core/str/
mod.rs

1//! String manipulation.
2//!
3//! For more details, see the [`std::str`] module.
4//!
5//! [`std::str`]: ../../std/str/index.html
6
7#![stable(feature = "rust1", since = "1.0.0")]
8
9mod converts;
10mod count;
11mod error;
12mod iter;
13mod traits;
14mod validations;
15
16use self::pattern::{DoubleEndedSearcher, Pattern, ReverseSearcher, Searcher};
17use crate::char::{self, EscapeDebugExtArgs};
18use crate::ops::Range;
19use crate::slice::{self, SliceIndex};
20use crate::ub_checks::assert_unsafe_precondition;
21use crate::{ascii, mem};
22
23pub mod pattern;
24
25mod lossy;
26#[unstable(feature = "str_from_raw_parts", issue = "119206")]
27pub use converts::{from_raw_parts, from_raw_parts_mut};
28#[stable(feature = "rust1", since = "1.0.0")]
29pub use converts::{from_utf8, from_utf8_unchecked};
30#[stable(feature = "str_mut_extras", since = "1.20.0")]
31pub use converts::{from_utf8_mut, from_utf8_unchecked_mut};
32#[stable(feature = "rust1", since = "1.0.0")]
33pub use error::{ParseBoolError, Utf8Error};
34#[stable(feature = "encode_utf16", since = "1.8.0")]
35pub use iter::EncodeUtf16;
36#[stable(feature = "rust1", since = "1.0.0")]
37#[allow(deprecated)]
38pub use iter::LinesAny;
39#[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
40pub use iter::SplitAsciiWhitespace;
41#[stable(feature = "split_inclusive", since = "1.51.0")]
42pub use iter::SplitInclusive;
43#[stable(feature = "rust1", since = "1.0.0")]
44pub use iter::{Bytes, CharIndices, Chars, Lines, SplitWhitespace};
45#[stable(feature = "str_escape", since = "1.34.0")]
46pub use iter::{EscapeDebug, EscapeDefault, EscapeUnicode};
47#[stable(feature = "str_match_indices", since = "1.5.0")]
48pub use iter::{MatchIndices, RMatchIndices};
49use iter::{MatchIndicesInternal, MatchesInternal, SplitInternal, SplitNInternal};
50#[stable(feature = "str_matches", since = "1.2.0")]
51pub use iter::{Matches, RMatches};
52#[stable(feature = "rust1", since = "1.0.0")]
53pub use iter::{RSplit, RSplitTerminator, Split, SplitTerminator};
54#[stable(feature = "rust1", since = "1.0.0")]
55pub use iter::{RSplitN, SplitN};
56#[stable(feature = "utf8_chunks", since = "1.79.0")]
57pub use lossy::{Utf8Chunk, Utf8Chunks};
58#[stable(feature = "rust1", since = "1.0.0")]
59pub use traits::FromStr;
60#[unstable(feature = "str_internals", issue = "none")]
61pub use validations::{next_code_point, utf8_char_width};
62
63#[inline(never)]
64#[cold]
65#[track_caller]
66#[rustc_allow_const_fn_unstable(const_eval_select)]
67#[cfg(not(feature = "panic_immediate_abort"))]
68const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
69    crate::intrinsics::const_eval_select((s, begin, end), slice_error_fail_ct, slice_error_fail_rt)
70}
71
72#[cfg(feature = "panic_immediate_abort")]
73const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
74    slice_error_fail_ct(s, begin, end)
75}
76
77#[track_caller]
78const fn slice_error_fail_ct(_: &str, _: usize, _: usize) -> ! {
79    panic!("failed to slice string");
80}
81
82#[track_caller]
83fn slice_error_fail_rt(s: &str, begin: usize, end: usize) -> ! {
84    const MAX_DISPLAY_LENGTH: usize = 256;
85    let trunc_len = s.floor_char_boundary(MAX_DISPLAY_LENGTH);
86    let s_trunc = &s[..trunc_len];
87    let ellipsis = if trunc_len < s.len() { "[...]" } else { "" };
88
89    // 1. out of bounds
90    if begin > s.len() || end > s.len() {
91        let oob_index = if begin > s.len() { begin } else { end };
92        panic!("byte index {oob_index} is out of bounds of `{s_trunc}`{ellipsis}");
93    }
94
95    // 2. begin <= end
96    assert!(
97        begin <= end,
98        "begin <= end ({} <= {}) when slicing `{}`{}",
99        begin,
100        end,
101        s_trunc,
102        ellipsis
103    );
104
105    // 3. character boundary
106    let index = if !s.is_char_boundary(begin) { begin } else { end };
107    // find the character
108    let char_start = s.floor_char_boundary(index);
109    // `char_start` must be less than len and a char boundary
110    let ch = s[char_start..].chars().next().unwrap();
111    let char_range = char_start..char_start + ch.len_utf8();
112    panic!(
113        "byte index {} is not a char boundary; it is inside {:?} (bytes {:?}) of `{}`{}",
114        index, ch, char_range, s_trunc, ellipsis
115    );
116}
117
118impl str {
119    /// Returns the length of `self`.
120    ///
121    /// This length is in bytes, not [`char`]s or graphemes. In other words,
122    /// it might not be what a human considers the length of the string.
123    ///
124    /// [`char`]: prim@char
125    ///
126    /// # Examples
127    ///
128    /// ```
129    /// let len = "foo".len();
130    /// assert_eq!(3, len);
131    ///
132    /// assert_eq!("ƒoo".len(), 4); // fancy f!
133    /// assert_eq!("ƒoo".chars().count(), 3);
134    /// ```
135    #[stable(feature = "rust1", since = "1.0.0")]
136    #[rustc_const_stable(feature = "const_str_len", since = "1.39.0")]
137    #[rustc_diagnostic_item = "str_len"]
138    #[rustc_no_implicit_autorefs]
139    #[must_use]
140    #[inline]
141    pub const fn len(&self) -> usize {
142        self.as_bytes().len()
143    }
144
145    /// Returns `true` if `self` has a length of zero bytes.
146    ///
147    /// # Examples
148    ///
149    /// ```
150    /// let s = "";
151    /// assert!(s.is_empty());
152    ///
153    /// let s = "not empty";
154    /// assert!(!s.is_empty());
155    /// ```
156    #[stable(feature = "rust1", since = "1.0.0")]
157    #[rustc_const_stable(feature = "const_str_is_empty", since = "1.39.0")]
158    #[rustc_no_implicit_autorefs]
159    #[must_use]
160    #[inline]
161    pub const fn is_empty(&self) -> bool {
162        self.len() == 0
163    }
164
165    /// Converts a slice of bytes to a string slice.
166    ///
167    /// A string slice ([`&str`]) is made of bytes ([`u8`]), and a byte slice
168    /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts between
169    /// the two. Not all byte slices are valid string slices, however: [`&str`] requires
170    /// that it is valid UTF-8. `from_utf8()` checks to ensure that the bytes are valid
171    /// UTF-8, and then does the conversion.
172    ///
173    /// [`&str`]: str
174    /// [byteslice]: prim@slice
175    ///
176    /// If you are sure that the byte slice is valid UTF-8, and you don't want to
177    /// incur the overhead of the validity check, there is an unsafe version of
178    /// this function, [`from_utf8_unchecked`], which has the same
179    /// behavior but skips the check.
180    ///
181    /// If you need a `String` instead of a `&str`, consider
182    /// [`String::from_utf8`][string].
183    ///
184    /// [string]: ../std/string/struct.String.html#method.from_utf8
185    ///
186    /// Because you can stack-allocate a `[u8; N]`, and you can take a
187    /// [`&[u8]`][byteslice] of it, this function is one way to have a
188    /// stack-allocated string. There is an example of this in the
189    /// examples section below.
190    ///
191    /// [byteslice]: slice
192    ///
193    /// # Errors
194    ///
195    /// Returns `Err` if the slice is not UTF-8 with a description as to why the
196    /// provided slice is not UTF-8.
197    ///
198    /// # Examples
199    ///
200    /// Basic usage:
201    ///
202    /// ```
203    /// // some bytes, in a vector
204    /// let sparkle_heart = vec![240, 159, 146, 150];
205    ///
206    /// // We can use the ? (try) operator to check if the bytes are valid
207    /// let sparkle_heart = str::from_utf8(&sparkle_heart)?;
208    ///
209    /// assert_eq!("💖", sparkle_heart);
210    /// # Ok::<_, std::str::Utf8Error>(())
211    /// ```
212    ///
213    /// Incorrect bytes:
214    ///
215    /// ```
216    /// // some invalid bytes, in a vector
217    /// let sparkle_heart = vec![0, 159, 146, 150];
218    ///
219    /// assert!(str::from_utf8(&sparkle_heart).is_err());
220    /// ```
221    ///
222    /// See the docs for [`Utf8Error`] for more details on the kinds of
223    /// errors that can be returned.
224    ///
225    /// A "stack allocated string":
226    ///
227    /// ```
228    /// // some bytes, in a stack-allocated array
229    /// let sparkle_heart = [240, 159, 146, 150];
230    ///
231    /// // We know these bytes are valid, so just use `unwrap()`.
232    /// let sparkle_heart: &str = str::from_utf8(&sparkle_heart).unwrap();
233    ///
234    /// assert_eq!("💖", sparkle_heart);
235    /// ```
236    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
237    #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
238    #[rustc_diagnostic_item = "str_inherent_from_utf8"]
239    pub const fn from_utf8(v: &[u8]) -> Result<&str, Utf8Error> {
240        converts::from_utf8(v)
241    }
242
243    /// Converts a mutable slice of bytes to a mutable string slice.
244    ///
245    /// # Examples
246    ///
247    /// Basic usage:
248    ///
249    /// ```
250    /// // "Hello, Rust!" as a mutable vector
251    /// let mut hellorust = vec![72, 101, 108, 108, 111, 44, 32, 82, 117, 115, 116, 33];
252    ///
253    /// // As we know these bytes are valid, we can use `unwrap()`
254    /// let outstr = str::from_utf8_mut(&mut hellorust).unwrap();
255    ///
256    /// assert_eq!("Hello, Rust!", outstr);
257    /// ```
258    ///
259    /// Incorrect bytes:
260    ///
261    /// ```
262    /// // Some invalid bytes in a mutable vector
263    /// let mut invalid = vec![128, 223];
264    ///
265    /// assert!(str::from_utf8_mut(&mut invalid).is_err());
266    /// ```
267    /// See the docs for [`Utf8Error`] for more details on the kinds of
268    /// errors that can be returned.
269    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
270    #[rustc_const_stable(feature = "const_str_from_utf8", since = "1.87.0")]
271    #[rustc_diagnostic_item = "str_inherent_from_utf8_mut"]
272    pub const fn from_utf8_mut(v: &mut [u8]) -> Result<&mut str, Utf8Error> {
273        converts::from_utf8_mut(v)
274    }
275
276    /// Converts a slice of bytes to a string slice without checking
277    /// that the string contains valid UTF-8.
278    ///
279    /// See the safe version, [`from_utf8`], for more information.
280    ///
281    /// # Safety
282    ///
283    /// The bytes passed in must be valid UTF-8.
284    ///
285    /// # Examples
286    ///
287    /// Basic usage:
288    ///
289    /// ```
290    /// // some bytes, in a vector
291    /// let sparkle_heart = vec![240, 159, 146, 150];
292    ///
293    /// let sparkle_heart = unsafe {
294    ///     str::from_utf8_unchecked(&sparkle_heart)
295    /// };
296    ///
297    /// assert_eq!("💖", sparkle_heart);
298    /// ```
299    #[inline]
300    #[must_use]
301    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
302    #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
303    #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked"]
304    pub const unsafe fn from_utf8_unchecked(v: &[u8]) -> &str {
305        // SAFETY: converts::from_utf8_unchecked has the same safety requirements as this function.
306        unsafe { converts::from_utf8_unchecked(v) }
307    }
308
309    /// Converts a slice of bytes to a string slice without checking
310    /// that the string contains valid UTF-8; mutable version.
311    ///
312    /// See the immutable version, [`from_utf8_unchecked()`] for documentation and safety requirements.
313    ///
314    /// # Examples
315    ///
316    /// Basic usage:
317    ///
318    /// ```
319    /// let mut heart = vec![240, 159, 146, 150];
320    /// let heart = unsafe { str::from_utf8_unchecked_mut(&mut heart) };
321    ///
322    /// assert_eq!("💖", heart);
323    /// ```
324    #[inline]
325    #[must_use]
326    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
327    #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
328    #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked_mut"]
329    pub const unsafe fn from_utf8_unchecked_mut(v: &mut [u8]) -> &mut str {
330        // SAFETY: converts::from_utf8_unchecked_mut has the same safety requirements as this function.
331        unsafe { converts::from_utf8_unchecked_mut(v) }
332    }
333
334    /// Checks that `index`-th byte is the first byte in a UTF-8 code point
335    /// sequence or the end of the string.
336    ///
337    /// The start and end of the string (when `index == self.len()`) are
338    /// considered to be boundaries.
339    ///
340    /// Returns `false` if `index` is greater than `self.len()`.
341    ///
342    /// # Examples
343    ///
344    /// ```
345    /// let s = "Löwe 老虎 Léopard";
346    /// assert!(s.is_char_boundary(0));
347    /// // start of `老`
348    /// assert!(s.is_char_boundary(6));
349    /// assert!(s.is_char_boundary(s.len()));
350    ///
351    /// // second byte of `ö`
352    /// assert!(!s.is_char_boundary(2));
353    ///
354    /// // third byte of `老`
355    /// assert!(!s.is_char_boundary(8));
356    /// ```
357    #[must_use]
358    #[stable(feature = "is_char_boundary", since = "1.9.0")]
359    #[rustc_const_stable(feature = "const_is_char_boundary", since = "1.86.0")]
360    #[inline]
361    pub const fn is_char_boundary(&self, index: usize) -> bool {
362        // 0 is always ok.
363        // Test for 0 explicitly so that it can optimize out the check
364        // easily and skip reading string data for that case.
365        // Note that optimizing `self.get(..index)` relies on this.
366        if index == 0 {
367            return true;
368        }
369
370        if index >= self.len() {
371            // For `true` we have two options:
372            //
373            // - index == self.len()
374            //   Empty strings are valid, so return true
375            // - index > self.len()
376            //   In this case return false
377            //
378            // The check is placed exactly here, because it improves generated
379            // code on higher opt-levels. See PR #84751 for more details.
380            index == self.len()
381        } else {
382            self.as_bytes()[index].is_utf8_char_boundary()
383        }
384    }
385
386    /// Finds the closest `x` not exceeding `index` where [`is_char_boundary(x)`] is `true`.
387    ///
388    /// This method can help you truncate a string so that it's still valid UTF-8, but doesn't
389    /// exceed a given number of bytes. Note that this is done purely at the character level
390    /// and can still visually split graphemes, even though the underlying characters aren't
391    /// split. For example, the emoji 🧑‍🔬 (scientist) could be split so that the string only
392    /// includes 🧑 (person) instead.
393    ///
394    /// [`is_char_boundary(x)`]: Self::is_char_boundary
395    ///
396    /// # Examples
397    ///
398    /// ```
399    /// #![feature(round_char_boundary)]
400    /// let s = "❤️🧡💛💚💙💜";
401    /// assert_eq!(s.len(), 26);
402    /// assert!(!s.is_char_boundary(13));
403    ///
404    /// let closest = s.floor_char_boundary(13);
405    /// assert_eq!(closest, 10);
406    /// assert_eq!(&s[..closest], "❤️🧡");
407    /// ```
408    #[unstable(feature = "round_char_boundary", issue = "93743")]
409    #[inline]
410    pub const fn floor_char_boundary(&self, index: usize) -> usize {
411        if index >= self.len() {
412            self.len()
413        } else {
414            let mut i = index;
415            while i > 0 {
416                if self.as_bytes()[i].is_utf8_char_boundary() {
417                    break;
418                }
419                i -= 1;
420            }
421
422            //  The character boundary will be within four bytes of the index
423            debug_assert!(i >= index.saturating_sub(3));
424
425            i
426        }
427    }
428
429    /// Finds the closest `x` not below `index` where [`is_char_boundary(x)`] is `true`.
430    ///
431    /// If `index` is greater than the length of the string, this returns the length of the string.
432    ///
433    /// This method is the natural complement to [`floor_char_boundary`]. See that method
434    /// for more details.
435    ///
436    /// [`floor_char_boundary`]: str::floor_char_boundary
437    /// [`is_char_boundary(x)`]: Self::is_char_boundary
438    ///
439    /// # Examples
440    ///
441    /// ```
442    /// #![feature(round_char_boundary)]
443    /// let s = "❤️🧡💛💚💙💜";
444    /// assert_eq!(s.len(), 26);
445    /// assert!(!s.is_char_boundary(13));
446    ///
447    /// let closest = s.ceil_char_boundary(13);
448    /// assert_eq!(closest, 14);
449    /// assert_eq!(&s[..closest], "❤️🧡💛");
450    /// ```
451    #[unstable(feature = "round_char_boundary", issue = "93743")]
452    #[inline]
453    pub const fn ceil_char_boundary(&self, index: usize) -> usize {
454        if index >= self.len() {
455            self.len()
456        } else {
457            let mut i = index;
458            while i < self.len() {
459                if self.as_bytes()[i].is_utf8_char_boundary() {
460                    break;
461                }
462                i += 1;
463            }
464
465            //  The character boundary will be within four bytes of the index
466            debug_assert!(i <= index + 3);
467
468            i
469        }
470    }
471
472    /// Converts a string slice to a byte slice. To convert the byte slice back
473    /// into a string slice, use the [`from_utf8`] function.
474    ///
475    /// # Examples
476    ///
477    /// ```
478    /// let bytes = "bors".as_bytes();
479    /// assert_eq!(b"bors", bytes);
480    /// ```
481    #[stable(feature = "rust1", since = "1.0.0")]
482    #[rustc_const_stable(feature = "str_as_bytes", since = "1.39.0")]
483    #[must_use]
484    #[inline(always)]
485    #[allow(unused_attributes)]
486    pub const fn as_bytes(&self) -> &[u8] {
487        // SAFETY: const sound because we transmute two types with the same layout
488        unsafe { mem::transmute(self) }
489    }
490
491    /// Converts a mutable string slice to a mutable byte slice.
492    ///
493    /// # Safety
494    ///
495    /// The caller must ensure that the content of the slice is valid UTF-8
496    /// before the borrow ends and the underlying `str` is used.
497    ///
498    /// Use of a `str` whose contents are not valid UTF-8 is undefined behavior.
499    ///
500    /// # Examples
501    ///
502    /// Basic usage:
503    ///
504    /// ```
505    /// let mut s = String::from("Hello");
506    /// let bytes = unsafe { s.as_bytes_mut() };
507    ///
508    /// assert_eq!(b"Hello", bytes);
509    /// ```
510    ///
511    /// Mutability:
512    ///
513    /// ```
514    /// let mut s = String::from("🗻∈🌏");
515    ///
516    /// unsafe {
517    ///     let bytes = s.as_bytes_mut();
518    ///
519    ///     bytes[0] = 0xF0;
520    ///     bytes[1] = 0x9F;
521    ///     bytes[2] = 0x8D;
522    ///     bytes[3] = 0x94;
523    /// }
524    ///
525    /// assert_eq!("🍔∈🌏", s);
526    /// ```
527    #[stable(feature = "str_mut_extras", since = "1.20.0")]
528    #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
529    #[must_use]
530    #[inline(always)]
531    pub const unsafe fn as_bytes_mut(&mut self) -> &mut [u8] {
532        // SAFETY: the cast from `&str` to `&[u8]` is safe since `str`
533        // has the same layout as `&[u8]` (only std can make this guarantee).
534        // The pointer dereference is safe since it comes from a mutable reference which
535        // is guaranteed to be valid for writes.
536        unsafe { &mut *(self as *mut str as *mut [u8]) }
537    }
538
539    /// Converts a string slice to a raw pointer.
540    ///
541    /// As string slices are a slice of bytes, the raw pointer points to a
542    /// [`u8`]. This pointer will be pointing to the first byte of the string
543    /// slice.
544    ///
545    /// The caller must ensure that the returned pointer is never written to.
546    /// If you need to mutate the contents of the string slice, use [`as_mut_ptr`].
547    ///
548    /// [`as_mut_ptr`]: str::as_mut_ptr
549    ///
550    /// # Examples
551    ///
552    /// ```
553    /// let s = "Hello";
554    /// let ptr = s.as_ptr();
555    /// ```
556    #[stable(feature = "rust1", since = "1.0.0")]
557    #[rustc_const_stable(feature = "rustc_str_as_ptr", since = "1.32.0")]
558    #[rustc_never_returns_null_ptr]
559    #[rustc_as_ptr]
560    #[must_use]
561    #[inline(always)]
562    pub const fn as_ptr(&self) -> *const u8 {
563        self as *const str as *const u8
564    }
565
566    /// Converts a mutable string slice to a raw pointer.
567    ///
568    /// As string slices are a slice of bytes, the raw pointer points to a
569    /// [`u8`]. This pointer will be pointing to the first byte of the string
570    /// slice.
571    ///
572    /// It is your responsibility to make sure that the string slice only gets
573    /// modified in a way that it remains valid UTF-8.
574    #[stable(feature = "str_as_mut_ptr", since = "1.36.0")]
575    #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
576    #[rustc_never_returns_null_ptr]
577    #[rustc_as_ptr]
578    #[must_use]
579    #[inline(always)]
580    pub const fn as_mut_ptr(&mut self) -> *mut u8 {
581        self as *mut str as *mut u8
582    }
583
584    /// Returns a subslice of `str`.
585    ///
586    /// This is the non-panicking alternative to indexing the `str`. Returns
587    /// [`None`] whenever equivalent indexing operation would panic.
588    ///
589    /// # Examples
590    ///
591    /// ```
592    /// let v = String::from("🗻∈🌏");
593    ///
594    /// assert_eq!(Some("🗻"), v.get(0..4));
595    ///
596    /// // indices not on UTF-8 sequence boundaries
597    /// assert!(v.get(1..).is_none());
598    /// assert!(v.get(..8).is_none());
599    ///
600    /// // out of bounds
601    /// assert!(v.get(..42).is_none());
602    /// ```
603    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
604    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
605    #[inline]
606    pub const fn get<I: [const] SliceIndex<str>>(&self, i: I) -> Option<&I::Output> {
607        i.get(self)
608    }
609
610    /// Returns a mutable subslice of `str`.
611    ///
612    /// This is the non-panicking alternative to indexing the `str`. Returns
613    /// [`None`] whenever equivalent indexing operation would panic.
614    ///
615    /// # Examples
616    ///
617    /// ```
618    /// let mut v = String::from("hello");
619    /// // correct length
620    /// assert!(v.get_mut(0..5).is_some());
621    /// // out of bounds
622    /// assert!(v.get_mut(..42).is_none());
623    /// assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v));
624    ///
625    /// assert_eq!("hello", v);
626    /// {
627    ///     let s = v.get_mut(0..2);
628    ///     let s = s.map(|s| {
629    ///         s.make_ascii_uppercase();
630    ///         &*s
631    ///     });
632    ///     assert_eq!(Some("HE"), s);
633    /// }
634    /// assert_eq!("HEllo", v);
635    /// ```
636    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
637    #[rustc_const_unstable(feature = "const_index", issue = "143775")]
638    #[inline]
639    pub const fn get_mut<I: [const] SliceIndex<str>>(&mut self, i: I) -> Option<&mut I::Output> {
640        i.get_mut(self)
641    }
642
643    /// Returns an unchecked subslice of `str`.
644    ///
645    /// This is the unchecked alternative to indexing the `str`.
646    ///
647    /// # Safety
648    ///
649    /// Callers of this function are responsible that these preconditions are
650    /// satisfied:
651    ///
652    /// * The starting index must not exceed the ending index;
653    /// * Indexes must be within bounds of the original slice;
654    /// * Indexes must lie on UTF-8 sequence boundaries.
655    ///
656    /// Failing that, the returned string slice may reference invalid memory or
657    /// violate the invariants communicated by the `str` type.
658    ///
659    /// # Examples
660    ///
661    /// ```
662    /// let v = "🗻∈🌏";
663    /// unsafe {
664    ///     assert_eq!("🗻", v.get_unchecked(0..4));
665    ///     assert_eq!("∈", v.get_unchecked(4..7));
666    ///     assert_eq!("🌏", v.get_unchecked(7..11));
667    /// }
668    /// ```
669    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
670    #[inline]
671    pub unsafe fn get_unchecked<I: SliceIndex<str>>(&self, i: I) -> &I::Output {
672        // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
673        // the slice is dereferenceable because `self` is a safe reference.
674        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
675        unsafe { &*i.get_unchecked(self) }
676    }
677
678    /// Returns a mutable, unchecked subslice of `str`.
679    ///
680    /// This is the unchecked alternative to indexing the `str`.
681    ///
682    /// # Safety
683    ///
684    /// Callers of this function are responsible that these preconditions are
685    /// satisfied:
686    ///
687    /// * The starting index must not exceed the ending index;
688    /// * Indexes must be within bounds of the original slice;
689    /// * Indexes must lie on UTF-8 sequence boundaries.
690    ///
691    /// Failing that, the returned string slice may reference invalid memory or
692    /// violate the invariants communicated by the `str` type.
693    ///
694    /// # Examples
695    ///
696    /// ```
697    /// let mut v = String::from("🗻∈🌏");
698    /// unsafe {
699    ///     assert_eq!("🗻", v.get_unchecked_mut(0..4));
700    ///     assert_eq!("∈", v.get_unchecked_mut(4..7));
701    ///     assert_eq!("🌏", v.get_unchecked_mut(7..11));
702    /// }
703    /// ```
704    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
705    #[inline]
706    pub unsafe fn get_unchecked_mut<I: SliceIndex<str>>(&mut self, i: I) -> &mut I::Output {
707        // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
708        // the slice is dereferenceable because `self` is a safe reference.
709        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
710        unsafe { &mut *i.get_unchecked_mut(self) }
711    }
712
713    /// Creates a string slice from another string slice, bypassing safety
714    /// checks.
715    ///
716    /// This is generally not recommended, use with caution! For a safe
717    /// alternative see [`str`] and [`Index`].
718    ///
719    /// [`Index`]: crate::ops::Index
720    ///
721    /// This new slice goes from `begin` to `end`, including `begin` but
722    /// excluding `end`.
723    ///
724    /// To get a mutable string slice instead, see the
725    /// [`slice_mut_unchecked`] method.
726    ///
727    /// [`slice_mut_unchecked`]: str::slice_mut_unchecked
728    ///
729    /// # Safety
730    ///
731    /// Callers of this function are responsible that three preconditions are
732    /// satisfied:
733    ///
734    /// * `begin` must not exceed `end`.
735    /// * `begin` and `end` must be byte positions within the string slice.
736    /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
737    ///
738    /// # Examples
739    ///
740    /// ```
741    /// let s = "Löwe 老虎 Léopard";
742    ///
743    /// unsafe {
744    ///     assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
745    /// }
746    ///
747    /// let s = "Hello, world!";
748    ///
749    /// unsafe {
750    ///     assert_eq!("world", s.slice_unchecked(7, 12));
751    /// }
752    /// ```
753    #[stable(feature = "rust1", since = "1.0.0")]
754    #[deprecated(since = "1.29.0", note = "use `get_unchecked(begin..end)` instead")]
755    #[must_use]
756    #[inline]
757    pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str {
758        // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
759        // the slice is dereferenceable because `self` is a safe reference.
760        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
761        unsafe { &*(begin..end).get_unchecked(self) }
762    }
763
764    /// Creates a string slice from another string slice, bypassing safety
765    /// checks.
766    ///
767    /// This is generally not recommended, use with caution! For a safe
768    /// alternative see [`str`] and [`IndexMut`].
769    ///
770    /// [`IndexMut`]: crate::ops::IndexMut
771    ///
772    /// This new slice goes from `begin` to `end`, including `begin` but
773    /// excluding `end`.
774    ///
775    /// To get an immutable string slice instead, see the
776    /// [`slice_unchecked`] method.
777    ///
778    /// [`slice_unchecked`]: str::slice_unchecked
779    ///
780    /// # Safety
781    ///
782    /// Callers of this function are responsible that three preconditions are
783    /// satisfied:
784    ///
785    /// * `begin` must not exceed `end`.
786    /// * `begin` and `end` must be byte positions within the string slice.
787    /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
788    #[stable(feature = "str_slice_mut", since = "1.5.0")]
789    #[deprecated(since = "1.29.0", note = "use `get_unchecked_mut(begin..end)` instead")]
790    #[inline]
791    pub unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str {
792        // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
793        // the slice is dereferenceable because `self` is a safe reference.
794        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
795        unsafe { &mut *(begin..end).get_unchecked_mut(self) }
796    }
797
798    /// Divides one string slice into two at an index.
799    ///
800    /// The argument, `mid`, should be a byte offset from the start of the
801    /// string. It must also be on the boundary of a UTF-8 code point.
802    ///
803    /// The two slices returned go from the start of the string slice to `mid`,
804    /// and from `mid` to the end of the string slice.
805    ///
806    /// To get mutable string slices instead, see the [`split_at_mut`]
807    /// method.
808    ///
809    /// [`split_at_mut`]: str::split_at_mut
810    ///
811    /// # Panics
812    ///
813    /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
814    /// the end of the last code point of the string slice.  For a non-panicking
815    /// alternative see [`split_at_checked`](str::split_at_checked).
816    ///
817    /// # Examples
818    ///
819    /// ```
820    /// let s = "Per Martin-Löf";
821    ///
822    /// let (first, last) = s.split_at(3);
823    ///
824    /// assert_eq!("Per", first);
825    /// assert_eq!(" Martin-Löf", last);
826    /// ```
827    #[inline]
828    #[must_use]
829    #[stable(feature = "str_split_at", since = "1.4.0")]
830    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
831    pub const fn split_at(&self, mid: usize) -> (&str, &str) {
832        match self.split_at_checked(mid) {
833            None => slice_error_fail(self, 0, mid),
834            Some(pair) => pair,
835        }
836    }
837
838    /// Divides one mutable string slice into two at an index.
839    ///
840    /// The argument, `mid`, should be a byte offset from the start of the
841    /// string. It must also be on the boundary of a UTF-8 code point.
842    ///
843    /// The two slices returned go from the start of the string slice to `mid`,
844    /// and from `mid` to the end of the string slice.
845    ///
846    /// To get immutable string slices instead, see the [`split_at`] method.
847    ///
848    /// [`split_at`]: str::split_at
849    ///
850    /// # Panics
851    ///
852    /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
853    /// the end of the last code point of the string slice.  For a non-panicking
854    /// alternative see [`split_at_mut_checked`](str::split_at_mut_checked).
855    ///
856    /// # Examples
857    ///
858    /// ```
859    /// let mut s = "Per Martin-Löf".to_string();
860    /// {
861    ///     let (first, last) = s.split_at_mut(3);
862    ///     first.make_ascii_uppercase();
863    ///     assert_eq!("PER", first);
864    ///     assert_eq!(" Martin-Löf", last);
865    /// }
866    /// assert_eq!("PER Martin-Löf", s);
867    /// ```
868    #[inline]
869    #[must_use]
870    #[stable(feature = "str_split_at", since = "1.4.0")]
871    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
872    pub const fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str) {
873        // is_char_boundary checks that the index is in [0, .len()]
874        if self.is_char_boundary(mid) {
875            // SAFETY: just checked that `mid` is on a char boundary.
876            unsafe { self.split_at_mut_unchecked(mid) }
877        } else {
878            slice_error_fail(self, 0, mid)
879        }
880    }
881
882    /// Divides one string slice into two at an index.
883    ///
884    /// The argument, `mid`, should be a valid byte offset from the start of the
885    /// string. It must also be on the boundary of a UTF-8 code point. The
886    /// method returns `None` if that’s not the case.
887    ///
888    /// The two slices returned go from the start of the string slice to `mid`,
889    /// and from `mid` to the end of the string slice.
890    ///
891    /// To get mutable string slices instead, see the [`split_at_mut_checked`]
892    /// method.
893    ///
894    /// [`split_at_mut_checked`]: str::split_at_mut_checked
895    ///
896    /// # Examples
897    ///
898    /// ```
899    /// let s = "Per Martin-Löf";
900    ///
901    /// let (first, last) = s.split_at_checked(3).unwrap();
902    /// assert_eq!("Per", first);
903    /// assert_eq!(" Martin-Löf", last);
904    ///
905    /// assert_eq!(None, s.split_at_checked(13));  // Inside “ö”
906    /// assert_eq!(None, s.split_at_checked(16));  // Beyond the string length
907    /// ```
908    #[inline]
909    #[must_use]
910    #[stable(feature = "split_at_checked", since = "1.80.0")]
911    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
912    pub const fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)> {
913        // is_char_boundary checks that the index is in [0, .len()]
914        if self.is_char_boundary(mid) {
915            // SAFETY: just checked that `mid` is on a char boundary.
916            Some(unsafe { self.split_at_unchecked(mid) })
917        } else {
918            None
919        }
920    }
921
922    /// Divides one mutable string slice into two at an index.
923    ///
924    /// The argument, `mid`, should be a valid byte offset from the start of the
925    /// string. It must also be on the boundary of a UTF-8 code point. The
926    /// method returns `None` if that’s not the case.
927    ///
928    /// The two slices returned go from the start of the string slice to `mid`,
929    /// and from `mid` to the end of the string slice.
930    ///
931    /// To get immutable string slices instead, see the [`split_at_checked`] method.
932    ///
933    /// [`split_at_checked`]: str::split_at_checked
934    ///
935    /// # Examples
936    ///
937    /// ```
938    /// let mut s = "Per Martin-Löf".to_string();
939    /// if let Some((first, last)) = s.split_at_mut_checked(3) {
940    ///     first.make_ascii_uppercase();
941    ///     assert_eq!("PER", first);
942    ///     assert_eq!(" Martin-Löf", last);
943    /// }
944    /// assert_eq!("PER Martin-Löf", s);
945    ///
946    /// assert_eq!(None, s.split_at_mut_checked(13));  // Inside “ö”
947    /// assert_eq!(None, s.split_at_mut_checked(16));  // Beyond the string length
948    /// ```
949    #[inline]
950    #[must_use]
951    #[stable(feature = "split_at_checked", since = "1.80.0")]
952    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
953    pub const fn split_at_mut_checked(&mut self, mid: usize) -> Option<(&mut str, &mut str)> {
954        // is_char_boundary checks that the index is in [0, .len()]
955        if self.is_char_boundary(mid) {
956            // SAFETY: just checked that `mid` is on a char boundary.
957            Some(unsafe { self.split_at_mut_unchecked(mid) })
958        } else {
959            None
960        }
961    }
962
963    /// Divides one string slice into two at an index.
964    ///
965    /// # Safety
966    ///
967    /// The caller must ensure that `mid` is a valid byte offset from the start
968    /// of the string and falls on the boundary of a UTF-8 code point.
969    #[inline]
970    const unsafe fn split_at_unchecked(&self, mid: usize) -> (&str, &str) {
971        let len = self.len();
972        let ptr = self.as_ptr();
973        // SAFETY: caller guarantees `mid` is on a char boundary.
974        unsafe {
975            (
976                from_utf8_unchecked(slice::from_raw_parts(ptr, mid)),
977                from_utf8_unchecked(slice::from_raw_parts(ptr.add(mid), len - mid)),
978            )
979        }
980    }
981
982    /// Divides one string slice into two at an index.
983    ///
984    /// # Safety
985    ///
986    /// The caller must ensure that `mid` is a valid byte offset from the start
987    /// of the string and falls on the boundary of a UTF-8 code point.
988    const unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut str, &mut str) {
989        let len = self.len();
990        let ptr = self.as_mut_ptr();
991        // SAFETY: caller guarantees `mid` is on a char boundary.
992        unsafe {
993            (
994                from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr, mid)),
995                from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr.add(mid), len - mid)),
996            )
997        }
998    }
999
1000    /// Returns an iterator over the [`char`]s of a string slice.
1001    ///
1002    /// As a string slice consists of valid UTF-8, we can iterate through a
1003    /// string slice by [`char`]. This method returns such an iterator.
1004    ///
1005    /// It's important to remember that [`char`] represents a Unicode Scalar
1006    /// Value, and might not match your idea of what a 'character' is. Iteration
1007    /// over grapheme clusters may be what you actually want. This functionality
1008    /// is not provided by Rust's standard library, check crates.io instead.
1009    ///
1010    /// # Examples
1011    ///
1012    /// Basic usage:
1013    ///
1014    /// ```
1015    /// let word = "goodbye";
1016    ///
1017    /// let count = word.chars().count();
1018    /// assert_eq!(7, count);
1019    ///
1020    /// let mut chars = word.chars();
1021    ///
1022    /// assert_eq!(Some('g'), chars.next());
1023    /// assert_eq!(Some('o'), chars.next());
1024    /// assert_eq!(Some('o'), chars.next());
1025    /// assert_eq!(Some('d'), chars.next());
1026    /// assert_eq!(Some('b'), chars.next());
1027    /// assert_eq!(Some('y'), chars.next());
1028    /// assert_eq!(Some('e'), chars.next());
1029    ///
1030    /// assert_eq!(None, chars.next());
1031    /// ```
1032    ///
1033    /// Remember, [`char`]s might not match your intuition about characters:
1034    ///
1035    /// [`char`]: prim@char
1036    ///
1037    /// ```
1038    /// let y = "y̆";
1039    ///
1040    /// let mut chars = y.chars();
1041    ///
1042    /// assert_eq!(Some('y'), chars.next()); // not 'y̆'
1043    /// assert_eq!(Some('\u{0306}'), chars.next());
1044    ///
1045    /// assert_eq!(None, chars.next());
1046    /// ```
1047    #[stable(feature = "rust1", since = "1.0.0")]
1048    #[inline]
1049    #[rustc_diagnostic_item = "str_chars"]
1050    pub fn chars(&self) -> Chars<'_> {
1051        Chars { iter: self.as_bytes().iter() }
1052    }
1053
1054    /// Returns an iterator over the [`char`]s of a string slice, and their
1055    /// positions.
1056    ///
1057    /// As a string slice consists of valid UTF-8, we can iterate through a
1058    /// string slice by [`char`]. This method returns an iterator of both
1059    /// these [`char`]s, as well as their byte positions.
1060    ///
1061    /// The iterator yields tuples. The position is first, the [`char`] is
1062    /// second.
1063    ///
1064    /// # Examples
1065    ///
1066    /// Basic usage:
1067    ///
1068    /// ```
1069    /// let word = "goodbye";
1070    ///
1071    /// let count = word.char_indices().count();
1072    /// assert_eq!(7, count);
1073    ///
1074    /// let mut char_indices = word.char_indices();
1075    ///
1076    /// assert_eq!(Some((0, 'g')), char_indices.next());
1077    /// assert_eq!(Some((1, 'o')), char_indices.next());
1078    /// assert_eq!(Some((2, 'o')), char_indices.next());
1079    /// assert_eq!(Some((3, 'd')), char_indices.next());
1080    /// assert_eq!(Some((4, 'b')), char_indices.next());
1081    /// assert_eq!(Some((5, 'y')), char_indices.next());
1082    /// assert_eq!(Some((6, 'e')), char_indices.next());
1083    ///
1084    /// assert_eq!(None, char_indices.next());
1085    /// ```
1086    ///
1087    /// Remember, [`char`]s might not match your intuition about characters:
1088    ///
1089    /// [`char`]: prim@char
1090    ///
1091    /// ```
1092    /// let yes = "y̆es";
1093    ///
1094    /// let mut char_indices = yes.char_indices();
1095    ///
1096    /// assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
1097    /// assert_eq!(Some((1, '\u{0306}')), char_indices.next());
1098    ///
1099    /// // note the 3 here - the previous character took up two bytes
1100    /// assert_eq!(Some((3, 'e')), char_indices.next());
1101    /// assert_eq!(Some((4, 's')), char_indices.next());
1102    ///
1103    /// assert_eq!(None, char_indices.next());
1104    /// ```
1105    #[stable(feature = "rust1", since = "1.0.0")]
1106    #[inline]
1107    pub fn char_indices(&self) -> CharIndices<'_> {
1108        CharIndices { front_offset: 0, iter: self.chars() }
1109    }
1110
1111    /// Returns an iterator over the bytes of a string slice.
1112    ///
1113    /// As a string slice consists of a sequence of bytes, we can iterate
1114    /// through a string slice by byte. This method returns such an iterator.
1115    ///
1116    /// # Examples
1117    ///
1118    /// ```
1119    /// let mut bytes = "bors".bytes();
1120    ///
1121    /// assert_eq!(Some(b'b'), bytes.next());
1122    /// assert_eq!(Some(b'o'), bytes.next());
1123    /// assert_eq!(Some(b'r'), bytes.next());
1124    /// assert_eq!(Some(b's'), bytes.next());
1125    ///
1126    /// assert_eq!(None, bytes.next());
1127    /// ```
1128    #[stable(feature = "rust1", since = "1.0.0")]
1129    #[inline]
1130    pub fn bytes(&self) -> Bytes<'_> {
1131        Bytes(self.as_bytes().iter().copied())
1132    }
1133
1134    /// Splits a string slice by whitespace.
1135    ///
1136    /// The iterator returned will return string slices that are sub-slices of
1137    /// the original string slice, separated by any amount of whitespace.
1138    ///
1139    /// 'Whitespace' is defined according to the terms of the Unicode Derived
1140    /// Core Property `White_Space`. If you only want to split on ASCII whitespace
1141    /// instead, use [`split_ascii_whitespace`].
1142    ///
1143    /// [`split_ascii_whitespace`]: str::split_ascii_whitespace
1144    ///
1145    /// # Examples
1146    ///
1147    /// Basic usage:
1148    ///
1149    /// ```
1150    /// let mut iter = "A few words".split_whitespace();
1151    ///
1152    /// assert_eq!(Some("A"), iter.next());
1153    /// assert_eq!(Some("few"), iter.next());
1154    /// assert_eq!(Some("words"), iter.next());
1155    ///
1156    /// assert_eq!(None, iter.next());
1157    /// ```
1158    ///
1159    /// All kinds of whitespace are considered:
1160    ///
1161    /// ```
1162    /// let mut iter = " Mary   had\ta\u{2009}little  \n\t lamb".split_whitespace();
1163    /// assert_eq!(Some("Mary"), iter.next());
1164    /// assert_eq!(Some("had"), iter.next());
1165    /// assert_eq!(Some("a"), iter.next());
1166    /// assert_eq!(Some("little"), iter.next());
1167    /// assert_eq!(Some("lamb"), iter.next());
1168    ///
1169    /// assert_eq!(None, iter.next());
1170    /// ```
1171    ///
1172    /// If the string is empty or all whitespace, the iterator yields no string slices:
1173    /// ```
1174    /// assert_eq!("".split_whitespace().next(), None);
1175    /// assert_eq!("   ".split_whitespace().next(), None);
1176    /// ```
1177    #[must_use = "this returns the split string as an iterator, \
1178                  without modifying the original"]
1179    #[stable(feature = "split_whitespace", since = "1.1.0")]
1180    #[rustc_diagnostic_item = "str_split_whitespace"]
1181    #[inline]
1182    pub fn split_whitespace(&self) -> SplitWhitespace<'_> {
1183        SplitWhitespace { inner: self.split(IsWhitespace).filter(IsNotEmpty) }
1184    }
1185
1186    /// Splits a string slice by ASCII whitespace.
1187    ///
1188    /// The iterator returned will return string slices that are sub-slices of
1189    /// the original string slice, separated by any amount of ASCII whitespace.
1190    ///
1191    /// This uses the same definition as [`char::is_ascii_whitespace`].
1192    /// To split by Unicode `Whitespace` instead, use [`split_whitespace`].
1193    ///
1194    /// [`split_whitespace`]: str::split_whitespace
1195    ///
1196    /// # Examples
1197    ///
1198    /// Basic usage:
1199    ///
1200    /// ```
1201    /// let mut iter = "A few words".split_ascii_whitespace();
1202    ///
1203    /// assert_eq!(Some("A"), iter.next());
1204    /// assert_eq!(Some("few"), iter.next());
1205    /// assert_eq!(Some("words"), iter.next());
1206    ///
1207    /// assert_eq!(None, iter.next());
1208    /// ```
1209    ///
1210    /// Various kinds of ASCII whitespace are considered
1211    /// (see [`char::is_ascii_whitespace`]):
1212    ///
1213    /// ```
1214    /// let mut iter = " Mary   had\ta little  \n\t lamb".split_ascii_whitespace();
1215    /// assert_eq!(Some("Mary"), iter.next());
1216    /// assert_eq!(Some("had"), iter.next());
1217    /// assert_eq!(Some("a"), iter.next());
1218    /// assert_eq!(Some("little"), iter.next());
1219    /// assert_eq!(Some("lamb"), iter.next());
1220    ///
1221    /// assert_eq!(None, iter.next());
1222    /// ```
1223    ///
1224    /// If the string is empty or all ASCII whitespace, the iterator yields no string slices:
1225    /// ```
1226    /// assert_eq!("".split_ascii_whitespace().next(), None);
1227    /// assert_eq!("   ".split_ascii_whitespace().next(), None);
1228    /// ```
1229    #[must_use = "this returns the split string as an iterator, \
1230                  without modifying the original"]
1231    #[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
1232    #[inline]
1233    pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_> {
1234        let inner =
1235            self.as_bytes().split(IsAsciiWhitespace).filter(BytesIsNotEmpty).map(UnsafeBytesToStr);
1236        SplitAsciiWhitespace { inner }
1237    }
1238
1239    /// Returns an iterator over the lines of a string, as string slices.
1240    ///
1241    /// Lines are split at line endings that are either newlines (`\n`) or
1242    /// sequences of a carriage return followed by a line feed (`\r\n`).
1243    ///
1244    /// Line terminators are not included in the lines returned by the iterator.
1245    ///
1246    /// Note that any carriage return (`\r`) not immediately followed by a
1247    /// line feed (`\n`) does not split a line. These carriage returns are
1248    /// thereby included in the produced lines.
1249    ///
1250    /// The final line ending is optional. A string that ends with a final line
1251    /// ending will return the same lines as an otherwise identical string
1252    /// without a final line ending.
1253    ///
1254    /// # Examples
1255    ///
1256    /// Basic usage:
1257    ///
1258    /// ```
1259    /// let text = "foo\r\nbar\n\nbaz\r";
1260    /// let mut lines = text.lines();
1261    ///
1262    /// assert_eq!(Some("foo"), lines.next());
1263    /// assert_eq!(Some("bar"), lines.next());
1264    /// assert_eq!(Some(""), lines.next());
1265    /// // Trailing carriage return is included in the last line
1266    /// assert_eq!(Some("baz\r"), lines.next());
1267    ///
1268    /// assert_eq!(None, lines.next());
1269    /// ```
1270    ///
1271    /// The final line does not require any ending:
1272    ///
1273    /// ```
1274    /// let text = "foo\nbar\n\r\nbaz";
1275    /// let mut lines = text.lines();
1276    ///
1277    /// assert_eq!(Some("foo"), lines.next());
1278    /// assert_eq!(Some("bar"), lines.next());
1279    /// assert_eq!(Some(""), lines.next());
1280    /// assert_eq!(Some("baz"), lines.next());
1281    ///
1282    /// assert_eq!(None, lines.next());
1283    /// ```
1284    #[stable(feature = "rust1", since = "1.0.0")]
1285    #[inline]
1286    pub fn lines(&self) -> Lines<'_> {
1287        Lines(self.split_inclusive('\n').map(LinesMap))
1288    }
1289
1290    /// Returns an iterator over the lines of a string.
1291    #[stable(feature = "rust1", since = "1.0.0")]
1292    #[deprecated(since = "1.4.0", note = "use lines() instead now", suggestion = "lines")]
1293    #[inline]
1294    #[allow(deprecated)]
1295    pub fn lines_any(&self) -> LinesAny<'_> {
1296        LinesAny(self.lines())
1297    }
1298
1299    /// Returns an iterator of `u16` over the string encoded
1300    /// as native endian UTF-16 (without byte-order mark).
1301    ///
1302    /// # Examples
1303    ///
1304    /// ```
1305    /// let text = "Zażółć gęślą jaźń";
1306    ///
1307    /// let utf8_len = text.len();
1308    /// let utf16_len = text.encode_utf16().count();
1309    ///
1310    /// assert!(utf16_len <= utf8_len);
1311    /// ```
1312    #[must_use = "this returns the encoded string as an iterator, \
1313                  without modifying the original"]
1314    #[stable(feature = "encode_utf16", since = "1.8.0")]
1315    pub fn encode_utf16(&self) -> EncodeUtf16<'_> {
1316        EncodeUtf16 { chars: self.chars(), extra: 0 }
1317    }
1318
1319    /// Returns `true` if the given pattern matches a sub-slice of
1320    /// this string slice.
1321    ///
1322    /// Returns `false` if it does not.
1323    ///
1324    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1325    /// function or closure that determines if a character matches.
1326    ///
1327    /// [`char`]: prim@char
1328    /// [pattern]: self::pattern
1329    ///
1330    /// # Examples
1331    ///
1332    /// ```
1333    /// let bananas = "bananas";
1334    ///
1335    /// assert!(bananas.contains("nana"));
1336    /// assert!(!bananas.contains("apples"));
1337    /// ```
1338    #[stable(feature = "rust1", since = "1.0.0")]
1339    #[inline]
1340    pub fn contains<P: Pattern>(&self, pat: P) -> bool {
1341        pat.is_contained_in(self)
1342    }
1343
1344    /// Returns `true` if the given pattern matches a prefix of this
1345    /// string slice.
1346    ///
1347    /// Returns `false` if it does not.
1348    ///
1349    /// The [pattern] can be a `&str`, in which case this function will return true if
1350    /// the `&str` is a prefix of this string slice.
1351    ///
1352    /// The [pattern] can also be a [`char`], a slice of [`char`]s, or a
1353    /// function or closure that determines if a character matches.
1354    /// These will only be checked against the first character of this string slice.
1355    /// Look at the second example below regarding behavior for slices of [`char`]s.
1356    ///
1357    /// [`char`]: prim@char
1358    /// [pattern]: self::pattern
1359    ///
1360    /// # Examples
1361    ///
1362    /// ```
1363    /// let bananas = "bananas";
1364    ///
1365    /// assert!(bananas.starts_with("bana"));
1366    /// assert!(!bananas.starts_with("nana"));
1367    /// ```
1368    ///
1369    /// ```
1370    /// let bananas = "bananas";
1371    ///
1372    /// // Note that both of these assert successfully.
1373    /// assert!(bananas.starts_with(&['b', 'a', 'n', 'a']));
1374    /// assert!(bananas.starts_with(&['a', 'b', 'c', 'd']));
1375    /// ```
1376    #[stable(feature = "rust1", since = "1.0.0")]
1377    #[rustc_diagnostic_item = "str_starts_with"]
1378    pub fn starts_with<P: Pattern>(&self, pat: P) -> bool {
1379        pat.is_prefix_of(self)
1380    }
1381
1382    /// Returns `true` if the given pattern matches a suffix of this
1383    /// string slice.
1384    ///
1385    /// Returns `false` if it does not.
1386    ///
1387    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1388    /// function or closure that determines if a character matches.
1389    ///
1390    /// [`char`]: prim@char
1391    /// [pattern]: self::pattern
1392    ///
1393    /// # Examples
1394    ///
1395    /// ```
1396    /// let bananas = "bananas";
1397    ///
1398    /// assert!(bananas.ends_with("anas"));
1399    /// assert!(!bananas.ends_with("nana"));
1400    /// ```
1401    #[stable(feature = "rust1", since = "1.0.0")]
1402    #[rustc_diagnostic_item = "str_ends_with"]
1403    pub fn ends_with<P: Pattern>(&self, pat: P) -> bool
1404    where
1405        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1406    {
1407        pat.is_suffix_of(self)
1408    }
1409
1410    /// Returns the byte index of the first character of this string slice that
1411    /// matches the pattern.
1412    ///
1413    /// Returns [`None`] if the pattern doesn't match.
1414    ///
1415    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1416    /// function or closure that determines if a character matches.
1417    ///
1418    /// [`char`]: prim@char
1419    /// [pattern]: self::pattern
1420    ///
1421    /// # Examples
1422    ///
1423    /// Simple patterns:
1424    ///
1425    /// ```
1426    /// let s = "Löwe 老虎 Léopard Gepardi";
1427    ///
1428    /// assert_eq!(s.find('L'), Some(0));
1429    /// assert_eq!(s.find('é'), Some(14));
1430    /// assert_eq!(s.find("pard"), Some(17));
1431    /// ```
1432    ///
1433    /// More complex patterns using point-free style and closures:
1434    ///
1435    /// ```
1436    /// let s = "Löwe 老虎 Léopard";
1437    ///
1438    /// assert_eq!(s.find(char::is_whitespace), Some(5));
1439    /// assert_eq!(s.find(char::is_lowercase), Some(1));
1440    /// assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
1441    /// assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));
1442    /// ```
1443    ///
1444    /// Not finding the pattern:
1445    ///
1446    /// ```
1447    /// let s = "Löwe 老虎 Léopard";
1448    /// let x: &[_] = &['1', '2'];
1449    ///
1450    /// assert_eq!(s.find(x), None);
1451    /// ```
1452    #[stable(feature = "rust1", since = "1.0.0")]
1453    #[inline]
1454    pub fn find<P: Pattern>(&self, pat: P) -> Option<usize> {
1455        pat.into_searcher(self).next_match().map(|(i, _)| i)
1456    }
1457
1458    /// Returns the byte index for the first character of the last match of the pattern in
1459    /// this string slice.
1460    ///
1461    /// Returns [`None`] if the pattern doesn't match.
1462    ///
1463    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1464    /// function or closure that determines if a character matches.
1465    ///
1466    /// [`char`]: prim@char
1467    /// [pattern]: self::pattern
1468    ///
1469    /// # Examples
1470    ///
1471    /// Simple patterns:
1472    ///
1473    /// ```
1474    /// let s = "Löwe 老虎 Léopard Gepardi";
1475    ///
1476    /// assert_eq!(s.rfind('L'), Some(13));
1477    /// assert_eq!(s.rfind('é'), Some(14));
1478    /// assert_eq!(s.rfind("pard"), Some(24));
1479    /// ```
1480    ///
1481    /// More complex patterns with closures:
1482    ///
1483    /// ```
1484    /// let s = "Löwe 老虎 Léopard";
1485    ///
1486    /// assert_eq!(s.rfind(char::is_whitespace), Some(12));
1487    /// assert_eq!(s.rfind(char::is_lowercase), Some(20));
1488    /// ```
1489    ///
1490    /// Not finding the pattern:
1491    ///
1492    /// ```
1493    /// let s = "Löwe 老虎 Léopard";
1494    /// let x: &[_] = &['1', '2'];
1495    ///
1496    /// assert_eq!(s.rfind(x), None);
1497    /// ```
1498    #[stable(feature = "rust1", since = "1.0.0")]
1499    #[inline]
1500    pub fn rfind<P: Pattern>(&self, pat: P) -> Option<usize>
1501    where
1502        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1503    {
1504        pat.into_searcher(self).next_match_back().map(|(i, _)| i)
1505    }
1506
1507    /// Returns an iterator over substrings of this string slice, separated by
1508    /// characters matched by a pattern.
1509    ///
1510    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1511    /// function or closure that determines if a character matches.
1512    ///
1513    /// If there are no matches the full string slice is returned as the only
1514    /// item in the iterator.
1515    ///
1516    /// [`char`]: prim@char
1517    /// [pattern]: self::pattern
1518    ///
1519    /// # Iterator behavior
1520    ///
1521    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1522    /// allows a reverse search and forward/reverse search yields the same
1523    /// elements. This is true for, e.g., [`char`], but not for `&str`.
1524    ///
1525    /// If the pattern allows a reverse search but its results might differ
1526    /// from a forward search, the [`rsplit`] method can be used.
1527    ///
1528    /// [`rsplit`]: str::rsplit
1529    ///
1530    /// # Examples
1531    ///
1532    /// Simple patterns:
1533    ///
1534    /// ```
1535    /// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
1536    /// assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);
1537    ///
1538    /// let v: Vec<&str> = "".split('X').collect();
1539    /// assert_eq!(v, [""]);
1540    ///
1541    /// let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
1542    /// assert_eq!(v, ["lion", "", "tiger", "leopard"]);
1543    ///
1544    /// let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
1545    /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1546    ///
1547    /// let v: Vec<&str> = "AABBCC".split("DD").collect();
1548    /// assert_eq!(v, ["AABBCC"]);
1549    ///
1550    /// let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
1551    /// assert_eq!(v, ["abc", "def", "ghi"]);
1552    ///
1553    /// let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
1554    /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1555    /// ```
1556    ///
1557    /// If the pattern is a slice of chars, split on each occurrence of any of the characters:
1558    ///
1559    /// ```
1560    /// let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect();
1561    /// assert_eq!(v, ["2020", "11", "03", "23", "59"]);
1562    /// ```
1563    ///
1564    /// A more complex pattern, using a closure:
1565    ///
1566    /// ```
1567    /// let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
1568    /// assert_eq!(v, ["abc", "def", "ghi"]);
1569    /// ```
1570    ///
1571    /// If a string contains multiple contiguous separators, you will end up
1572    /// with empty strings in the output:
1573    ///
1574    /// ```
1575    /// let x = "||||a||b|c".to_string();
1576    /// let d: Vec<_> = x.split('|').collect();
1577    ///
1578    /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1579    /// ```
1580    ///
1581    /// Contiguous separators are separated by the empty string.
1582    ///
1583    /// ```
1584    /// let x = "(///)".to_string();
1585    /// let d: Vec<_> = x.split('/').collect();
1586    ///
1587    /// assert_eq!(d, &["(", "", "", ")"]);
1588    /// ```
1589    ///
1590    /// Separators at the start or end of a string are neighbored
1591    /// by empty strings.
1592    ///
1593    /// ```
1594    /// let d: Vec<_> = "010".split("0").collect();
1595    /// assert_eq!(d, &["", "1", ""]);
1596    /// ```
1597    ///
1598    /// When the empty string is used as a separator, it separates
1599    /// every character in the string, along with the beginning
1600    /// and end of the string.
1601    ///
1602    /// ```
1603    /// let f: Vec<_> = "rust".split("").collect();
1604    /// assert_eq!(f, &["", "r", "u", "s", "t", ""]);
1605    /// ```
1606    ///
1607    /// Contiguous separators can lead to possibly surprising behavior
1608    /// when whitespace is used as the separator. This code is correct:
1609    ///
1610    /// ```
1611    /// let x = "    a  b c".to_string();
1612    /// let d: Vec<_> = x.split(' ').collect();
1613    ///
1614    /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1615    /// ```
1616    ///
1617    /// It does _not_ give you:
1618    ///
1619    /// ```,ignore
1620    /// assert_eq!(d, &["a", "b", "c"]);
1621    /// ```
1622    ///
1623    /// Use [`split_whitespace`] for this behavior.
1624    ///
1625    /// [`split_whitespace`]: str::split_whitespace
1626    #[stable(feature = "rust1", since = "1.0.0")]
1627    #[inline]
1628    pub fn split<P: Pattern>(&self, pat: P) -> Split<'_, P> {
1629        Split(SplitInternal {
1630            start: 0,
1631            end: self.len(),
1632            matcher: pat.into_searcher(self),
1633            allow_trailing_empty: true,
1634            finished: false,
1635        })
1636    }
1637
1638    /// Returns an iterator over substrings of this string slice, separated by
1639    /// characters matched by a pattern.
1640    ///
1641    /// Differs from the iterator produced by `split` in that `split_inclusive`
1642    /// leaves the matched part as the terminator of the substring.
1643    ///
1644    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1645    /// function or closure that determines if a character matches.
1646    ///
1647    /// [`char`]: prim@char
1648    /// [pattern]: self::pattern
1649    ///
1650    /// # Examples
1651    ///
1652    /// ```
1653    /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb."
1654    ///     .split_inclusive('\n').collect();
1655    /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]);
1656    /// ```
1657    ///
1658    /// If the last element of the string is matched,
1659    /// that element will be considered the terminator of the preceding substring.
1660    /// That substring will be the last item returned by the iterator.
1661    ///
1662    /// ```
1663    /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n"
1664    ///     .split_inclusive('\n').collect();
1665    /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]);
1666    /// ```
1667    #[stable(feature = "split_inclusive", since = "1.51.0")]
1668    #[inline]
1669    pub fn split_inclusive<P: Pattern>(&self, pat: P) -> SplitInclusive<'_, P> {
1670        SplitInclusive(SplitInternal {
1671            start: 0,
1672            end: self.len(),
1673            matcher: pat.into_searcher(self),
1674            allow_trailing_empty: false,
1675            finished: false,
1676        })
1677    }
1678
1679    /// Returns an iterator over substrings of the given string slice, separated
1680    /// by characters matched by a pattern and yielded in reverse order.
1681    ///
1682    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1683    /// function or closure that determines if a character matches.
1684    ///
1685    /// [`char`]: prim@char
1686    /// [pattern]: self::pattern
1687    ///
1688    /// # Iterator behavior
1689    ///
1690    /// The returned iterator requires that the pattern supports a reverse
1691    /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
1692    /// search yields the same elements.
1693    ///
1694    /// For iterating from the front, the [`split`] method can be used.
1695    ///
1696    /// [`split`]: str::split
1697    ///
1698    /// # Examples
1699    ///
1700    /// Simple patterns:
1701    ///
1702    /// ```
1703    /// let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
1704    /// assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);
1705    ///
1706    /// let v: Vec<&str> = "".rsplit('X').collect();
1707    /// assert_eq!(v, [""]);
1708    ///
1709    /// let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
1710    /// assert_eq!(v, ["leopard", "tiger", "", "lion"]);
1711    ///
1712    /// let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
1713    /// assert_eq!(v, ["leopard", "tiger", "lion"]);
1714    /// ```
1715    ///
1716    /// A more complex pattern, using a closure:
1717    ///
1718    /// ```
1719    /// let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
1720    /// assert_eq!(v, ["ghi", "def", "abc"]);
1721    /// ```
1722    #[stable(feature = "rust1", since = "1.0.0")]
1723    #[inline]
1724    pub fn rsplit<P: Pattern>(&self, pat: P) -> RSplit<'_, P>
1725    where
1726        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1727    {
1728        RSplit(self.split(pat).0)
1729    }
1730
1731    /// Returns an iterator over substrings of the given string slice, separated
1732    /// by characters matched by a pattern.
1733    ///
1734    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1735    /// function or closure that determines if a character matches.
1736    ///
1737    /// [`char`]: prim@char
1738    /// [pattern]: self::pattern
1739    ///
1740    /// Equivalent to [`split`], except that the trailing substring
1741    /// is skipped if empty.
1742    ///
1743    /// [`split`]: str::split
1744    ///
1745    /// This method can be used for string data that is _terminated_,
1746    /// rather than _separated_ by a pattern.
1747    ///
1748    /// # Iterator behavior
1749    ///
1750    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1751    /// allows a reverse search and forward/reverse search yields the same
1752    /// elements. This is true for, e.g., [`char`], but not for `&str`.
1753    ///
1754    /// If the pattern allows a reverse search but its results might differ
1755    /// from a forward search, the [`rsplit_terminator`] method can be used.
1756    ///
1757    /// [`rsplit_terminator`]: str::rsplit_terminator
1758    ///
1759    /// # Examples
1760    ///
1761    /// ```
1762    /// let v: Vec<&str> = "A.B.".split_terminator('.').collect();
1763    /// assert_eq!(v, ["A", "B"]);
1764    ///
1765    /// let v: Vec<&str> = "A..B..".split_terminator(".").collect();
1766    /// assert_eq!(v, ["A", "", "B", ""]);
1767    ///
1768    /// let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect();
1769    /// assert_eq!(v, ["A", "B", "C", "D"]);
1770    /// ```
1771    #[stable(feature = "rust1", since = "1.0.0")]
1772    #[inline]
1773    pub fn split_terminator<P: Pattern>(&self, pat: P) -> SplitTerminator<'_, P> {
1774        SplitTerminator(SplitInternal { allow_trailing_empty: false, ..self.split(pat).0 })
1775    }
1776
1777    /// Returns an iterator over substrings of `self`, separated by characters
1778    /// matched by a pattern and yielded in reverse order.
1779    ///
1780    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1781    /// function or closure that determines if a character matches.
1782    ///
1783    /// [`char`]: prim@char
1784    /// [pattern]: self::pattern
1785    ///
1786    /// Equivalent to [`split`], except that the trailing substring is
1787    /// skipped if empty.
1788    ///
1789    /// [`split`]: str::split
1790    ///
1791    /// This method can be used for string data that is _terminated_,
1792    /// rather than _separated_ by a pattern.
1793    ///
1794    /// # Iterator behavior
1795    ///
1796    /// The returned iterator requires that the pattern supports a
1797    /// reverse search, and it will be double ended if a forward/reverse
1798    /// search yields the same elements.
1799    ///
1800    /// For iterating from the front, the [`split_terminator`] method can be
1801    /// used.
1802    ///
1803    /// [`split_terminator`]: str::split_terminator
1804    ///
1805    /// # Examples
1806    ///
1807    /// ```
1808    /// let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
1809    /// assert_eq!(v, ["B", "A"]);
1810    ///
1811    /// let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
1812    /// assert_eq!(v, ["", "B", "", "A"]);
1813    ///
1814    /// let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect();
1815    /// assert_eq!(v, ["D", "C", "B", "A"]);
1816    /// ```
1817    #[stable(feature = "rust1", since = "1.0.0")]
1818    #[inline]
1819    pub fn rsplit_terminator<P: Pattern>(&self, pat: P) -> RSplitTerminator<'_, P>
1820    where
1821        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1822    {
1823        RSplitTerminator(self.split_terminator(pat).0)
1824    }
1825
1826    /// Returns an iterator over substrings of the given string slice, separated
1827    /// by a pattern, restricted to returning at most `n` items.
1828    ///
1829    /// If `n` substrings are returned, the last substring (the `n`th substring)
1830    /// will contain the remainder of the string.
1831    ///
1832    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1833    /// function or closure that determines if a character matches.
1834    ///
1835    /// [`char`]: prim@char
1836    /// [pattern]: self::pattern
1837    ///
1838    /// # Iterator behavior
1839    ///
1840    /// The returned iterator will not be double ended, because it is
1841    /// not efficient to support.
1842    ///
1843    /// If the pattern allows a reverse search, the [`rsplitn`] method can be
1844    /// used.
1845    ///
1846    /// [`rsplitn`]: str::rsplitn
1847    ///
1848    /// # Examples
1849    ///
1850    /// Simple patterns:
1851    ///
1852    /// ```
1853    /// let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
1854    /// assert_eq!(v, ["Mary", "had", "a little lambda"]);
1855    ///
1856    /// let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
1857    /// assert_eq!(v, ["lion", "", "tigerXleopard"]);
1858    ///
1859    /// let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
1860    /// assert_eq!(v, ["abcXdef"]);
1861    ///
1862    /// let v: Vec<&str> = "".splitn(1, 'X').collect();
1863    /// assert_eq!(v, [""]);
1864    /// ```
1865    ///
1866    /// A more complex pattern, using a closure:
1867    ///
1868    /// ```
1869    /// let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
1870    /// assert_eq!(v, ["abc", "defXghi"]);
1871    /// ```
1872    #[stable(feature = "rust1", since = "1.0.0")]
1873    #[inline]
1874    pub fn splitn<P: Pattern>(&self, n: usize, pat: P) -> SplitN<'_, P> {
1875        SplitN(SplitNInternal { iter: self.split(pat).0, count: n })
1876    }
1877
1878    /// Returns an iterator over substrings of this string slice, separated by a
1879    /// pattern, starting from the end of the string, restricted to returning at
1880    /// most `n` items.
1881    ///
1882    /// If `n` substrings are returned, the last substring (the `n`th substring)
1883    /// will contain the remainder of the string.
1884    ///
1885    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1886    /// function or closure that determines if a character matches.
1887    ///
1888    /// [`char`]: prim@char
1889    /// [pattern]: self::pattern
1890    ///
1891    /// # Iterator behavior
1892    ///
1893    /// The returned iterator will not be double ended, because it is not
1894    /// efficient to support.
1895    ///
1896    /// For splitting from the front, the [`splitn`] method can be used.
1897    ///
1898    /// [`splitn`]: str::splitn
1899    ///
1900    /// # Examples
1901    ///
1902    /// Simple patterns:
1903    ///
1904    /// ```
1905    /// let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
1906    /// assert_eq!(v, ["lamb", "little", "Mary had a"]);
1907    ///
1908    /// let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
1909    /// assert_eq!(v, ["leopard", "tiger", "lionX"]);
1910    ///
1911    /// let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
1912    /// assert_eq!(v, ["leopard", "lion::tiger"]);
1913    /// ```
1914    ///
1915    /// A more complex pattern, using a closure:
1916    ///
1917    /// ```
1918    /// let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
1919    /// assert_eq!(v, ["ghi", "abc1def"]);
1920    /// ```
1921    #[stable(feature = "rust1", since = "1.0.0")]
1922    #[inline]
1923    pub fn rsplitn<P: Pattern>(&self, n: usize, pat: P) -> RSplitN<'_, P>
1924    where
1925        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1926    {
1927        RSplitN(self.splitn(n, pat).0)
1928    }
1929
1930    /// Splits the string on the first occurrence of the specified delimiter and
1931    /// returns prefix before delimiter and suffix after delimiter.
1932    ///
1933    /// # Examples
1934    ///
1935    /// ```
1936    /// assert_eq!("cfg".split_once('='), None);
1937    /// assert_eq!("cfg=".split_once('='), Some(("cfg", "")));
1938    /// assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo")));
1939    /// assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar")));
1940    /// ```
1941    #[stable(feature = "str_split_once", since = "1.52.0")]
1942    #[inline]
1943    pub fn split_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)> {
1944        let (start, end) = delimiter.into_searcher(self).next_match()?;
1945        // SAFETY: `Searcher` is known to return valid indices.
1946        unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
1947    }
1948
1949    /// Splits the string on the last occurrence of the specified delimiter and
1950    /// returns prefix before delimiter and suffix after delimiter.
1951    ///
1952    /// # Examples
1953    ///
1954    /// ```
1955    /// assert_eq!("cfg".rsplit_once('='), None);
1956    /// assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo")));
1957    /// assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar")));
1958    /// ```
1959    #[stable(feature = "str_split_once", since = "1.52.0")]
1960    #[inline]
1961    pub fn rsplit_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)>
1962    where
1963        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1964    {
1965        let (start, end) = delimiter.into_searcher(self).next_match_back()?;
1966        // SAFETY: `Searcher` is known to return valid indices.
1967        unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
1968    }
1969
1970    /// Returns an iterator over the disjoint matches of a pattern within the
1971    /// given string slice.
1972    ///
1973    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1974    /// function or closure that determines if a character matches.
1975    ///
1976    /// [`char`]: prim@char
1977    /// [pattern]: self::pattern
1978    ///
1979    /// # Iterator behavior
1980    ///
1981    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1982    /// allows a reverse search and forward/reverse search yields the same
1983    /// elements. This is true for, e.g., [`char`], but not for `&str`.
1984    ///
1985    /// If the pattern allows a reverse search but its results might differ
1986    /// from a forward search, the [`rmatches`] method can be used.
1987    ///
1988    /// [`rmatches`]: str::rmatches
1989    ///
1990    /// # Examples
1991    ///
1992    /// ```
1993    /// let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
1994    /// assert_eq!(v, ["abc", "abc", "abc"]);
1995    ///
1996    /// let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
1997    /// assert_eq!(v, ["1", "2", "3"]);
1998    /// ```
1999    #[stable(feature = "str_matches", since = "1.2.0")]
2000    #[inline]
2001    pub fn matches<P: Pattern>(&self, pat: P) -> Matches<'_, P> {
2002        Matches(MatchesInternal(pat.into_searcher(self)))
2003    }
2004
2005    /// Returns an iterator over the disjoint matches of a pattern within this
2006    /// string slice, yielded in reverse order.
2007    ///
2008    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2009    /// function or closure that determines if a character matches.
2010    ///
2011    /// [`char`]: prim@char
2012    /// [pattern]: self::pattern
2013    ///
2014    /// # Iterator behavior
2015    ///
2016    /// The returned iterator requires that the pattern supports a reverse
2017    /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
2018    /// search yields the same elements.
2019    ///
2020    /// For iterating from the front, the [`matches`] method can be used.
2021    ///
2022    /// [`matches`]: str::matches
2023    ///
2024    /// # Examples
2025    ///
2026    /// ```
2027    /// let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
2028    /// assert_eq!(v, ["abc", "abc", "abc"]);
2029    ///
2030    /// let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
2031    /// assert_eq!(v, ["3", "2", "1"]);
2032    /// ```
2033    #[stable(feature = "str_matches", since = "1.2.0")]
2034    #[inline]
2035    pub fn rmatches<P: Pattern>(&self, pat: P) -> RMatches<'_, P>
2036    where
2037        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2038    {
2039        RMatches(self.matches(pat).0)
2040    }
2041
2042    /// Returns an iterator over the disjoint matches of a pattern within this string
2043    /// slice as well as the index that the match starts at.
2044    ///
2045    /// For matches of `pat` within `self` that overlap, only the indices
2046    /// corresponding to the first match are returned.
2047    ///
2048    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2049    /// function or closure that determines if a character matches.
2050    ///
2051    /// [`char`]: prim@char
2052    /// [pattern]: self::pattern
2053    ///
2054    /// # Iterator behavior
2055    ///
2056    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
2057    /// allows a reverse search and forward/reverse search yields the same
2058    /// elements. This is true for, e.g., [`char`], but not for `&str`.
2059    ///
2060    /// If the pattern allows a reverse search but its results might differ
2061    /// from a forward search, the [`rmatch_indices`] method can be used.
2062    ///
2063    /// [`rmatch_indices`]: str::rmatch_indices
2064    ///
2065    /// # Examples
2066    ///
2067    /// ```
2068    /// let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
2069    /// assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);
2070    ///
2071    /// let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
2072    /// assert_eq!(v, [(1, "abc"), (4, "abc")]);
2073    ///
2074    /// let v: Vec<_> = "ababa".match_indices("aba").collect();
2075    /// assert_eq!(v, [(0, "aba")]); // only the first `aba`
2076    /// ```
2077    #[stable(feature = "str_match_indices", since = "1.5.0")]
2078    #[inline]
2079    pub fn match_indices<P: Pattern>(&self, pat: P) -> MatchIndices<'_, P> {
2080        MatchIndices(MatchIndicesInternal(pat.into_searcher(self)))
2081    }
2082
2083    /// Returns an iterator over the disjoint matches of a pattern within `self`,
2084    /// yielded in reverse order along with the index of the match.
2085    ///
2086    /// For matches of `pat` within `self` that overlap, only the indices
2087    /// corresponding to the last match are returned.
2088    ///
2089    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2090    /// function or closure that determines if a character matches.
2091    ///
2092    /// [`char`]: prim@char
2093    /// [pattern]: self::pattern
2094    ///
2095    /// # Iterator behavior
2096    ///
2097    /// The returned iterator requires that the pattern supports a reverse
2098    /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
2099    /// search yields the same elements.
2100    ///
2101    /// For iterating from the front, the [`match_indices`] method can be used.
2102    ///
2103    /// [`match_indices`]: str::match_indices
2104    ///
2105    /// # Examples
2106    ///
2107    /// ```
2108    /// let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
2109    /// assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);
2110    ///
2111    /// let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
2112    /// assert_eq!(v, [(4, "abc"), (1, "abc")]);
2113    ///
2114    /// let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
2115    /// assert_eq!(v, [(2, "aba")]); // only the last `aba`
2116    /// ```
2117    #[stable(feature = "str_match_indices", since = "1.5.0")]
2118    #[inline]
2119    pub fn rmatch_indices<P: Pattern>(&self, pat: P) -> RMatchIndices<'_, P>
2120    where
2121        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2122    {
2123        RMatchIndices(self.match_indices(pat).0)
2124    }
2125
2126    /// Returns a string slice with leading and trailing whitespace removed.
2127    ///
2128    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2129    /// Core Property `White_Space`, which includes newlines.
2130    ///
2131    /// # Examples
2132    ///
2133    /// ```
2134    /// let s = "\n Hello\tworld\t\n";
2135    ///
2136    /// assert_eq!("Hello\tworld", s.trim());
2137    /// ```
2138    #[inline]
2139    #[must_use = "this returns the trimmed string as a slice, \
2140                  without modifying the original"]
2141    #[stable(feature = "rust1", since = "1.0.0")]
2142    #[rustc_diagnostic_item = "str_trim"]
2143    pub fn trim(&self) -> &str {
2144        self.trim_matches(char::is_whitespace)
2145    }
2146
2147    /// Returns a string slice with leading whitespace removed.
2148    ///
2149    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2150    /// Core Property `White_Space`, which includes newlines.
2151    ///
2152    /// # Text directionality
2153    ///
2154    /// A string is a sequence of bytes. `start` in this context means the first
2155    /// position of that byte string; for a left-to-right language like English or
2156    /// Russian, this will be left side, and for right-to-left languages like
2157    /// Arabic or Hebrew, this will be the right side.
2158    ///
2159    /// # Examples
2160    ///
2161    /// Basic usage:
2162    ///
2163    /// ```
2164    /// let s = "\n Hello\tworld\t\n";
2165    /// assert_eq!("Hello\tworld\t\n", s.trim_start());
2166    /// ```
2167    ///
2168    /// Directionality:
2169    ///
2170    /// ```
2171    /// let s = "  English  ";
2172    /// assert!(Some('E') == s.trim_start().chars().next());
2173    ///
2174    /// let s = "  עברית  ";
2175    /// assert!(Some('ע') == s.trim_start().chars().next());
2176    /// ```
2177    #[inline]
2178    #[must_use = "this returns the trimmed string as a new slice, \
2179                  without modifying the original"]
2180    #[stable(feature = "trim_direction", since = "1.30.0")]
2181    #[rustc_diagnostic_item = "str_trim_start"]
2182    pub fn trim_start(&self) -> &str {
2183        self.trim_start_matches(char::is_whitespace)
2184    }
2185
2186    /// Returns a string slice with trailing whitespace removed.
2187    ///
2188    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2189    /// Core Property `White_Space`, which includes newlines.
2190    ///
2191    /// # Text directionality
2192    ///
2193    /// A string is a sequence of bytes. `end` in this context means the last
2194    /// position of that byte string; for a left-to-right language like English or
2195    /// Russian, this will be right side, and for right-to-left languages like
2196    /// Arabic or Hebrew, this will be the left side.
2197    ///
2198    /// # Examples
2199    ///
2200    /// Basic usage:
2201    ///
2202    /// ```
2203    /// let s = "\n Hello\tworld\t\n";
2204    /// assert_eq!("\n Hello\tworld", s.trim_end());
2205    /// ```
2206    ///
2207    /// Directionality:
2208    ///
2209    /// ```
2210    /// let s = "  English  ";
2211    /// assert!(Some('h') == s.trim_end().chars().rev().next());
2212    ///
2213    /// let s = "  עברית  ";
2214    /// assert!(Some('ת') == s.trim_end().chars().rev().next());
2215    /// ```
2216    #[inline]
2217    #[must_use = "this returns the trimmed string as a new slice, \
2218                  without modifying the original"]
2219    #[stable(feature = "trim_direction", since = "1.30.0")]
2220    #[rustc_diagnostic_item = "str_trim_end"]
2221    pub fn trim_end(&self) -> &str {
2222        self.trim_end_matches(char::is_whitespace)
2223    }
2224
2225    /// Returns a string slice with leading whitespace removed.
2226    ///
2227    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2228    /// Core Property `White_Space`.
2229    ///
2230    /// # Text directionality
2231    ///
2232    /// A string is a sequence of bytes. 'Left' in this context means the first
2233    /// position of that byte string; for a language like Arabic or Hebrew
2234    /// which are 'right to left' rather than 'left to right', this will be
2235    /// the _right_ side, not the left.
2236    ///
2237    /// # Examples
2238    ///
2239    /// Basic usage:
2240    ///
2241    /// ```
2242    /// let s = " Hello\tworld\t";
2243    ///
2244    /// assert_eq!("Hello\tworld\t", s.trim_left());
2245    /// ```
2246    ///
2247    /// Directionality:
2248    ///
2249    /// ```
2250    /// let s = "  English";
2251    /// assert!(Some('E') == s.trim_left().chars().next());
2252    ///
2253    /// let s = "  עברית";
2254    /// assert!(Some('ע') == s.trim_left().chars().next());
2255    /// ```
2256    #[must_use = "this returns the trimmed string as a new slice, \
2257                  without modifying the original"]
2258    #[inline]
2259    #[stable(feature = "rust1", since = "1.0.0")]
2260    #[deprecated(since = "1.33.0", note = "superseded by `trim_start`", suggestion = "trim_start")]
2261    pub fn trim_left(&self) -> &str {
2262        self.trim_start()
2263    }
2264
2265    /// Returns a string slice with trailing whitespace removed.
2266    ///
2267    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2268    /// Core Property `White_Space`.
2269    ///
2270    /// # Text directionality
2271    ///
2272    /// A string is a sequence of bytes. 'Right' in this context means the last
2273    /// position of that byte string; for a language like Arabic or Hebrew
2274    /// which are 'right to left' rather than 'left to right', this will be
2275    /// the _left_ side, not the right.
2276    ///
2277    /// # Examples
2278    ///
2279    /// Basic usage:
2280    ///
2281    /// ```
2282    /// let s = " Hello\tworld\t";
2283    ///
2284    /// assert_eq!(" Hello\tworld", s.trim_right());
2285    /// ```
2286    ///
2287    /// Directionality:
2288    ///
2289    /// ```
2290    /// let s = "English  ";
2291    /// assert!(Some('h') == s.trim_right().chars().rev().next());
2292    ///
2293    /// let s = "עברית  ";
2294    /// assert!(Some('ת') == s.trim_right().chars().rev().next());
2295    /// ```
2296    #[must_use = "this returns the trimmed string as a new slice, \
2297                  without modifying the original"]
2298    #[inline]
2299    #[stable(feature = "rust1", since = "1.0.0")]
2300    #[deprecated(since = "1.33.0", note = "superseded by `trim_end`", suggestion = "trim_end")]
2301    pub fn trim_right(&self) -> &str {
2302        self.trim_end()
2303    }
2304
2305    /// Returns a string slice with all prefixes and suffixes that match a
2306    /// pattern repeatedly removed.
2307    ///
2308    /// The [pattern] can be a [`char`], a slice of [`char`]s, or a function
2309    /// or closure that determines if a character matches.
2310    ///
2311    /// [`char`]: prim@char
2312    /// [pattern]: self::pattern
2313    ///
2314    /// # Examples
2315    ///
2316    /// Simple patterns:
2317    ///
2318    /// ```
2319    /// assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
2320    /// assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");
2321    ///
2322    /// let x: &[_] = &['1', '2'];
2323    /// assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");
2324    /// ```
2325    ///
2326    /// A more complex pattern, using a closure:
2327    ///
2328    /// ```
2329    /// assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
2330    /// ```
2331    #[must_use = "this returns the trimmed string as a new slice, \
2332                  without modifying the original"]
2333    #[stable(feature = "rust1", since = "1.0.0")]
2334    pub fn trim_matches<P: Pattern>(&self, pat: P) -> &str
2335    where
2336        for<'a> P::Searcher<'a>: DoubleEndedSearcher<'a>,
2337    {
2338        let mut i = 0;
2339        let mut j = 0;
2340        let mut matcher = pat.into_searcher(self);
2341        if let Some((a, b)) = matcher.next_reject() {
2342            i = a;
2343            j = b; // Remember earliest known match, correct it below if
2344            // last match is different
2345        }
2346        if let Some((_, b)) = matcher.next_reject_back() {
2347            j = b;
2348        }
2349        // SAFETY: `Searcher` is known to return valid indices.
2350        unsafe { self.get_unchecked(i..j) }
2351    }
2352
2353    /// Returns a string slice with all prefixes that match a pattern
2354    /// repeatedly removed.
2355    ///
2356    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2357    /// function or closure that determines if a character matches.
2358    ///
2359    /// [`char`]: prim@char
2360    /// [pattern]: self::pattern
2361    ///
2362    /// # Text directionality
2363    ///
2364    /// A string is a sequence of bytes. `start` in this context means the first
2365    /// position of that byte string; for a left-to-right language like English or
2366    /// Russian, this will be left side, and for right-to-left languages like
2367    /// Arabic or Hebrew, this will be the right side.
2368    ///
2369    /// # Examples
2370    ///
2371    /// ```
2372    /// assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11");
2373    /// assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123");
2374    ///
2375    /// let x: &[_] = &['1', '2'];
2376    /// assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");
2377    /// ```
2378    #[must_use = "this returns the trimmed string as a new slice, \
2379                  without modifying the original"]
2380    #[stable(feature = "trim_direction", since = "1.30.0")]
2381    pub fn trim_start_matches<P: Pattern>(&self, pat: P) -> &str {
2382        let mut i = self.len();
2383        let mut matcher = pat.into_searcher(self);
2384        if let Some((a, _)) = matcher.next_reject() {
2385            i = a;
2386        }
2387        // SAFETY: `Searcher` is known to return valid indices.
2388        unsafe { self.get_unchecked(i..self.len()) }
2389    }
2390
2391    /// Returns a string slice with the prefix removed.
2392    ///
2393    /// If the string starts with the pattern `prefix`, returns the substring after the prefix,
2394    /// wrapped in `Some`. Unlike [`trim_start_matches`], this method removes the prefix exactly once.
2395    ///
2396    /// If the string does not start with `prefix`, returns `None`.
2397    ///
2398    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2399    /// function or closure that determines if a character matches.
2400    ///
2401    /// [`char`]: prim@char
2402    /// [pattern]: self::pattern
2403    /// [`trim_start_matches`]: Self::trim_start_matches
2404    ///
2405    /// # Examples
2406    ///
2407    /// ```
2408    /// assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar"));
2409    /// assert_eq!("foo:bar".strip_prefix("bar"), None);
2410    /// assert_eq!("foofoo".strip_prefix("foo"), Some("foo"));
2411    /// ```
2412    #[must_use = "this returns the remaining substring as a new slice, \
2413                  without modifying the original"]
2414    #[stable(feature = "str_strip", since = "1.45.0")]
2415    pub fn strip_prefix<P: Pattern>(&self, prefix: P) -> Option<&str> {
2416        prefix.strip_prefix_of(self)
2417    }
2418
2419    /// Returns a string slice with the suffix removed.
2420    ///
2421    /// If the string ends with the pattern `suffix`, returns the substring before the suffix,
2422    /// wrapped in `Some`.  Unlike [`trim_end_matches`], this method removes the suffix exactly once.
2423    ///
2424    /// If the string does not end with `suffix`, returns `None`.
2425    ///
2426    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2427    /// function or closure that determines if a character matches.
2428    ///
2429    /// [`char`]: prim@char
2430    /// [pattern]: self::pattern
2431    /// [`trim_end_matches`]: Self::trim_end_matches
2432    ///
2433    /// # Examples
2434    ///
2435    /// ```
2436    /// assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar"));
2437    /// assert_eq!("bar:foo".strip_suffix("bar"), None);
2438    /// assert_eq!("foofoo".strip_suffix("foo"), Some("foo"));
2439    /// ```
2440    #[must_use = "this returns the remaining substring as a new slice, \
2441                  without modifying the original"]
2442    #[stable(feature = "str_strip", since = "1.45.0")]
2443    pub fn strip_suffix<P: Pattern>(&self, suffix: P) -> Option<&str>
2444    where
2445        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2446    {
2447        suffix.strip_suffix_of(self)
2448    }
2449
2450    /// Returns a string slice with the optional prefix removed.
2451    ///
2452    /// If the string starts with the pattern `prefix`, returns the substring after the prefix.
2453    /// Unlike [`strip_prefix`], this method always returns `&str` for easy method chaining,
2454    /// instead of returning [`Option<&str>`].
2455    ///
2456    /// If the string does not start with `prefix`, returns the original string unchanged.
2457    ///
2458    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2459    /// function or closure that determines if a character matches.
2460    ///
2461    /// [`char`]: prim@char
2462    /// [pattern]: self::pattern
2463    /// [`strip_prefix`]: Self::strip_prefix
2464    ///
2465    /// # Examples
2466    ///
2467    /// ```
2468    /// #![feature(trim_prefix_suffix)]
2469    ///
2470    /// // Prefix present - removes it
2471    /// assert_eq!("foo:bar".trim_prefix("foo:"), "bar");
2472    /// assert_eq!("foofoo".trim_prefix("foo"), "foo");
2473    ///
2474    /// // Prefix absent - returns original string
2475    /// assert_eq!("foo:bar".trim_prefix("bar"), "foo:bar");
2476    ///
2477    /// // Method chaining example
2478    /// assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");
2479    /// ```
2480    #[must_use = "this returns the remaining substring as a new slice, \
2481                  without modifying the original"]
2482    #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2483    pub fn trim_prefix<P: Pattern>(&self, prefix: P) -> &str {
2484        prefix.strip_prefix_of(self).unwrap_or(self)
2485    }
2486
2487    /// Returns a string slice with the optional suffix removed.
2488    ///
2489    /// If the string ends with the pattern `suffix`, returns the substring before the suffix.
2490    /// Unlike [`strip_suffix`], this method always returns `&str` for easy method chaining,
2491    /// instead of returning [`Option<&str>`].
2492    ///
2493    /// If the string does not end with `suffix`, returns the original string unchanged.
2494    ///
2495    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2496    /// function or closure that determines if a character matches.
2497    ///
2498    /// [`char`]: prim@char
2499    /// [pattern]: self::pattern
2500    /// [`strip_suffix`]: Self::strip_suffix
2501    ///
2502    /// # Examples
2503    ///
2504    /// ```
2505    /// #![feature(trim_prefix_suffix)]
2506    ///
2507    /// // Suffix present - removes it
2508    /// assert_eq!("bar:foo".trim_suffix(":foo"), "bar");
2509    /// assert_eq!("foofoo".trim_suffix("foo"), "foo");
2510    ///
2511    /// // Suffix absent - returns original string
2512    /// assert_eq!("bar:foo".trim_suffix("bar"), "bar:foo");
2513    ///
2514    /// // Method chaining example
2515    /// assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");
2516    /// ```
2517    #[must_use = "this returns the remaining substring as a new slice, \
2518                  without modifying the original"]
2519    #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2520    pub fn trim_suffix<P: Pattern>(&self, suffix: P) -> &str
2521    where
2522        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2523    {
2524        suffix.strip_suffix_of(self).unwrap_or(self)
2525    }
2526
2527    /// Returns a string slice with all suffixes that match a pattern
2528    /// repeatedly removed.
2529    ///
2530    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2531    /// function or closure that determines if a character matches.
2532    ///
2533    /// [`char`]: prim@char
2534    /// [pattern]: self::pattern
2535    ///
2536    /// # Text directionality
2537    ///
2538    /// A string is a sequence of bytes. `end` in this context means the last
2539    /// position of that byte string; for a left-to-right language like English or
2540    /// Russian, this will be right side, and for right-to-left languages like
2541    /// Arabic or Hebrew, this will be the left side.
2542    ///
2543    /// # Examples
2544    ///
2545    /// Simple patterns:
2546    ///
2547    /// ```
2548    /// assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar");
2549    /// assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar");
2550    ///
2551    /// let x: &[_] = &['1', '2'];
2552    /// assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");
2553    /// ```
2554    ///
2555    /// A more complex pattern, using a closure:
2556    ///
2557    /// ```
2558    /// assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");
2559    /// ```
2560    #[must_use = "this returns the trimmed string as a new slice, \
2561                  without modifying the original"]
2562    #[stable(feature = "trim_direction", since = "1.30.0")]
2563    pub fn trim_end_matches<P: Pattern>(&self, pat: P) -> &str
2564    where
2565        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2566    {
2567        let mut j = 0;
2568        let mut matcher = pat.into_searcher(self);
2569        if let Some((_, b)) = matcher.next_reject_back() {
2570            j = b;
2571        }
2572        // SAFETY: `Searcher` is known to return valid indices.
2573        unsafe { self.get_unchecked(0..j) }
2574    }
2575
2576    /// Returns a string slice with all prefixes that match a pattern
2577    /// repeatedly removed.
2578    ///
2579    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2580    /// function or closure that determines if a character matches.
2581    ///
2582    /// [`char`]: prim@char
2583    /// [pattern]: self::pattern
2584    ///
2585    /// # Text directionality
2586    ///
2587    /// A string is a sequence of bytes. 'Left' in this context means the first
2588    /// position of that byte string; for a language like Arabic or Hebrew
2589    /// which are 'right to left' rather than 'left to right', this will be
2590    /// the _right_ side, not the left.
2591    ///
2592    /// # Examples
2593    ///
2594    /// ```
2595    /// assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
2596    /// assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");
2597    ///
2598    /// let x: &[_] = &['1', '2'];
2599    /// assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
2600    /// ```
2601    #[stable(feature = "rust1", since = "1.0.0")]
2602    #[deprecated(
2603        since = "1.33.0",
2604        note = "superseded by `trim_start_matches`",
2605        suggestion = "trim_start_matches"
2606    )]
2607    pub fn trim_left_matches<P: Pattern>(&self, pat: P) -> &str {
2608        self.trim_start_matches(pat)
2609    }
2610
2611    /// Returns a string slice with all suffixes that match a pattern
2612    /// repeatedly removed.
2613    ///
2614    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2615    /// function or closure that determines if a character matches.
2616    ///
2617    /// [`char`]: prim@char
2618    /// [pattern]: self::pattern
2619    ///
2620    /// # Text directionality
2621    ///
2622    /// A string is a sequence of bytes. 'Right' in this context means the last
2623    /// position of that byte string; for a language like Arabic or Hebrew
2624    /// which are 'right to left' rather than 'left to right', this will be
2625    /// the _left_ side, not the right.
2626    ///
2627    /// # Examples
2628    ///
2629    /// Simple patterns:
2630    ///
2631    /// ```
2632    /// assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
2633    /// assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");
2634    ///
2635    /// let x: &[_] = &['1', '2'];
2636    /// assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");
2637    /// ```
2638    ///
2639    /// A more complex pattern, using a closure:
2640    ///
2641    /// ```
2642    /// assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");
2643    /// ```
2644    #[stable(feature = "rust1", since = "1.0.0")]
2645    #[deprecated(
2646        since = "1.33.0",
2647        note = "superseded by `trim_end_matches`",
2648        suggestion = "trim_end_matches"
2649    )]
2650    pub fn trim_right_matches<P: Pattern>(&self, pat: P) -> &str
2651    where
2652        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2653    {
2654        self.trim_end_matches(pat)
2655    }
2656
2657    /// Parses this string slice into another type.
2658    ///
2659    /// Because `parse` is so general, it can cause problems with type
2660    /// inference. As such, `parse` is one of the few times you'll see
2661    /// the syntax affectionately known as the 'turbofish': `::<>`. This
2662    /// helps the inference algorithm understand specifically which type
2663    /// you're trying to parse into.
2664    ///
2665    /// `parse` can parse into any type that implements the [`FromStr`] trait.
2666    ///
2667    /// # Errors
2668    ///
2669    /// Will return [`Err`] if it's not possible to parse this string slice into
2670    /// the desired type.
2671    ///
2672    /// [`Err`]: FromStr::Err
2673    ///
2674    /// # Examples
2675    ///
2676    /// Basic usage:
2677    ///
2678    /// ```
2679    /// let four: u32 = "4".parse().unwrap();
2680    ///
2681    /// assert_eq!(4, four);
2682    /// ```
2683    ///
2684    /// Using the 'turbofish' instead of annotating `four`:
2685    ///
2686    /// ```
2687    /// let four = "4".parse::<u32>();
2688    ///
2689    /// assert_eq!(Ok(4), four);
2690    /// ```
2691    ///
2692    /// Failing to parse:
2693    ///
2694    /// ```
2695    /// let nope = "j".parse::<u32>();
2696    ///
2697    /// assert!(nope.is_err());
2698    /// ```
2699    #[inline]
2700    #[stable(feature = "rust1", since = "1.0.0")]
2701    pub fn parse<F: FromStr>(&self) -> Result<F, F::Err> {
2702        FromStr::from_str(self)
2703    }
2704
2705    /// Checks if all characters in this string are within the ASCII range.
2706    ///
2707    /// # Examples
2708    ///
2709    /// ```
2710    /// let ascii = "hello!\n";
2711    /// let non_ascii = "Grüße, Jürgen ❤";
2712    ///
2713    /// assert!(ascii.is_ascii());
2714    /// assert!(!non_ascii.is_ascii());
2715    /// ```
2716    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2717    #[rustc_const_stable(feature = "const_slice_is_ascii", since = "1.74.0")]
2718    #[must_use]
2719    #[inline]
2720    pub const fn is_ascii(&self) -> bool {
2721        // We can treat each byte as character here: all multibyte characters
2722        // start with a byte that is not in the ASCII range, so we will stop
2723        // there already.
2724        self.as_bytes().is_ascii()
2725    }
2726
2727    /// If this string slice [`is_ascii`](Self::is_ascii), returns it as a slice
2728    /// of [ASCII characters](`ascii::Char`), otherwise returns `None`.
2729    #[unstable(feature = "ascii_char", issue = "110998")]
2730    #[must_use]
2731    #[inline]
2732    pub const fn as_ascii(&self) -> Option<&[ascii::Char]> {
2733        // Like in `is_ascii`, we can work on the bytes directly.
2734        self.as_bytes().as_ascii()
2735    }
2736
2737    /// Converts this string slice into a slice of [ASCII characters](ascii::Char),
2738    /// without checking whether they are valid.
2739    ///
2740    /// # Safety
2741    ///
2742    /// Every character in this string must be ASCII, or else this is UB.
2743    #[unstable(feature = "ascii_char", issue = "110998")]
2744    #[must_use]
2745    #[inline]
2746    pub const unsafe fn as_ascii_unchecked(&self) -> &[ascii::Char] {
2747        assert_unsafe_precondition!(
2748            check_library_ub,
2749            "as_ascii_unchecked requires that the string is valid ASCII",
2750            (it: &str = self) => it.is_ascii()
2751        );
2752
2753        // SAFETY: the caller promised that every byte of this string slice
2754        // is ASCII.
2755        unsafe { self.as_bytes().as_ascii_unchecked() }
2756    }
2757
2758    /// Checks that two strings are an ASCII case-insensitive match.
2759    ///
2760    /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`,
2761    /// but without allocating and copying temporaries.
2762    ///
2763    /// # Examples
2764    ///
2765    /// ```
2766    /// assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
2767    /// assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
2768    /// assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));
2769    /// ```
2770    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2771    #[rustc_const_stable(feature = "const_eq_ignore_ascii_case", since = "1.89.0")]
2772    #[must_use]
2773    #[inline]
2774    pub const fn eq_ignore_ascii_case(&self, other: &str) -> bool {
2775        self.as_bytes().eq_ignore_ascii_case(other.as_bytes())
2776    }
2777
2778    /// Converts this string to its ASCII upper case equivalent in-place.
2779    ///
2780    /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
2781    /// but non-ASCII letters are unchanged.
2782    ///
2783    /// To return a new uppercased value without modifying the existing one, use
2784    /// [`to_ascii_uppercase()`].
2785    ///
2786    /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
2787    ///
2788    /// # Examples
2789    ///
2790    /// ```
2791    /// let mut s = String::from("Grüße, Jürgen ❤");
2792    ///
2793    /// s.make_ascii_uppercase();
2794    ///
2795    /// assert_eq!("GRüßE, JüRGEN ❤", s);
2796    /// ```
2797    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2798    #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2799    #[inline]
2800    pub const fn make_ascii_uppercase(&mut self) {
2801        // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2802        let me = unsafe { self.as_bytes_mut() };
2803        me.make_ascii_uppercase()
2804    }
2805
2806    /// Converts this string to its ASCII lower case equivalent in-place.
2807    ///
2808    /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
2809    /// but non-ASCII letters are unchanged.
2810    ///
2811    /// To return a new lowercased value without modifying the existing one, use
2812    /// [`to_ascii_lowercase()`].
2813    ///
2814    /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
2815    ///
2816    /// # Examples
2817    ///
2818    /// ```
2819    /// let mut s = String::from("GRÜßE, JÜRGEN ❤");
2820    ///
2821    /// s.make_ascii_lowercase();
2822    ///
2823    /// assert_eq!("grÜße, jÜrgen ❤", s);
2824    /// ```
2825    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2826    #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2827    #[inline]
2828    pub const fn make_ascii_lowercase(&mut self) {
2829        // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2830        let me = unsafe { self.as_bytes_mut() };
2831        me.make_ascii_lowercase()
2832    }
2833
2834    /// Returns a string slice with leading ASCII whitespace removed.
2835    ///
2836    /// 'Whitespace' refers to the definition used by
2837    /// [`u8::is_ascii_whitespace`].
2838    ///
2839    /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2840    ///
2841    /// # Examples
2842    ///
2843    /// ```
2844    /// assert_eq!(" \t \u{3000}hello world\n".trim_ascii_start(), "\u{3000}hello world\n");
2845    /// assert_eq!("  ".trim_ascii_start(), "");
2846    /// assert_eq!("".trim_ascii_start(), "");
2847    /// ```
2848    #[must_use = "this returns the trimmed string as a new slice, \
2849                  without modifying the original"]
2850    #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2851    #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2852    #[inline]
2853    pub const fn trim_ascii_start(&self) -> &str {
2854        // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2855        // UTF-8.
2856        unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_start()) }
2857    }
2858
2859    /// Returns a string slice with trailing ASCII whitespace removed.
2860    ///
2861    /// 'Whitespace' refers to the definition used by
2862    /// [`u8::is_ascii_whitespace`].
2863    ///
2864    /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2865    ///
2866    /// # Examples
2867    ///
2868    /// ```
2869    /// assert_eq!("\r hello world\u{3000}\n ".trim_ascii_end(), "\r hello world\u{3000}");
2870    /// assert_eq!("  ".trim_ascii_end(), "");
2871    /// assert_eq!("".trim_ascii_end(), "");
2872    /// ```
2873    #[must_use = "this returns the trimmed string as a new slice, \
2874                  without modifying the original"]
2875    #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2876    #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2877    #[inline]
2878    pub const fn trim_ascii_end(&self) -> &str {
2879        // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2880        // UTF-8.
2881        unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_end()) }
2882    }
2883
2884    /// Returns a string slice with leading and trailing ASCII whitespace
2885    /// removed.
2886    ///
2887    /// 'Whitespace' refers to the definition used by
2888    /// [`u8::is_ascii_whitespace`].
2889    ///
2890    /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2891    ///
2892    /// # Examples
2893    ///
2894    /// ```
2895    /// assert_eq!("\r hello world\n ".trim_ascii(), "hello world");
2896    /// assert_eq!("  ".trim_ascii(), "");
2897    /// assert_eq!("".trim_ascii(), "");
2898    /// ```
2899    #[must_use = "this returns the trimmed string as a new slice, \
2900                  without modifying the original"]
2901    #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2902    #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2903    #[inline]
2904    pub const fn trim_ascii(&self) -> &str {
2905        // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2906        // UTF-8.
2907        unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii()) }
2908    }
2909
2910    /// Returns an iterator that escapes each char in `self` with [`char::escape_debug`].
2911    ///
2912    /// Note: only extended grapheme codepoints that begin the string will be
2913    /// escaped.
2914    ///
2915    /// # Examples
2916    ///
2917    /// As an iterator:
2918    ///
2919    /// ```
2920    /// for c in "❤\n!".escape_debug() {
2921    ///     print!("{c}");
2922    /// }
2923    /// println!();
2924    /// ```
2925    ///
2926    /// Using `println!` directly:
2927    ///
2928    /// ```
2929    /// println!("{}", "❤\n!".escape_debug());
2930    /// ```
2931    ///
2932    ///
2933    /// Both are equivalent to:
2934    ///
2935    /// ```
2936    /// println!("❤\\n!");
2937    /// ```
2938    ///
2939    /// Using `to_string`:
2940    ///
2941    /// ```
2942    /// assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!");
2943    /// ```
2944    #[must_use = "this returns the escaped string as an iterator, \
2945                  without modifying the original"]
2946    #[stable(feature = "str_escape", since = "1.34.0")]
2947    pub fn escape_debug(&self) -> EscapeDebug<'_> {
2948        let mut chars = self.chars();
2949        EscapeDebug {
2950            inner: chars
2951                .next()
2952                .map(|first| first.escape_debug_ext(EscapeDebugExtArgs::ESCAPE_ALL))
2953                .into_iter()
2954                .flatten()
2955                .chain(chars.flat_map(CharEscapeDebugContinue)),
2956        }
2957    }
2958
2959    /// Returns an iterator that escapes each char in `self` with [`char::escape_default`].
2960    ///
2961    /// # Examples
2962    ///
2963    /// As an iterator:
2964    ///
2965    /// ```
2966    /// for c in "❤\n!".escape_default() {
2967    ///     print!("{c}");
2968    /// }
2969    /// println!();
2970    /// ```
2971    ///
2972    /// Using `println!` directly:
2973    ///
2974    /// ```
2975    /// println!("{}", "❤\n!".escape_default());
2976    /// ```
2977    ///
2978    ///
2979    /// Both are equivalent to:
2980    ///
2981    /// ```
2982    /// println!("\\u{{2764}}\\n!");
2983    /// ```
2984    ///
2985    /// Using `to_string`:
2986    ///
2987    /// ```
2988    /// assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!");
2989    /// ```
2990    #[must_use = "this returns the escaped string as an iterator, \
2991                  without modifying the original"]
2992    #[stable(feature = "str_escape", since = "1.34.0")]
2993    pub fn escape_default(&self) -> EscapeDefault<'_> {
2994        EscapeDefault { inner: self.chars().flat_map(CharEscapeDefault) }
2995    }
2996
2997    /// Returns an iterator that escapes each char in `self` with [`char::escape_unicode`].
2998    ///
2999    /// # Examples
3000    ///
3001    /// As an iterator:
3002    ///
3003    /// ```
3004    /// for c in "❤\n!".escape_unicode() {
3005    ///     print!("{c}");
3006    /// }
3007    /// println!();
3008    /// ```
3009    ///
3010    /// Using `println!` directly:
3011    ///
3012    /// ```
3013    /// println!("{}", "❤\n!".escape_unicode());
3014    /// ```
3015    ///
3016    ///
3017    /// Both are equivalent to:
3018    ///
3019    /// ```
3020    /// println!("\\u{{2764}}\\u{{a}}\\u{{21}}");
3021    /// ```
3022    ///
3023    /// Using `to_string`:
3024    ///
3025    /// ```
3026    /// assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}");
3027    /// ```
3028    #[must_use = "this returns the escaped string as an iterator, \
3029                  without modifying the original"]
3030    #[stable(feature = "str_escape", since = "1.34.0")]
3031    pub fn escape_unicode(&self) -> EscapeUnicode<'_> {
3032        EscapeUnicode { inner: self.chars().flat_map(CharEscapeUnicode) }
3033    }
3034
3035    /// Returns the range that a substring points to.
3036    ///
3037    /// Returns `None` if `substr` does not point within `self`.
3038    ///
3039    /// Unlike [`str::find`], **this does not search through the string**.
3040    /// Instead, it uses pointer arithmetic to find where in the string
3041    /// `substr` is derived from.
3042    ///
3043    /// This is useful for extending [`str::split`] and similar methods.
3044    ///
3045    /// Note that this method may return false positives (typically either
3046    /// `Some(0..0)` or `Some(self.len()..self.len())`) if `substr` is a
3047    /// zero-length `str` that points at the beginning or end of another,
3048    /// independent, `str`.
3049    ///
3050    /// # Examples
3051    /// ```
3052    /// #![feature(substr_range)]
3053    ///
3054    /// let data = "a, b, b, a";
3055    /// let mut iter = data.split(", ").map(|s| data.substr_range(s).unwrap());
3056    ///
3057    /// assert_eq!(iter.next(), Some(0..1));
3058    /// assert_eq!(iter.next(), Some(3..4));
3059    /// assert_eq!(iter.next(), Some(6..7));
3060    /// assert_eq!(iter.next(), Some(9..10));
3061    /// ```
3062    #[must_use]
3063    #[unstable(feature = "substr_range", issue = "126769")]
3064    pub fn substr_range(&self, substr: &str) -> Option<Range<usize>> {
3065        self.as_bytes().subslice_range(substr.as_bytes())
3066    }
3067
3068    /// Returns the same string as a string slice `&str`.
3069    ///
3070    /// This method is redundant when used directly on `&str`, but
3071    /// it helps dereferencing other string-like types to string slices,
3072    /// for example references to `Box<str>` or `Arc<str>`.
3073    #[inline]
3074    #[unstable(feature = "str_as_str", issue = "130366")]
3075    pub fn as_str(&self) -> &str {
3076        self
3077    }
3078}
3079
3080#[stable(feature = "rust1", since = "1.0.0")]
3081impl AsRef<[u8]> for str {
3082    #[inline]
3083    fn as_ref(&self) -> &[u8] {
3084        self.as_bytes()
3085    }
3086}
3087
3088#[stable(feature = "rust1", since = "1.0.0")]
3089#[rustc_const_unstable(feature = "const_default", issue = "143894")]
3090impl const Default for &str {
3091    /// Creates an empty str
3092    #[inline]
3093    fn default() -> Self {
3094        ""
3095    }
3096}
3097
3098#[stable(feature = "default_mut_str", since = "1.28.0")]
3099#[rustc_const_unstable(feature = "const_default", issue = "143894")]
3100impl const Default for &mut str {
3101    /// Creates an empty mutable str
3102    #[inline]
3103    fn default() -> Self {
3104        // SAFETY: The empty string is valid UTF-8.
3105        unsafe { from_utf8_unchecked_mut(&mut []) }
3106    }
3107}
3108
3109impl_fn_for_zst! {
3110    /// A nameable, cloneable fn type
3111    #[derive(Clone)]
3112    struct LinesMap impl<'a> Fn = |line: &'a str| -> &'a str {
3113        let Some(line) = line.strip_suffix('\n') else { return line };
3114        let Some(line) = line.strip_suffix('\r') else { return line };
3115        line
3116    };
3117
3118    #[derive(Clone)]
3119    struct CharEscapeDebugContinue impl Fn = |c: char| -> char::EscapeDebug {
3120        c.escape_debug_ext(EscapeDebugExtArgs {
3121            escape_grapheme_extended: false,
3122            escape_single_quote: true,
3123            escape_double_quote: true
3124        })
3125    };
3126
3127    #[derive(Clone)]
3128    struct CharEscapeUnicode impl Fn = |c: char| -> char::EscapeUnicode {
3129        c.escape_unicode()
3130    };
3131    #[derive(Clone)]
3132    struct CharEscapeDefault impl Fn = |c: char| -> char::EscapeDefault {
3133        c.escape_default()
3134    };
3135
3136    #[derive(Clone)]
3137    struct IsWhitespace impl Fn = |c: char| -> bool {
3138        c.is_whitespace()
3139    };
3140
3141    #[derive(Clone)]
3142    struct IsAsciiWhitespace impl Fn = |byte: &u8| -> bool {
3143        byte.is_ascii_whitespace()
3144    };
3145
3146    #[derive(Clone)]
3147    struct IsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b str| -> bool {
3148        !s.is_empty()
3149    };
3150
3151    #[derive(Clone)]
3152    struct BytesIsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b [u8]| -> bool {
3153        !s.is_empty()
3154    };
3155
3156    #[derive(Clone)]
3157    struct UnsafeBytesToStr impl<'a> Fn = |bytes: &'a [u8]| -> &'a str {
3158        // SAFETY: not safe
3159        unsafe { from_utf8_unchecked(bytes) }
3160    };
3161}
3162
3163// This is required to make `impl From<&str> for Box<dyn Error>` and `impl<E> From<E> for Box<dyn Error>` not overlap.
3164#[stable(feature = "error_in_core_neg_impl", since = "1.65.0")]
3165impl !crate::error::Error for &str {}