when using [`AcqRel`], the operation
2951            /// might fail and hence just perform an `Acquire` load, but not have `Release` semantics.
2952            /// Using [`Acquire`] makes the store part of this operation [`Relaxed`] if it
2953            /// happens, and using [`Release`] makes the load part [`Relaxed`].
2954            ///
2955            /// **Note**: This method is only available on platforms that support atomic operations on
2956            #[doc = concat!("[`", $s_int_type, "`].")]
2957            ///
2958            /// # Migrating to `compare_exchange` and `compare_exchange_weak`
2959            ///
2960            /// `compare_and_swap` is equivalent to `compare_exchange` with the following mapping for
2961            /// memory orderings:
2962            ///
2963            /// Original | Success | Failure
2964            /// -------- | ------- | -------
2965            /// Relaxed  | Relaxed | Relaxed
2966            /// Acquire  | Acquire | Acquire
2967            /// Release  | Release | Relaxed
2968            /// AcqRel   | AcqRel  | Acquire
2969            /// SeqCst   | SeqCst  | SeqCst
2970            ///
2971            /// `compare_and_swap` and `compare_exchange` also differ in their return type. You can use
2972            /// `compare_exchange(...).unwrap_or_else(|x| x)` to recover the behavior of `compare_and_swap`,
2973            /// but in most cases it is more idiomatic to check whether the return value is `Ok` or `Err`
2974            /// rather than to infer success vs failure based on the value that was read.
2975            ///
2976            /// During migration, consider whether it makes sense to use `compare_exchange_weak` instead.
2977            /// `compare_exchange_weak` is allowed to fail spuriously even when the comparison succeeds,
2978            /// which allows the compiler to generate better assembly code when the compare and swap
2979            /// is used in a loop.
2980            ///
2981            /// # Examples
2982            ///
2983            /// ```
2984            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
2985            ///
2986            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
2987            ///
2988            /// assert_eq!(some_var.compare_and_swap(5, 10, Ordering::Relaxed), 5);
2989            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
2990            ///
2991            /// assert_eq!(some_var.compare_and_swap(6, 12, Ordering::Relaxed), 10);
2992            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
2993            /// ```
2994            #[inline]
2995            #[$stable]
2996            #[deprecated(
2997                since = "1.50.0",
2998                note = "Use `compare_exchange` or `compare_exchange_weak` instead")
2999            ]
3000            #[$cfg_cas]
3001            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3002            pub fn compare_and_swap(&self,
3003                                    current: $int_type,
3004                                    new: $int_type,
3005                                    order: Ordering) -> $int_type {
3006                match self.compare_exchange(current,
3007                                            new,
3008                                            order,
3009                                            strongest_failure_ordering(order)) {
3010                    Ok(x) => x,
3011                    Err(x) => x,
3012                }
3013            }
3014
3015            /// Stores a value into the atomic integer if the current value is the same as
3016            /// the `current` value.
3017            ///
3018            /// The return value is a result indicating whether the new value was written and
3019            /// containing the previous value. On success this value is guaranteed to be equal to
3020            /// `current`.
3021            ///
3022            /// `compare_exchange` takes two [`Ordering`] arguments to describe the memory
3023            /// ordering of this operation. `success` describes the required ordering for the
3024            /// read-modify-write operation that takes place if the comparison with `current` succeeds.
3025            /// `failure` describes the required ordering for the load operation that takes place when
3026            /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
3027            /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
3028            /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3029            ///
3030            /// **Note**: This method is only available on platforms that support atomic operations on
3031            #[doc = concat!("[`", $s_int_type, "`].")]
3032            ///
3033            /// # Examples
3034            ///
3035            /// ```
3036            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3037            ///
3038            #[doc = concat!("let some_var = ", stringify!($atomic_type), "::new(5);")]
3039            ///
3040            /// assert_eq!(some_var.compare_exchange(5, 10,
3041            ///                                      Ordering::Acquire,
3042            ///                                      Ordering::Relaxed),
3043            ///            Ok(5));
3044            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
3045            ///
3046            /// assert_eq!(some_var.compare_exchange(6, 12,
3047            ///                                      Ordering::SeqCst,
3048            ///                                      Ordering::Acquire),
3049            ///            Err(10));
3050            /// assert_eq!(some_var.load(Ordering::Relaxed), 10);
3051            /// ```
3052            ///
3053            /// # Considerations
3054            ///
3055            /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
3056            /// of CAS operations. In particular, a load of the value followed by a successful
3057            /// `compare_exchange` with the previous load *does not ensure* that other threads have not
3058            /// changed the value in the interim! This is usually important when the *equality* check in
3059            /// the `compare_exchange` is being used to check the *identity* of a value, but equality
3060            /// does not necessarily imply identity. This is a particularly common case for pointers, as
3061            /// a pointer holding the same address does not imply that the same object exists at that
3062            /// address! In this case, `compare_exchange` can lead to the [ABA problem].
3063            ///
3064            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3065            /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3066            #[inline]
3067            #[$stable_cxchg]
3068            #[$cfg_cas]
3069            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3070            pub fn compare_exchange(&self,
3071                                    current: $int_type,
3072                                    new: $int_type,
3073                                    success: Ordering,
3074                                    failure: Ordering) -> Result<$int_type, $int_type> {
3075                // SAFETY: data races are prevented by atomic intrinsics.
3076                unsafe { atomic_compare_exchange(self.v.get(), current, new, success, failure) }
3077            }
3078
3079            /// Stores a value into the atomic integer if the current value is the same as
3080            /// the `current` value.
3081            ///
3082            #[doc = concat!("Unlike [`", stringify!($atomic_type), "::compare_exchange`],")]
3083            /// this function is allowed to spuriously fail even
3084            /// when the comparison succeeds, which can result in more efficient code on some
3085            /// platforms. The return value is a result indicating whether the new value was
3086            /// written and containing the previous value.
3087            ///
3088            /// `compare_exchange_weak` takes two [`Ordering`] arguments to describe the memory
3089            /// ordering of this operation. `success` describes the required ordering for the
3090            /// read-modify-write operation that takes place if the comparison with `current` succeeds.
3091            /// `failure` describes the required ordering for the load operation that takes place when
3092            /// the comparison fails. Using [`Acquire`] as success ordering makes the store part
3093            /// of this operation [`Relaxed`], and using [`Release`] makes the successful load
3094            /// [`Relaxed`]. The failure ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3095            ///
3096            /// **Note**: This method is only available on platforms that support atomic operations on
3097            #[doc = concat!("[`", $s_int_type, "`].")]
3098            ///
3099            /// # Examples
3100            ///
3101            /// ```
3102            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3103            ///
3104            #[doc = concat!("let val = ", stringify!($atomic_type), "::new(4);")]
3105            ///
3106            /// let mut old = val.load(Ordering::Relaxed);
3107            /// loop {
3108            ///     let new = old * 2;
3109            ///     match val.compare_exchange_weak(old, new, Ordering::SeqCst, Ordering::Relaxed) {
3110            ///         Ok(_) => break,
3111            ///         Err(x) => old = x,
3112            ///     }
3113            /// }
3114            /// ```
3115            ///
3116            /// # Considerations
3117            ///
3118            /// `compare_exchange` is a [compare-and-swap operation] and thus exhibits the usual downsides
3119            /// of CAS operations. In particular, a load of the value followed by a successful
3120            /// `compare_exchange` with the previous load *does not ensure* that other threads have not
3121            /// changed the value in the interim. This is usually important when the *equality* check in
3122            /// the `compare_exchange` is being used to check the *identity* of a value, but equality
3123            /// does not necessarily imply identity. This is a particularly common case for pointers, as
3124            /// a pointer holding the same address does not imply that the same object exists at that
3125            /// address! In this case, `compare_exchange` can lead to the [ABA problem].
3126            ///
3127            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3128            /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3129            #[inline]
3130            #[$stable_cxchg]
3131            #[$cfg_cas]
3132            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3133            pub fn compare_exchange_weak(&self,
3134                                         current: $int_type,
3135                                         new: $int_type,
3136                                         success: Ordering,
3137                                         failure: Ordering) -> Result<$int_type, $int_type> {
3138                // SAFETY: data races are prevented by atomic intrinsics.
3139                unsafe {
3140                    atomic_compare_exchange_weak(self.v.get(), current, new, success, failure)
3141                }
3142            }
3143
3144            /// Adds to the current value, returning the previous value.
3145            ///
3146            /// This operation wraps around on overflow.
3147            ///
3148            /// `fetch_add` takes an [`Ordering`] argument which describes the memory ordering
3149            /// of this operation. All ordering modes are possible. Note that using
3150            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3151            /// using [`Release`] makes the load part [`Relaxed`].
3152            ///
3153            /// **Note**: This method is only available on platforms that support atomic operations on
3154            #[doc = concat!("[`", $s_int_type, "`].")]
3155            ///
3156            /// # Examples
3157            ///
3158            /// ```
3159            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3160            ///
3161            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0);")]
3162            /// assert_eq!(foo.fetch_add(10, Ordering::SeqCst), 0);
3163            /// assert_eq!(foo.load(Ordering::SeqCst), 10);
3164            /// ```
3165            #[inline]
3166            #[$stable]
3167            #[$cfg_cas]
3168            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3169            pub fn fetch_add(&self, val: $int_type, order: Ordering) -> $int_type {
3170                // SAFETY: data races are prevented by atomic intrinsics.
3171                unsafe { atomic_add(self.v.get(), val, order) }
3172            }
3173
3174            /// Subtracts from the current value, returning the previous value.
3175            ///
3176            /// This operation wraps around on overflow.
3177            ///
3178            /// `fetch_sub` takes an [`Ordering`] argument which describes the memory ordering
3179            /// of this operation. All ordering modes are possible. Note that using
3180            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3181            /// using [`Release`] makes the load part [`Relaxed`].
3182            ///
3183            /// **Note**: This method is only available on platforms that support atomic operations on
3184            #[doc = concat!("[`", $s_int_type, "`].")]
3185            ///
3186            /// # Examples
3187            ///
3188            /// ```
3189            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3190            ///
3191            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(20);")]
3192            /// assert_eq!(foo.fetch_sub(10, Ordering::SeqCst), 20);
3193            /// assert_eq!(foo.load(Ordering::SeqCst), 10);
3194            /// ```
3195            #[inline]
3196            #[$stable]
3197            #[$cfg_cas]
3198            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3199            pub fn fetch_sub(&self, val: $int_type, order: Ordering) -> $int_type {
3200                // SAFETY: data races are prevented by atomic intrinsics.
3201                unsafe { atomic_sub(self.v.get(), val, order) }
3202            }
3203
3204            /// Bitwise "and" with the current value.
3205            ///
3206            /// Performs a bitwise "and" operation on the current value and the argument `val`, and
3207            /// sets the new value to the result.
3208            ///
3209            /// Returns the previous value.
3210            ///
3211            /// `fetch_and` takes an [`Ordering`] argument which describes the memory ordering
3212            /// of this operation. All ordering modes are possible. Note that using
3213            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3214            /// using [`Release`] makes the load part [`Relaxed`].
3215            ///
3216            /// **Note**: This method is only available on platforms that support atomic operations on
3217            #[doc = concat!("[`", $s_int_type, "`].")]
3218            ///
3219            /// # Examples
3220            ///
3221            /// ```
3222            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3223            ///
3224            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0b101101);")]
3225            /// assert_eq!(foo.fetch_and(0b110011, Ordering::SeqCst), 0b101101);
3226            /// assert_eq!(foo.load(Ordering::SeqCst), 0b100001);
3227            /// ```
3228            #[inline]
3229            #[$stable]
3230            #[$cfg_cas]
3231            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3232            pub fn fetch_and(&self, val: $int_type, order: Ordering) -> $int_type {
3233                // SAFETY: data races are prevented by atomic intrinsics.
3234                unsafe { atomic_and(self.v.get(), val, order) }
3235            }
3236
3237            /// Bitwise "nand" with the current value.
3238            ///
3239            /// Performs a bitwise "nand" operation on the current value and the argument `val`, and
3240            /// sets the new value to the result.
3241            ///
3242            /// Returns the previous value.
3243            ///
3244            /// `fetch_nand` takes an [`Ordering`] argument which describes the memory ordering
3245            /// of this operation. All ordering modes are possible. Note that using
3246            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3247            /// using [`Release`] makes the load part [`Relaxed`].
3248            ///
3249            /// **Note**: This method is only available on platforms that support atomic operations on
3250            #[doc = concat!("[`", $s_int_type, "`].")]
3251            ///
3252            /// # Examples
3253            ///
3254            /// ```
3255            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3256            ///
3257            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0x13);")]
3258            /// assert_eq!(foo.fetch_nand(0x31, Ordering::SeqCst), 0x13);
3259            /// assert_eq!(foo.load(Ordering::SeqCst), !(0x13 & 0x31));
3260            /// ```
3261            #[inline]
3262            #[$stable_nand]
3263            #[$cfg_cas]
3264            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3265            pub fn fetch_nand(&self, val: $int_type, order: Ordering) -> $int_type {
3266                // SAFETY: data races are prevented by atomic intrinsics.
3267                unsafe { atomic_nand(self.v.get(), val, order) }
3268            }
3269
3270            /// Bitwise "or" with the current value.
3271            ///
3272            /// Performs a bitwise "or" operation on the current value and the argument `val`, and
3273            /// sets the new value to the result.
3274            ///
3275            /// Returns the previous value.
3276            ///
3277            /// `fetch_or` takes an [`Ordering`] argument which describes the memory ordering
3278            /// of this operation. All ordering modes are possible. Note that using
3279            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3280            /// using [`Release`] makes the load part [`Relaxed`].
3281            ///
3282            /// **Note**: This method is only available on platforms that support atomic operations on
3283            #[doc = concat!("[`", $s_int_type, "`].")]
3284            ///
3285            /// # Examples
3286            ///
3287            /// ```
3288            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3289            ///
3290            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0b101101);")]
3291            /// assert_eq!(foo.fetch_or(0b110011, Ordering::SeqCst), 0b101101);
3292            /// assert_eq!(foo.load(Ordering::SeqCst), 0b111111);
3293            /// ```
3294            #[inline]
3295            #[$stable]
3296            #[$cfg_cas]
3297            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3298            pub fn fetch_or(&self, val: $int_type, order: Ordering) -> $int_type {
3299                // SAFETY: data races are prevented by atomic intrinsics.
3300                unsafe { atomic_or(self.v.get(), val, order) }
3301            }
3302
3303            /// Bitwise "xor" with the current value.
3304            ///
3305            /// Performs a bitwise "xor" operation on the current value and the argument `val`, and
3306            /// sets the new value to the result.
3307            ///
3308            /// Returns the previous value.
3309            ///
3310            /// `fetch_xor` takes an [`Ordering`] argument which describes the memory ordering
3311            /// of this operation. All ordering modes are possible. Note that using
3312            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3313            /// using [`Release`] makes the load part [`Relaxed`].
3314            ///
3315            /// **Note**: This method is only available on platforms that support atomic operations on
3316            #[doc = concat!("[`", $s_int_type, "`].")]
3317            ///
3318            /// # Examples
3319            ///
3320            /// ```
3321            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3322            ///
3323            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(0b101101);")]
3324            /// assert_eq!(foo.fetch_xor(0b110011, Ordering::SeqCst), 0b101101);
3325            /// assert_eq!(foo.load(Ordering::SeqCst), 0b011110);
3326            /// ```
3327            #[inline]
3328            #[$stable]
3329            #[$cfg_cas]
3330            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3331            pub fn fetch_xor(&self, val: $int_type, order: Ordering) -> $int_type {
3332                // SAFETY: data races are prevented by atomic intrinsics.
3333                unsafe { atomic_xor(self.v.get(), val, order) }
3334            }
3335
3336            /// Fetches the value, and applies a function to it that returns an optional
3337            /// new value. Returns a `Result` of `Ok(previous_value)` if the function returned `Some(_)`, else
3338            /// `Err(previous_value)`.
3339            ///
3340            /// Note: This may call the function multiple times if the value has been changed from other threads in
3341            /// the meantime, as long as the function returns `Some(_)`, but the function will have been applied
3342            /// only once to the stored value.
3343            ///
3344            /// `fetch_update` takes two [`Ordering`] arguments to describe the memory ordering of this operation.
3345            /// The first describes the required ordering for when the operation finally succeeds while the second
3346            /// describes the required ordering for loads. These correspond to the success and failure orderings of
3347            #[doc = concat!("[`", stringify!($atomic_type), "::compare_exchange`]")]
3348            /// respectively.
3349            ///
3350            /// Using [`Acquire`] as success ordering makes the store part
3351            /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
3352            /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3353            ///
3354            /// **Note**: This method is only available on platforms that support atomic operations on
3355            #[doc = concat!("[`", $s_int_type, "`].")]
3356            ///
3357            /// # Considerations
3358            ///
3359            /// This method is not magic; it is not provided by the hardware, and does not act like a
3360            /// critical section or mutex.
3361            ///
3362            /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
3363            /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem]
3364            /// if this atomic integer is an index or more generally if knowledge of only the *bitwise value*
3365            /// of the atomic is not in and of itself sufficient to ensure any required preconditions.
3366            ///
3367            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3368            /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3369            ///
3370            /// # Examples
3371            ///
3372            /// ```rust
3373            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3374            ///
3375            #[doc = concat!("let x = ", stringify!($atomic_type), "::new(7);")]
3376            /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(7));
3377            /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(7));
3378            /// assert_eq!(x.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(8));
3379            /// assert_eq!(x.load(Ordering::SeqCst), 9);
3380            /// ```
3381            #[inline]
3382            #[stable(feature = "no_more_cas", since = "1.45.0")]
3383            #[$cfg_cas]
3384            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3385            pub fn fetch_update<F>(&self,
3386                                   set_order: Ordering,
3387                                   fetch_order: Ordering,
3388                                   mut f: F) -> Result<$int_type, $int_type>
3389            where F: FnMut($int_type) -> Option<$int_type> {
3390                let mut prev = self.load(fetch_order);
3391                while let Some(next) = f(prev) {
3392                    match self.compare_exchange_weak(prev, next, set_order, fetch_order) {
3393                        x @ Ok(_) => return x,
3394                        Err(next_prev) => prev = next_prev
3395                    }
3396                }
3397                Err(prev)
3398            }
3399
3400            /// Fetches the value, and applies a function to it that returns an optional
3401            /// new value. Returns a `Result` of `Ok(previous_value)` if the function returned `Some(_)`, else
3402            /// `Err(previous_value)`.
3403            ///
3404            #[doc = concat!("See also: [`update`](`", stringify!($atomic_type), "::update`).")]
3405            ///
3406            /// Note: This may call the function multiple times if the value has been changed from other threads in
3407            /// the meantime, as long as the function returns `Some(_)`, but the function will have been applied
3408            /// only once to the stored value.
3409            ///
3410            /// `try_update` takes two [`Ordering`] arguments to describe the memory ordering of this operation.
3411            /// The first describes the required ordering for when the operation finally succeeds while the second
3412            /// describes the required ordering for loads. These correspond to the success and failure orderings of
3413            #[doc = concat!("[`", stringify!($atomic_type), "::compare_exchange`]")]
3414            /// respectively.
3415            ///
3416            /// Using [`Acquire`] as success ordering makes the store part
3417            /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
3418            /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3419            ///
3420            /// **Note**: This method is only available on platforms that support atomic operations on
3421            #[doc = concat!("[`", $s_int_type, "`].")]
3422            ///
3423            /// # Considerations
3424            ///
3425            /// This method is not magic; it is not provided by the hardware, and does not act like a
3426            /// critical section or mutex.
3427            ///
3428            /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
3429            /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem]
3430            /// if this atomic integer is an index or more generally if knowledge of only the *bitwise value*
3431            /// of the atomic is not in and of itself sufficient to ensure any required preconditions.
3432            ///
3433            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3434            /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3435            ///
3436            /// # Examples
3437            ///
3438            /// ```rust
3439            /// #![feature(atomic_try_update)]
3440            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3441            ///
3442            #[doc = concat!("let x = ", stringify!($atomic_type), "::new(7);")]
3443            /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |_| None), Err(7));
3444            /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(7));
3445            /// assert_eq!(x.try_update(Ordering::SeqCst, Ordering::SeqCst, |x| Some(x + 1)), Ok(8));
3446            /// assert_eq!(x.load(Ordering::SeqCst), 9);
3447            /// ```
3448            #[inline]
3449            #[unstable(feature = "atomic_try_update", issue = "135894")]
3450            #[$cfg_cas]
3451            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3452            pub fn try_update(
3453                &self,
3454                set_order: Ordering,
3455                fetch_order: Ordering,
3456                f: impl FnMut($int_type) -> Option<$int_type>,
3457            ) -> Result<$int_type, $int_type> {
3458                // FIXME(atomic_try_update): this is currently an unstable alias to `fetch_update`;
3459                //      when stabilizing, turn `fetch_update` into a deprecated alias to `try_update`.
3460                self.fetch_update(set_order, fetch_order, f)
3461            }
3462
3463            /// Fetches the value, applies a function to it that it return a new value.
3464            /// The new value is stored and the old value is returned.
3465            ///
3466            #[doc = concat!("See also: [`try_update`](`", stringify!($atomic_type), "::try_update`).")]
3467            ///
3468            /// Note: This may call the function multiple times if the value has been changed from other threads in
3469            /// the meantime, but the function will have been applied only once to the stored value.
3470            ///
3471            /// `update` takes two [`Ordering`] arguments to describe the memory ordering of this operation.
3472            /// The first describes the required ordering for when the operation finally succeeds while the second
3473            /// describes the required ordering for loads. These correspond to the success and failure orderings of
3474            #[doc = concat!("[`", stringify!($atomic_type), "::compare_exchange`]")]
3475            /// respectively.
3476            ///
3477            /// Using [`Acquire`] as success ordering makes the store part
3478            /// of this operation [`Relaxed`], and using [`Release`] makes the final successful load
3479            /// [`Relaxed`]. The (failed) load ordering can only be [`SeqCst`], [`Acquire`] or [`Relaxed`].
3480            ///
3481            /// **Note**: This method is only available on platforms that support atomic operations on
3482            #[doc = concat!("[`", $s_int_type, "`].")]
3483            ///
3484            /// # Considerations
3485            ///
3486            /// [CAS operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3487            /// This method is not magic; it is not provided by the hardware, and does not act like a
3488            /// critical section or mutex.
3489            ///
3490            /// It is implemented on top of an atomic [compare-and-swap operation], and thus is subject to
3491            /// the usual drawbacks of CAS operations. In particular, be careful of the [ABA problem]
3492            /// if this atomic integer is an index or more generally if knowledge of only the *bitwise value*
3493            /// of the atomic is not in and of itself sufficient to ensure any required preconditions.
3494            ///
3495            /// [ABA Problem]: https://en.wikipedia.org/wiki/ABA_problem
3496            /// [compare-and-swap operation]: https://en.wikipedia.org/wiki/Compare-and-swap
3497            ///
3498            /// # Examples
3499            ///
3500            /// ```rust
3501            /// #![feature(atomic_try_update)]
3502            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3503            ///
3504            #[doc = concat!("let x = ", stringify!($atomic_type), "::new(7);")]
3505            /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| x + 1), 7);
3506            /// assert_eq!(x.update(Ordering::SeqCst, Ordering::SeqCst, |x| x + 1), 8);
3507            /// assert_eq!(x.load(Ordering::SeqCst), 9);
3508            /// ```
3509            #[inline]
3510            #[unstable(feature = "atomic_try_update", issue = "135894")]
3511            #[$cfg_cas]
3512            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3513            pub fn update(
3514                &self,
3515                set_order: Ordering,
3516                fetch_order: Ordering,
3517                mut f: impl FnMut($int_type) -> $int_type,
3518            ) -> $int_type {
3519                let mut prev = self.load(fetch_order);
3520                loop {
3521                    match self.compare_exchange_weak(prev, f(prev), set_order, fetch_order) {
3522                        Ok(x) => break x,
3523                        Err(next_prev) => prev = next_prev,
3524                    }
3525                }
3526            }
3527
3528            /// Maximum with the current value.
3529            ///
3530            /// Finds the maximum of the current value and the argument `val`, and
3531            /// sets the new value to the result.
3532            ///
3533            /// Returns the previous value.
3534            ///
3535            /// `fetch_max` takes an [`Ordering`] argument which describes the memory ordering
3536            /// of this operation. All ordering modes are possible. Note that using
3537            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3538            /// using [`Release`] makes the load part [`Relaxed`].
3539            ///
3540            /// **Note**: This method is only available on platforms that support atomic operations on
3541            #[doc = concat!("[`", $s_int_type, "`].")]
3542            ///
3543            /// # Examples
3544            ///
3545            /// ```
3546            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3547            ///
3548            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3549            /// assert_eq!(foo.fetch_max(42, Ordering::SeqCst), 23);
3550            /// assert_eq!(foo.load(Ordering::SeqCst), 42);
3551            /// ```
3552            ///
3553            /// If you want to obtain the maximum value in one step, you can use the following:
3554            ///
3555            /// ```
3556            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3557            ///
3558            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3559            /// let bar = 42;
3560            /// let max_foo = foo.fetch_max(bar, Ordering::SeqCst).max(bar);
3561            /// assert!(max_foo == 42);
3562            /// ```
3563            #[inline]
3564            #[stable(feature = "atomic_min_max", since = "1.45.0")]
3565            #[$cfg_cas]
3566            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3567            pub fn fetch_max(&self, val: $int_type, order: Ordering) -> $int_type {
3568                // SAFETY: data races are prevented by atomic intrinsics.
3569                unsafe { $max_fn(self.v.get(), val, order) }
3570            }
3571
3572            /// Minimum with the current value.
3573            ///
3574            /// Finds the minimum of the current value and the argument `val`, and
3575            /// sets the new value to the result.
3576            ///
3577            /// Returns the previous value.
3578            ///
3579            /// `fetch_min` takes an [`Ordering`] argument which describes the memory ordering
3580            /// of this operation. All ordering modes are possible. Note that using
3581            /// [`Acquire`] makes the store part of this operation [`Relaxed`], and
3582            /// using [`Release`] makes the load part [`Relaxed`].
3583            ///
3584            /// **Note**: This method is only available on platforms that support atomic operations on
3585            #[doc = concat!("[`", $s_int_type, "`].")]
3586            ///
3587            /// # Examples
3588            ///
3589            /// ```
3590            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3591            ///
3592            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3593            /// assert_eq!(foo.fetch_min(42, Ordering::Relaxed), 23);
3594            /// assert_eq!(foo.load(Ordering::Relaxed), 23);
3595            /// assert_eq!(foo.fetch_min(22, Ordering::Relaxed), 23);
3596            /// assert_eq!(foo.load(Ordering::Relaxed), 22);
3597            /// ```
3598            ///
3599            /// If you want to obtain the minimum value in one step, you can use the following:
3600            ///
3601            /// ```
3602            #[doc = concat!($extra_feature, "use std::sync::atomic::{", stringify!($atomic_type), ", Ordering};")]
3603            ///
3604            #[doc = concat!("let foo = ", stringify!($atomic_type), "::new(23);")]
3605            /// let bar = 12;
3606            /// let min_foo = foo.fetch_min(bar, Ordering::SeqCst).min(bar);
3607            /// assert_eq!(min_foo, 12);
3608            /// ```
3609            #[inline]
3610            #[stable(feature = "atomic_min_max", since = "1.45.0")]
3611            #[$cfg_cas]
3612            #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3613            pub fn fetch_min(&self, val: $int_type, order: Ordering) -> $int_type {
3614                // SAFETY: data races are prevented by atomic intrinsics.
3615                unsafe { $min_fn(self.v.get(), val, order) }
3616            }
3617
3618            /// Returns a mutable pointer to the underlying integer.
3619            ///
3620            /// Doing non-atomic reads and writes on the resulting integer can be a data race.
3621            /// This method is mostly useful for FFI, where the function signature may use
3622            #[doc = concat!("`*mut ", stringify!($int_type), "` instead of `&", stringify!($atomic_type), "`.")]
3623            ///
3624            /// Returning an `*mut` pointer from a shared reference to this atomic is safe because the
3625            /// atomic types work with interior mutability. All modifications of an atomic change the value
3626            /// through a shared reference, and can do so safely as long as they use atomic operations. Any
3627            /// use of the returned raw pointer requires an `unsafe` block and still has to uphold the
3628            /// requirements of the [memory model].
3629            ///
3630            /// # Examples
3631            ///
3632            /// ```ignore (extern-declaration)
3633            /// # fn main() {
3634            #[doc = concat!($extra_feature, "use std::sync::atomic::", stringify!($atomic_type), ";")]
3635            ///
3636            /// extern "C" {
3637            #[doc = concat!("    fn my_atomic_op(arg: *mut ", stringify!($int_type), ");")]
3638            /// }
3639            ///
3640            #[doc = concat!("let atomic = ", stringify!($atomic_type), "::new(1);")]
3641            ///
3642            /// // SAFETY: Safe as long as `my_atomic_op` is atomic.
3643            /// unsafe {
3644            ///     my_atomic_op(atomic.as_ptr());
3645            /// }
3646            /// # }
3647            /// ```
3648            ///
3649            /// [memory model]: self#memory-model-for-atomic-accesses
3650            #[inline]
3651            #[stable(feature = "atomic_as_ptr", since = "1.70.0")]
3652            #[rustc_const_stable(feature = "atomic_as_ptr", since = "1.70.0")]
3653            #[rustc_never_returns_null_ptr]
3654            pub const fn as_ptr(&self) -> *mut $int_type {
3655                self.v.get()
3656            }
3657        }
3658    }
3659}
3660
3661#[cfg(target_has_atomic_load_store = "8")]
3662atomic_int! {
3663    cfg(target_has_atomic = "8"),
3664    cfg(target_has_atomic_equal_alignment = "8"),
3665    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3666    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3667    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3668    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3669    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3670    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3671    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3672    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3673    rustc_diagnostic_item = "AtomicI8",
3674    "i8",
3675    "",
3676    atomic_min, atomic_max,
3677    1,
3678    i8 AtomicI8
3679}
3680#[cfg(target_has_atomic_load_store = "8")]
3681atomic_int! {
3682    cfg(target_has_atomic = "8"),
3683    cfg(target_has_atomic_equal_alignment = "8"),
3684    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3685    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3686    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3687    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3688    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3689    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3690    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3691    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3692    rustc_diagnostic_item = "AtomicU8",
3693    "u8",
3694    "",
3695    atomic_umin, atomic_umax,
3696    1,
3697    u8 AtomicU8
3698}
3699#[cfg(target_has_atomic_load_store = "16")]
3700atomic_int! {
3701    cfg(target_has_atomic = "16"),
3702    cfg(target_has_atomic_equal_alignment = "16"),
3703    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3704    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3705    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3706    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3707    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3708    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3709    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3710    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3711    rustc_diagnostic_item = "AtomicI16",
3712    "i16",
3713    "",
3714    atomic_min, atomic_max,
3715    2,
3716    i16 AtomicI16
3717}
3718#[cfg(target_has_atomic_load_store = "16")]
3719atomic_int! {
3720    cfg(target_has_atomic = "16"),
3721    cfg(target_has_atomic_equal_alignment = "16"),
3722    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3723    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3724    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3725    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3726    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3727    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3728    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3729    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3730    rustc_diagnostic_item = "AtomicU16",
3731    "u16",
3732    "",
3733    atomic_umin, atomic_umax,
3734    2,
3735    u16 AtomicU16
3736}
3737#[cfg(target_has_atomic_load_store = "32")]
3738atomic_int! {
3739    cfg(target_has_atomic = "32"),
3740    cfg(target_has_atomic_equal_alignment = "32"),
3741    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3742    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3743    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3744    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3745    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3746    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3747    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3748    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3749    rustc_diagnostic_item = "AtomicI32",
3750    "i32",
3751    "",
3752    atomic_min, atomic_max,
3753    4,
3754    i32 AtomicI32
3755}
3756#[cfg(target_has_atomic_load_store = "32")]
3757atomic_int! {
3758    cfg(target_has_atomic = "32"),
3759    cfg(target_has_atomic_equal_alignment = "32"),
3760    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3761    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3762    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3763    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3764    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3765    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3766    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3767    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3768    rustc_diagnostic_item = "AtomicU32",
3769    "u32",
3770    "",
3771    atomic_umin, atomic_umax,
3772    4,
3773    u32 AtomicU32
3774}
3775#[cfg(target_has_atomic_load_store = "64")]
3776atomic_int! {
3777    cfg(target_has_atomic = "64"),
3778    cfg(target_has_atomic_equal_alignment = "64"),
3779    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3780    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3781    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3782    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3783    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3784    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3785    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3786    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3787    rustc_diagnostic_item = "AtomicI64",
3788    "i64",
3789    "",
3790    atomic_min, atomic_max,
3791    8,
3792    i64 AtomicI64
3793}
3794#[cfg(target_has_atomic_load_store = "64")]
3795atomic_int! {
3796    cfg(target_has_atomic = "64"),
3797    cfg(target_has_atomic_equal_alignment = "64"),
3798    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3799    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3800    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3801    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3802    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3803    stable(feature = "integer_atomics_stable", since = "1.34.0"),
3804    rustc_const_stable(feature = "const_integer_atomics", since = "1.34.0"),
3805    rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3806    rustc_diagnostic_item = "AtomicU64",
3807    "u64",
3808    "",
3809    atomic_umin, atomic_umax,
3810    8,
3811    u64 AtomicU64
3812}
3813#[cfg(target_has_atomic_load_store = "128")]
3814atomic_int! {
3815    cfg(target_has_atomic = "128"),
3816    cfg(target_has_atomic_equal_alignment = "128"),
3817    unstable(feature = "integer_atomics", issue = "99069"),
3818    unstable(feature = "integer_atomics", issue = "99069"),
3819    unstable(feature = "integer_atomics", issue = "99069"),
3820    unstable(feature = "integer_atomics", issue = "99069"),
3821    unstable(feature = "integer_atomics", issue = "99069"),
3822    unstable(feature = "integer_atomics", issue = "99069"),
3823    rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3824    rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3825    rustc_diagnostic_item = "AtomicI128",
3826    "i128",
3827    "#![feature(integer_atomics)]\n\n",
3828    atomic_min, atomic_max,
3829    16,
3830    i128 AtomicI128
3831}
3832#[cfg(target_has_atomic_load_store = "128")]
3833atomic_int! {
3834    cfg(target_has_atomic = "128"),
3835    cfg(target_has_atomic_equal_alignment = "128"),
3836    unstable(feature = "integer_atomics", issue = "99069"),
3837    unstable(feature = "integer_atomics", issue = "99069"),
3838    unstable(feature = "integer_atomics", issue = "99069"),
3839    unstable(feature = "integer_atomics", issue = "99069"),
3840    unstable(feature = "integer_atomics", issue = "99069"),
3841    unstable(feature = "integer_atomics", issue = "99069"),
3842    rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3843    rustc_const_unstable(feature = "integer_atomics", issue = "99069"),
3844    rustc_diagnostic_item = "AtomicU128",
3845    "u128",
3846    "#![feature(integer_atomics)]\n\n",
3847    atomic_umin, atomic_umax,
3848    16,
3849    u128 AtomicU128
3850}
3851
3852#[cfg(target_has_atomic_load_store = "ptr")]
3853macro_rules! atomic_int_ptr_sized {
3854    ( $($target_pointer_width:literal $align:literal)* ) => { $(
3855        #[cfg(target_pointer_width = $target_pointer_width)]
3856        atomic_int! {
3857            cfg(target_has_atomic = "ptr"),
3858            cfg(target_has_atomic_equal_alignment = "ptr"),
3859            stable(feature = "rust1", since = "1.0.0"),
3860            stable(feature = "extended_compare_and_swap", since = "1.10.0"),
3861            stable(feature = "atomic_debug", since = "1.3.0"),
3862            stable(feature = "atomic_access", since = "1.15.0"),
3863            stable(feature = "atomic_from", since = "1.23.0"),
3864            stable(feature = "atomic_nand", since = "1.27.0"),
3865            rustc_const_stable(feature = "const_ptr_sized_atomics", since = "1.24.0"),
3866            rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3867            rustc_diagnostic_item = "AtomicIsize",
3868            "isize",
3869            "",
3870            atomic_min, atomic_max,
3871            $align,
3872            isize AtomicIsize
3873        }
3874        #[cfg(target_pointer_width = $target_pointer_width)]
3875        atomic_int! {
3876            cfg(target_has_atomic = "ptr"),
3877            cfg(target_has_atomic_equal_alignment = "ptr"),
3878            stable(feature = "rust1", since = "1.0.0"),
3879            stable(feature = "extended_compare_and_swap", since = "1.10.0"),
3880            stable(feature = "atomic_debug", since = "1.3.0"),
3881            stable(feature = "atomic_access", since = "1.15.0"),
3882            stable(feature = "atomic_from", since = "1.23.0"),
3883            stable(feature = "atomic_nand", since = "1.27.0"),
3884            rustc_const_stable(feature = "const_ptr_sized_atomics", since = "1.24.0"),
3885            rustc_const_stable(feature = "const_atomic_into_inner", since = "1.79.0"),
3886            rustc_diagnostic_item = "AtomicUsize",
3887            "usize",
3888            "",
3889            atomic_umin, atomic_umax,
3890            $align,
3891            usize AtomicUsize
3892        }
3893
3894        /// An [`AtomicIsize`] initialized to `0`.
3895        #[cfg(target_pointer_width = $target_pointer_width)]
3896        #[stable(feature = "rust1", since = "1.0.0")]
3897        #[deprecated(
3898            since = "1.34.0",
3899            note = "the `new` function is now preferred",
3900            suggestion = "AtomicIsize::new(0)",
3901        )]
3902        pub const ATOMIC_ISIZE_INIT: AtomicIsize = AtomicIsize::new(0);
3903
3904        /// An [`AtomicUsize`] initialized to `0`.
3905        #[cfg(target_pointer_width = $target_pointer_width)]
3906        #[stable(feature = "rust1", since = "1.0.0")]
3907        #[deprecated(
3908            since = "1.34.0",
3909            note = "the `new` function is now preferred",
3910            suggestion = "AtomicUsize::new(0)",
3911        )]
3912        pub const ATOMIC_USIZE_INIT: AtomicUsize = AtomicUsize::new(0);
3913    )* };
3914}
3915
3916#[cfg(target_has_atomic_load_store = "ptr")]
3917atomic_int_ptr_sized! {
3918    "16" 2
3919    "32" 4
3920    "64" 8
3921}
3922
3923#[inline]
3924#[cfg(target_has_atomic)]
3925fn strongest_failure_ordering(order: Ordering) -> Ordering {
3926    match order {
3927        Release => Relaxed,
3928        Relaxed => Relaxed,
3929        SeqCst => SeqCst,
3930        Acquire => Acquire,
3931        AcqRel => Acquire,
3932    }
3933}
3934
3935#[inline]
3936#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3937unsafe fn atomic_store<T: Copy>(dst: *mut T, val: T, order: Ordering) {
3938    // SAFETY: the caller must uphold the safety contract for `atomic_store`.
3939    unsafe {
3940        match order {
3941            Relaxed => intrinsics::atomic_store::<T, { AO::Relaxed }>(dst, val),
3942            Release => intrinsics::atomic_store::<T, { AO::Release }>(dst, val),
3943            SeqCst => intrinsics::atomic_store::<T, { AO::SeqCst }>(dst, val),
3944            Acquire => panic!("there is no such thing as an acquire store"),
3945            AcqRel => panic!("there is no such thing as an acquire-release store"),
3946        }
3947    }
3948}
3949
3950#[inline]
3951#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3952unsafe fn atomic_load<T: Copy>(dst: *const T, order: Ordering) -> T {
3953    // SAFETY: the caller must uphold the safety contract for `atomic_load`.
3954    unsafe {
3955        match order {
3956            Relaxed => intrinsics::atomic_load::<T, { AO::Relaxed }>(dst),
3957            Acquire => intrinsics::atomic_load::<T, { AO::Acquire }>(dst),
3958            SeqCst => intrinsics::atomic_load::<T, { AO::SeqCst }>(dst),
3959            Release => panic!("there is no such thing as a release load"),
3960            AcqRel => panic!("there is no such thing as an acquire-release load"),
3961        }
3962    }
3963}
3964
3965#[inline]
3966#[cfg(target_has_atomic)]
3967#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3968unsafe fn atomic_swap<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
3969    // SAFETY: the caller must uphold the safety contract for `atomic_swap`.
3970    unsafe {
3971        match order {
3972            Relaxed => intrinsics::atomic_xchg::<T, { AO::Relaxed }>(dst, val),
3973            Acquire => intrinsics::atomic_xchg::<T, { AO::Acquire }>(dst, val),
3974            Release => intrinsics::atomic_xchg::<T, { AO::Release }>(dst, val),
3975            AcqRel => intrinsics::atomic_xchg::<T, { AO::AcqRel }>(dst, val),
3976            SeqCst => intrinsics::atomic_xchg::<T, { AO::SeqCst }>(dst, val),
3977        }
3978    }
3979}
3980
3981/// Returns the previous value (like __sync_fetch_and_add).
3982#[inline]
3983#[cfg(target_has_atomic)]
3984#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
3985unsafe fn atomic_add<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
3986    // SAFETY: the caller must uphold the safety contract for `atomic_add`.
3987    unsafe {
3988        match order {
3989            Relaxed => intrinsics::atomic_xadd::<T, U, { AO::Relaxed }>(dst, val),
3990            Acquire => intrinsics::atomic_xadd::<T, U, { AO::Acquire }>(dst, val),
3991            Release => intrinsics::atomic_xadd::<T, U, { AO::Release }>(dst, val),
3992            AcqRel => intrinsics::atomic_xadd::<T, U, { AO::AcqRel }>(dst, val),
3993            SeqCst => intrinsics::atomic_xadd::<T, U, { AO::SeqCst }>(dst, val),
3994        }
3995    }
3996}
3997
3998/// Returns the previous value (like __sync_fetch_and_sub).
3999#[inline]
4000#[cfg(target_has_atomic)]
4001#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4002unsafe fn atomic_sub<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4003    // SAFETY: the caller must uphold the safety contract for `atomic_sub`.
4004    unsafe {
4005        match order {
4006            Relaxed => intrinsics::atomic_xsub::<T, U, { AO::Relaxed }>(dst, val),
4007            Acquire => intrinsics::atomic_xsub::<T, U, { AO::Acquire }>(dst, val),
4008            Release => intrinsics::atomic_xsub::<T, U, { AO::Release }>(dst, val),
4009            AcqRel => intrinsics::atomic_xsub::<T, U, { AO::AcqRel }>(dst, val),
4010            SeqCst => intrinsics::atomic_xsub::<T, U, { AO::SeqCst }>(dst, val),
4011        }
4012    }
4013}
4014
4015/// Publicly exposed for stdarch; nobody else should use this.
4016#[inline]
4017#[cfg(target_has_atomic)]
4018#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4019#[unstable(feature = "core_intrinsics", issue = "none")]
4020#[doc(hidden)]
4021pub unsafe fn atomic_compare_exchange<T: Copy>(
4022    dst: *mut T,
4023    old: T,
4024    new: T,
4025    success: Ordering,
4026    failure: Ordering,
4027) -> Result<T, T> {
4028    // SAFETY: the caller must uphold the safety contract for `atomic_compare_exchange`.
4029    let (val, ok) = unsafe {
4030        match (success, failure) {
4031            (Relaxed, Relaxed) => {
4032                intrinsics::atomic_cxchg::<T, { AO::Relaxed }, { AO::Relaxed }>(dst, old, new)
4033            }
4034            (Relaxed, Acquire) => {
4035                intrinsics::atomic_cxchg::<T, { AO::Relaxed }, { AO::Acquire }>(dst, old, new)
4036            }
4037            (Relaxed, SeqCst) => {
4038                intrinsics::atomic_cxchg::<T, { AO::Relaxed }, { AO::SeqCst }>(dst, old, new)
4039            }
4040            (Acquire, Relaxed) => {
4041                intrinsics::atomic_cxchg::<T, { AO::Acquire }, { AO::Relaxed }>(dst, old, new)
4042            }
4043            (Acquire, Acquire) => {
4044                intrinsics::atomic_cxchg::<T, { AO::Acquire }, { AO::Acquire }>(dst, old, new)
4045            }
4046            (Acquire, SeqCst) => {
4047                intrinsics::atomic_cxchg::<T, { AO::Acquire }, { AO::SeqCst }>(dst, old, new)
4048            }
4049            (Release, Relaxed) => {
4050                intrinsics::atomic_cxchg::<T, { AO::Release }, { AO::Relaxed }>(dst, old, new)
4051            }
4052            (Release, Acquire) => {
4053                intrinsics::atomic_cxchg::<T, { AO::Release }, { AO::Acquire }>(dst, old, new)
4054            }
4055            (Release, SeqCst) => {
4056                intrinsics::atomic_cxchg::<T, { AO::Release }, { AO::SeqCst }>(dst, old, new)
4057            }
4058            (AcqRel, Relaxed) => {
4059                intrinsics::atomic_cxchg::<T, { AO::AcqRel }, { AO::Relaxed }>(dst, old, new)
4060            }
4061            (AcqRel, Acquire) => {
4062                intrinsics::atomic_cxchg::<T, { AO::AcqRel }, { AO::Acquire }>(dst, old, new)
4063            }
4064            (AcqRel, SeqCst) => {
4065                intrinsics::atomic_cxchg::<T, { AO::AcqRel }, { AO::SeqCst }>(dst, old, new)
4066            }
4067            (SeqCst, Relaxed) => {
4068                intrinsics::atomic_cxchg::<T, { AO::SeqCst }, { AO::Relaxed }>(dst, old, new)
4069            }
4070            (SeqCst, Acquire) => {
4071                intrinsics::atomic_cxchg::<T, { AO::SeqCst }, { AO::Acquire }>(dst, old, new)
4072            }
4073            (SeqCst, SeqCst) => {
4074                intrinsics::atomic_cxchg::<T, { AO::SeqCst }, { AO::SeqCst }>(dst, old, new)
4075            }
4076            (_, AcqRel) => panic!("there is no such thing as an acquire-release failure ordering"),
4077            (_, Release) => panic!("there is no such thing as a release failure ordering"),
4078        }
4079    };
4080    if ok { Ok(val) } else { Err(val) }
4081}
4082
4083#[inline]
4084#[cfg(target_has_atomic)]
4085#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4086unsafe fn atomic_compare_exchange_weak<T: Copy>(
4087    dst: *mut T,
4088    old: T,
4089    new: T,
4090    success: Ordering,
4091    failure: Ordering,
4092) -> Result<T, T> {
4093    // SAFETY: the caller must uphold the safety contract for `atomic_compare_exchange_weak`.
4094    let (val, ok) = unsafe {
4095        match (success, failure) {
4096            (Relaxed, Relaxed) => {
4097                intrinsics::atomic_cxchgweak::<T, { AO::Relaxed }, { AO::Relaxed }>(dst, old, new)
4098            }
4099            (Relaxed, Acquire) => {
4100                intrinsics::atomic_cxchgweak::<T, { AO::Relaxed }, { AO::Acquire }>(dst, old, new)
4101            }
4102            (Relaxed, SeqCst) => {
4103                intrinsics::atomic_cxchgweak::<T, { AO::Relaxed }, { AO::SeqCst }>(dst, old, new)
4104            }
4105            (Acquire, Relaxed) => {
4106                intrinsics::atomic_cxchgweak::<T, { AO::Acquire }, { AO::Relaxed }>(dst, old, new)
4107            }
4108            (Acquire, Acquire) => {
4109                intrinsics::atomic_cxchgweak::<T, { AO::Acquire }, { AO::Acquire }>(dst, old, new)
4110            }
4111            (Acquire, SeqCst) => {
4112                intrinsics::atomic_cxchgweak::<T, { AO::Acquire }, { AO::SeqCst }>(dst, old, new)
4113            }
4114            (Release, Relaxed) => {
4115                intrinsics::atomic_cxchgweak::<T, { AO::Release }, { AO::Relaxed }>(dst, old, new)
4116            }
4117            (Release, Acquire) => {
4118                intrinsics::atomic_cxchgweak::<T, { AO::Release }, { AO::Acquire }>(dst, old, new)
4119            }
4120            (Release, SeqCst) => {
4121                intrinsics::atomic_cxchgweak::<T, { AO::Release }, { AO::SeqCst }>(dst, old, new)
4122            }
4123            (AcqRel, Relaxed) => {
4124                intrinsics::atomic_cxchgweak::<T, { AO::AcqRel }, { AO::Relaxed }>(dst, old, new)
4125            }
4126            (AcqRel, Acquire) => {
4127                intrinsics::atomic_cxchgweak::<T, { AO::AcqRel }, { AO::Acquire }>(dst, old, new)
4128            }
4129            (AcqRel, SeqCst) => {
4130                intrinsics::atomic_cxchgweak::<T, { AO::AcqRel }, { AO::SeqCst }>(dst, old, new)
4131            }
4132            (SeqCst, Relaxed) => {
4133                intrinsics::atomic_cxchgweak::<T, { AO::SeqCst }, { AO::Relaxed }>(dst, old, new)
4134            }
4135            (SeqCst, Acquire) => {
4136                intrinsics::atomic_cxchgweak::<T, { AO::SeqCst }, { AO::Acquire }>(dst, old, new)
4137            }
4138            (SeqCst, SeqCst) => {
4139                intrinsics::atomic_cxchgweak::<T, { AO::SeqCst }, { AO::SeqCst }>(dst, old, new)
4140            }
4141            (_, AcqRel) => panic!("there is no such thing as an acquire-release failure ordering"),
4142            (_, Release) => panic!("there is no such thing as a release failure ordering"),
4143        }
4144    };
4145    if ok { Ok(val) } else { Err(val) }
4146}
4147
4148#[inline]
4149#[cfg(target_has_atomic)]
4150#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4151unsafe fn atomic_and<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4152    // SAFETY: the caller must uphold the safety contract for `atomic_and`
4153    unsafe {
4154        match order {
4155            Relaxed => intrinsics::atomic_and::<T, U, { AO::Relaxed }>(dst, val),
4156            Acquire => intrinsics::atomic_and::<T, U, { AO::Acquire }>(dst, val),
4157            Release => intrinsics::atomic_and::<T, U, { AO::Release }>(dst, val),
4158            AcqRel => intrinsics::atomic_and::<T, U, { AO::AcqRel }>(dst, val),
4159            SeqCst => intrinsics::atomic_and::<T, U, { AO::SeqCst }>(dst, val),
4160        }
4161    }
4162}
4163
4164#[inline]
4165#[cfg(target_has_atomic)]
4166#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4167unsafe fn atomic_nand<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4168    // SAFETY: the caller must uphold the safety contract for `atomic_nand`
4169    unsafe {
4170        match order {
4171            Relaxed => intrinsics::atomic_nand::<T, U, { AO::Relaxed }>(dst, val),
4172            Acquire => intrinsics::atomic_nand::<T, U, { AO::Acquire }>(dst, val),
4173            Release => intrinsics::atomic_nand::<T, U, { AO::Release }>(dst, val),
4174            AcqRel => intrinsics::atomic_nand::<T, U, { AO::AcqRel }>(dst, val),
4175            SeqCst => intrinsics::atomic_nand::<T, U, { AO::SeqCst }>(dst, val),
4176        }
4177    }
4178}
4179
4180#[inline]
4181#[cfg(target_has_atomic)]
4182#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4183unsafe fn atomic_or<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4184    // SAFETY: the caller must uphold the safety contract for `atomic_or`
4185    unsafe {
4186        match order {
4187            SeqCst => intrinsics::atomic_or::<T, U, { AO::SeqCst }>(dst, val),
4188            Acquire => intrinsics::atomic_or::<T, U, { AO::Acquire }>(dst, val),
4189            Release => intrinsics::atomic_or::<T, U, { AO::Release }>(dst, val),
4190            AcqRel => intrinsics::atomic_or::<T, U, { AO::AcqRel }>(dst, val),
4191            Relaxed => intrinsics::atomic_or::<T, U, { AO::Relaxed }>(dst, val),
4192        }
4193    }
4194}
4195
4196#[inline]
4197#[cfg(target_has_atomic)]
4198#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4199unsafe fn atomic_xor<T: Copy, U: Copy>(dst: *mut T, val: U, order: Ordering) -> T {
4200    // SAFETY: the caller must uphold the safety contract for `atomic_xor`
4201    unsafe {
4202        match order {
4203            SeqCst => intrinsics::atomic_xor::<T, U, { AO::SeqCst }>(dst, val),
4204            Acquire => intrinsics::atomic_xor::<T, U, { AO::Acquire }>(dst, val),
4205            Release => intrinsics::atomic_xor::<T, U, { AO::Release }>(dst, val),
4206            AcqRel => intrinsics::atomic_xor::<T, U, { AO::AcqRel }>(dst, val),
4207            Relaxed => intrinsics::atomic_xor::<T, U, { AO::Relaxed }>(dst, val),
4208        }
4209    }
4210}
4211
4212/// Updates `*dst` to the max value of `val` and the old value (signed comparison)
4213#[inline]
4214#[cfg(target_has_atomic)]
4215#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4216unsafe fn atomic_max<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
4217    // SAFETY: the caller must uphold the safety contract for `atomic_max`
4218    unsafe {
4219        match order {
4220            Relaxed => intrinsics::atomic_max::<T, { AO::Relaxed }>(dst, val),
4221            Acquire => intrinsics::atomic_max::<T, { AO::Acquire }>(dst, val),
4222            Release => intrinsics::atomic_max::<T, { AO::Release }>(dst, val),
4223            AcqRel => intrinsics::atomic_max::<T, { AO::AcqRel }>(dst, val),
4224            SeqCst => intrinsics::atomic_max::<T, { AO::SeqCst }>(dst, val),
4225        }
4226    }
4227}
4228
4229/// Updates `*dst` to the min value of `val` and the old value (signed comparison)
4230#[inline]
4231#[cfg(target_has_atomic)]
4232#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4233unsafe fn atomic_min<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
4234    // SAFETY: the caller must uphold the safety contract for `atomic_min`
4235    unsafe {
4236        match order {
4237            Relaxed => intrinsics::atomic_min::<T, { AO::Relaxed }>(dst, val),
4238            Acquire => intrinsics::atomic_min::<T, { AO::Acquire }>(dst, val),
4239            Release => intrinsics::atomic_min::<T, { AO::Release }>(dst, val),
4240            AcqRel => intrinsics::atomic_min::<T, { AO::AcqRel }>(dst, val),
4241            SeqCst => intrinsics::atomic_min::<T, { AO::SeqCst }>(dst, val),
4242        }
4243    }
4244}
4245
4246/// Updates `*dst` to the max value of `val` and the old value (unsigned comparison)
4247#[inline]
4248#[cfg(target_has_atomic)]
4249#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4250unsafe fn atomic_umax<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
4251    // SAFETY: the caller must uphold the safety contract for `atomic_umax`
4252    unsafe {
4253        match order {
4254            Relaxed => intrinsics::atomic_umax::<T, { AO::Relaxed }>(dst, val),
4255            Acquire => intrinsics::atomic_umax::<T, { AO::Acquire }>(dst, val),
4256            Release => intrinsics::atomic_umax::<T, { AO::Release }>(dst, val),
4257            AcqRel => intrinsics::atomic_umax::<T, { AO::AcqRel }>(dst, val),
4258            SeqCst => intrinsics::atomic_umax::<T, { AO::SeqCst }>(dst, val),
4259        }
4260    }
4261}
4262
4263/// Updates `*dst` to the min value of `val` and the old value (unsigned comparison)
4264#[inline]
4265#[cfg(target_has_atomic)]
4266#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4267unsafe fn atomic_umin<T: Copy>(dst: *mut T, val: T, order: Ordering) -> T {
4268    // SAFETY: the caller must uphold the safety contract for `atomic_umin`
4269    unsafe {
4270        match order {
4271            Relaxed => intrinsics::atomic_umin::<T, { AO::Relaxed }>(dst, val),
4272            Acquire => intrinsics::atomic_umin::<T, { AO::Acquire }>(dst, val),
4273            Release => intrinsics::atomic_umin::<T, { AO::Release }>(dst, val),
4274            AcqRel => intrinsics::atomic_umin::<T, { AO::AcqRel }>(dst, val),
4275            SeqCst => intrinsics::atomic_umin::<T, { AO::SeqCst }>(dst, val),
4276        }
4277    }
4278}
4279
4280/// An atomic fence.
4281///
4282/// Fences create synchronization between themselves and atomic operations or fences in other
4283/// threads. To achieve this, a fence prevents the compiler and CPU from reordering certain types of
4284/// memory operations around it.
4285///
4286/// A fence 'A' which has (at least) [`Release`] ordering semantics, synchronizes
4287/// with a fence 'B' with (at least) [`Acquire`] semantics, if and only if there
4288/// exist operations X and Y, both operating on some atomic object 'm' such
4289/// that A is sequenced before X, Y is sequenced before B and Y observes
4290/// the change to m. This provides a happens-before dependence between A and B.
4291///
4292/// ```text
4293///     Thread 1                                          Thread 2
4294///
4295/// fence(Release);      A --------------
4296/// m.store(3, Relaxed); X ---------    |
4297///                                |    |
4298///                                |    |
4299///                                -------------> Y  if m.load(Relaxed) == 3 {
4300///                                     |-------> B      fence(Acquire);
4301///                                                      ...
4302///                                                  }
4303/// ```
4304///
4305/// Note that in the example above, it is crucial that the accesses to `m` are atomic. Fences cannot
4306/// be used to establish synchronization among non-atomic accesses in different threads. However,
4307/// thanks to the happens-before relationship between A and B, any non-atomic accesses that
4308/// happen-before A are now also properly synchronized with any non-atomic accesses that
4309/// happen-after B.
4310///
4311/// Atomic operations with [`Release`] or [`Acquire`] semantics can also synchronize
4312/// with a fence.
4313///
4314/// A fence which has [`SeqCst`] ordering, in addition to having both [`Acquire`]
4315/// and [`Release`] semantics, participates in the global program order of the
4316/// other [`SeqCst`] operations and/or fences.
4317///
4318/// Accepts [`Acquire`], [`Release`], [`AcqRel`] and [`SeqCst`] orderings.
4319///
4320/// # Panics
4321///
4322/// Panics if `order` is [`Relaxed`].
4323///
4324/// # Examples
4325///
4326/// ```
4327/// use std::sync::atomic::AtomicBool;
4328/// use std::sync::atomic::fence;
4329/// use std::sync::atomic::Ordering;
4330///
4331/// // A mutual exclusion primitive based on spinlock.
4332/// pub struct Mutex {
4333///     flag: AtomicBool,
4334/// }
4335///
4336/// impl Mutex {
4337///     pub fn new() -> Mutex {
4338///         Mutex {
4339///             flag: AtomicBool::new(false),
4340///         }
4341///     }
4342///
4343///     pub fn lock(&self) {
4344///         // Wait until the old value is `false`.
4345///         while self
4346///             .flag
4347///             .compare_exchange_weak(false, true, Ordering::Relaxed, Ordering::Relaxed)
4348///             .is_err()
4349///         {}
4350///         // This fence synchronizes-with store in `unlock`.
4351///         fence(Ordering::Acquire);
4352///     }
4353///
4354///     pub fn unlock(&self) {
4355///         self.flag.store(false, Ordering::Release);
4356///     }
4357/// }
4358/// ```
4359#[inline]
4360#[stable(feature = "rust1", since = "1.0.0")]
4361#[rustc_diagnostic_item = "fence"]
4362#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4363pub fn fence(order: Ordering) {
4364    // SAFETY: using an atomic fence is safe.
4365    unsafe {
4366        match order {
4367            Acquire => intrinsics::atomic_fence::<{ AO::Acquire }>(),
4368            Release => intrinsics::atomic_fence::<{ AO::Release }>(),
4369            AcqRel => intrinsics::atomic_fence::<{ AO::AcqRel }>(),
4370            SeqCst => intrinsics::atomic_fence::<{ AO::SeqCst }>(),
4371            Relaxed => panic!("there is no such thing as a relaxed fence"),
4372        }
4373    }
4374}
4375
4376/// A "compiler-only" atomic fence.
4377///
4378/// Like [`fence`], this function establishes synchronization with other atomic operations and
4379/// fences. However, unlike [`fence`], `compiler_fence` only establishes synchronization with
4380/// operations *in the same thread*. This may at first sound rather useless, since code within a
4381/// thread is typically already totally ordered and does not need any further synchronization.
4382/// However, there are cases where code can run on the same thread without being ordered:
4383/// - The most common case is that of a *signal handler*: a signal handler runs in the same thread
4384///   as the code it interrupted, but it is not ordered with respect to that code. `compiler_fence`
4385///   can be used to establish synchronization between a thread and its signal handler, the same way
4386///   that `fence` can be used to establish synchronization across threads.
4387/// - Similar situations can arise in embedded programming with interrupt handlers, or in custom
4388///   implementations of preemptive green threads. In general, `compiler_fence` can establish
4389///   synchronization with code that is guaranteed to run on the same hardware CPU.
4390///
4391/// See [`fence`] for how a fence can be used to achieve synchronization. Note that just like
4392/// [`fence`], synchronization still requires atomic operations to be used in both threads -- it is
4393/// not possible to perform synchronization entirely with fences and non-atomic operations.
4394///
4395/// `compiler_fence` does not emit any machine code, but restricts the kinds of memory re-ordering
4396/// the compiler is allowed to do. `compiler_fence` corresponds to [`atomic_signal_fence`] in C and
4397/// C++.
4398///
4399/// [`atomic_signal_fence`]: https://en.cppreference.com/w/cpp/atomic/atomic_signal_fence
4400///
4401/// # Panics
4402///
4403/// Panics if `order` is [`Relaxed`].
4404///
4405/// # Examples
4406///
4407/// Without the two `compiler_fence` calls, the read of `IMPORTANT_VARIABLE` in `signal_handler`
4408/// is *undefined behavior* due to a data race, despite everything happening in a single thread.
4409/// This is because the signal handler is considered to run concurrently with its associated
4410/// thread, and explicit synchronization is required to pass data between a thread and its
4411/// signal handler. The code below uses two `compiler_fence` calls to establish the usual
4412/// release-acquire synchronization pattern (see [`fence`] for an image).
4413///
4414/// ```
4415/// use std::sync::atomic::AtomicBool;
4416/// use std::sync::atomic::Ordering;
4417/// use std::sync::atomic::compiler_fence;
4418///
4419/// static mut IMPORTANT_VARIABLE: usize = 0;
4420/// static IS_READY: AtomicBool = AtomicBool::new(false);
4421///
4422/// fn main() {
4423///     unsafe { IMPORTANT_VARIABLE = 42 };
4424///     // Marks earlier writes as being released with future relaxed stores.
4425///     compiler_fence(Ordering::Release);
4426///     IS_READY.store(true, Ordering::Relaxed);
4427/// }
4428///
4429/// fn signal_handler() {
4430///     if IS_READY.load(Ordering::Relaxed) {
4431///         // Acquires writes that were released with relaxed stores that we read from.
4432///         compiler_fence(Ordering::Acquire);
4433///         assert_eq!(unsafe { IMPORTANT_VARIABLE }, 42);
4434///     }
4435/// }
4436/// ```
4437#[inline]
4438#[stable(feature = "compiler_fences", since = "1.21.0")]
4439#[rustc_diagnostic_item = "compiler_fence"]
4440#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
4441pub fn compiler_fence(order: Ordering) {
4442    // SAFETY: using an atomic fence is safe.
4443    unsafe {
4444        match order {
4445            Acquire => intrinsics::atomic_singlethreadfence::<{ AO::Acquire }>(),
4446            Release => intrinsics::atomic_singlethreadfence::<{ AO::Release }>(),
4447            AcqRel => intrinsics::atomic_singlethreadfence::<{ AO::AcqRel }>(),
4448            SeqCst => intrinsics::atomic_singlethreadfence::<{ AO::SeqCst }>(),
4449            Relaxed => panic!("there is no such thing as a relaxed fence"),
4450        }
4451    }
4452}
4453
4454#[cfg(target_has_atomic_load_store = "8")]
4455#[stable(feature = "atomic_debug", since = "1.3.0")]
4456impl fmt::Debug for AtomicBool {
4457    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4458        fmt::Debug::fmt(&self.load(Ordering::Relaxed), f)
4459    }
4460}
4461
4462#[cfg(target_has_atomic_load_store = "ptr")]
4463#[stable(feature = "atomic_debug", since = "1.3.0")]
4464impl<T> fmt::Debug for AtomicPtr<T> {
4465    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4466        fmt::Debug::fmt(&self.load(Ordering::Relaxed), f)
4467    }
4468}
4469
4470#[cfg(target_has_atomic_load_store = "ptr")]
4471#[stable(feature = "atomic_pointer", since = "1.24.0")]
4472impl<T> fmt::Pointer for AtomicPtr<T> {
4473    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4474        fmt::Pointer::fmt(&self.load(Ordering::Relaxed), f)
4475    }
4476}
4477
4478/// Signals the processor that it is inside a busy-wait spin-loop ("spin lock").
4479///
4480/// This function is deprecated in favor of [`hint::spin_loop`].
4481///
4482/// [`hint::spin_loop`]: crate::hint::spin_loop
4483#[inline]
4484#[stable(feature = "spin_loop_hint", since = "1.24.0")]
4485#[deprecated(since = "1.51.0", note = "use hint::spin_loop instead")]
4486pub fn spin_loop_hint() {
4487    spin_loop()
4488}