core/str/mod.rs
1//! String manipulation.
2//!
3//! For more details, see the [`std::str`] module.
4//!
5//! [`std::str`]: ../../std/str/index.html
6
7#![stable(feature = "rust1", since = "1.0.0")]
8
9mod converts;
10mod count;
11mod error;
12mod iter;
13mod traits;
14mod validations;
15
16use self::pattern::{DoubleEndedSearcher, Pattern, ReverseSearcher, Searcher};
17use crate::char::{self, EscapeDebugExtArgs};
18use crate::ops::Range;
19use crate::slice::{self, SliceIndex};
20use crate::ub_checks::assert_unsafe_precondition;
21use crate::{ascii, mem};
22
23pub mod pattern;
24
25mod lossy;
26#[unstable(feature = "str_from_raw_parts", issue = "119206")]
27pub use converts::{from_raw_parts, from_raw_parts_mut};
28#[stable(feature = "rust1", since = "1.0.0")]
29pub use converts::{from_utf8, from_utf8_unchecked};
30#[stable(feature = "str_mut_extras", since = "1.20.0")]
31pub use converts::{from_utf8_mut, from_utf8_unchecked_mut};
32#[stable(feature = "rust1", since = "1.0.0")]
33pub use error::{ParseBoolError, Utf8Error};
34#[stable(feature = "encode_utf16", since = "1.8.0")]
35pub use iter::EncodeUtf16;
36#[stable(feature = "rust1", since = "1.0.0")]
37#[allow(deprecated)]
38pub use iter::LinesAny;
39#[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
40pub use iter::SplitAsciiWhitespace;
41#[stable(feature = "split_inclusive", since = "1.51.0")]
42pub use iter::SplitInclusive;
43#[stable(feature = "rust1", since = "1.0.0")]
44pub use iter::{Bytes, CharIndices, Chars, Lines, SplitWhitespace};
45#[stable(feature = "str_escape", since = "1.34.0")]
46pub use iter::{EscapeDebug, EscapeDefault, EscapeUnicode};
47#[stable(feature = "str_match_indices", since = "1.5.0")]
48pub use iter::{MatchIndices, RMatchIndices};
49use iter::{MatchIndicesInternal, MatchesInternal, SplitInternal, SplitNInternal};
50#[stable(feature = "str_matches", since = "1.2.0")]
51pub use iter::{Matches, RMatches};
52#[stable(feature = "rust1", since = "1.0.0")]
53pub use iter::{RSplit, RSplitTerminator, Split, SplitTerminator};
54#[stable(feature = "rust1", since = "1.0.0")]
55pub use iter::{RSplitN, SplitN};
56#[stable(feature = "utf8_chunks", since = "1.79.0")]
57pub use lossy::{Utf8Chunk, Utf8Chunks};
58#[stable(feature = "rust1", since = "1.0.0")]
59pub use traits::FromStr;
60#[unstable(feature = "str_internals", issue = "none")]
61pub use validations::{next_code_point, utf8_char_width};
62
63#[inline(never)]
64#[cold]
65#[track_caller]
66#[rustc_allow_const_fn_unstable(const_eval_select)]
67#[cfg(not(feature = "panic_immediate_abort"))]
68const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
69 crate::intrinsics::const_eval_select((s, begin, end), slice_error_fail_ct, slice_error_fail_rt)
70}
71
72#[cfg(feature = "panic_immediate_abort")]
73const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
74 slice_error_fail_ct(s, begin, end)
75}
76
77#[track_caller]
78const fn slice_error_fail_ct(_: &str, _: usize, _: usize) -> ! {
79 panic!("failed to slice string");
80}
81
82#[track_caller]
83fn slice_error_fail_rt(s: &str, begin: usize, end: usize) -> ! {
84 const MAX_DISPLAY_LENGTH: usize = 256;
85 let trunc_len = s.floor_char_boundary(MAX_DISPLAY_LENGTH);
86 let s_trunc = &s[..trunc_len];
87 let ellipsis = if trunc_len < s.len() { "[...]" } else { "" };
88
89 // 1. out of bounds
90 if begin > s.len() || end > s.len() {
91 let oob_index = if begin > s.len() { begin } else { end };
92 panic!("byte index {oob_index} is out of bounds of `{s_trunc}`{ellipsis}");
93 }
94
95 // 2. begin <= end
96 assert!(
97 begin <= end,
98 "begin <= end ({} <= {}) when slicing `{}`{}",
99 begin,
100 end,
101 s_trunc,
102 ellipsis
103 );
104
105 // 3. character boundary
106 let index = if !s.is_char_boundary(begin) { begin } else { end };
107 // find the character
108 let char_start = s.floor_char_boundary(index);
109 // `char_start` must be less than len and a char boundary
110 let ch = s[char_start..].chars().next().unwrap();
111 let char_range = char_start..char_start + ch.len_utf8();
112 panic!(
113 "byte index {} is not a char boundary; it is inside {:?} (bytes {:?}) of `{}`{}",
114 index, ch, char_range, s_trunc, ellipsis
115 );
116}
117
118impl str {
119 /// Returns the length of `self`.
120 ///
121 /// This length is in bytes, not [`char`]s or graphemes. In other words,
122 /// it might not be what a human considers the length of the string.
123 ///
124 /// [`char`]: prim@char
125 ///
126 /// # Examples
127 ///
128 /// ```
129 /// let len = "foo".len();
130 /// assert_eq!(3, len);
131 ///
132 /// assert_eq!("ƒoo".len(), 4); // fancy f!
133 /// assert_eq!("ƒoo".chars().count(), 3);
134 /// ```
135 #[stable(feature = "rust1", since = "1.0.0")]
136 #[rustc_const_stable(feature = "const_str_len", since = "1.39.0")]
137 #[rustc_diagnostic_item = "str_len"]
138 #[rustc_no_implicit_autorefs]
139 #[must_use]
140 #[inline]
141 pub const fn len(&self) -> usize {
142 self.as_bytes().len()
143 }
144
145 /// Returns `true` if `self` has a length of zero bytes.
146 ///
147 /// # Examples
148 ///
149 /// ```
150 /// let s = "";
151 /// assert!(s.is_empty());
152 ///
153 /// let s = "not empty";
154 /// assert!(!s.is_empty());
155 /// ```
156 #[stable(feature = "rust1", since = "1.0.0")]
157 #[rustc_const_stable(feature = "const_str_is_empty", since = "1.39.0")]
158 #[rustc_no_implicit_autorefs]
159 #[must_use]
160 #[inline]
161 pub const fn is_empty(&self) -> bool {
162 self.len() == 0
163 }
164
165 /// Converts a slice of bytes to a string slice.
166 ///
167 /// A string slice ([`&str`]) is made of bytes ([`u8`]), and a byte slice
168 /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts between
169 /// the two. Not all byte slices are valid string slices, however: [`&str`] requires
170 /// that it is valid UTF-8. `from_utf8()` checks to ensure that the bytes are valid
171 /// UTF-8, and then does the conversion.
172 ///
173 /// [`&str`]: str
174 /// [byteslice]: prim@slice
175 ///
176 /// If you are sure that the byte slice is valid UTF-8, and you don't want to
177 /// incur the overhead of the validity check, there is an unsafe version of
178 /// this function, [`from_utf8_unchecked`], which has the same
179 /// behavior but skips the check.
180 ///
181 /// If you need a `String` instead of a `&str`, consider
182 /// [`String::from_utf8`][string].
183 ///
184 /// [string]: ../std/string/struct.String.html#method.from_utf8
185 ///
186 /// Because you can stack-allocate a `[u8; N]`, and you can take a
187 /// [`&[u8]`][byteslice] of it, this function is one way to have a
188 /// stack-allocated string. There is an example of this in the
189 /// examples section below.
190 ///
191 /// [byteslice]: slice
192 ///
193 /// # Errors
194 ///
195 /// Returns `Err` if the slice is not UTF-8 with a description as to why the
196 /// provided slice is not UTF-8.
197 ///
198 /// # Examples
199 ///
200 /// Basic usage:
201 ///
202 /// ```
203 /// // some bytes, in a vector
204 /// let sparkle_heart = vec![240, 159, 146, 150];
205 ///
206 /// // We can use the ? (try) operator to check if the bytes are valid
207 /// let sparkle_heart = str::from_utf8(&sparkle_heart)?;
208 ///
209 /// assert_eq!("💖", sparkle_heart);
210 /// # Ok::<_, std::str::Utf8Error>(())
211 /// ```
212 ///
213 /// Incorrect bytes:
214 ///
215 /// ```
216 /// // some invalid bytes, in a vector
217 /// let sparkle_heart = vec![0, 159, 146, 150];
218 ///
219 /// assert!(str::from_utf8(&sparkle_heart).is_err());
220 /// ```
221 ///
222 /// See the docs for [`Utf8Error`] for more details on the kinds of
223 /// errors that can be returned.
224 ///
225 /// A "stack allocated string":
226 ///
227 /// ```
228 /// // some bytes, in a stack-allocated array
229 /// let sparkle_heart = [240, 159, 146, 150];
230 ///
231 /// // We know these bytes are valid, so just use `unwrap()`.
232 /// let sparkle_heart: &str = str::from_utf8(&sparkle_heart).unwrap();
233 ///
234 /// assert_eq!("💖", sparkle_heart);
235 /// ```
236 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
237 #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
238 #[rustc_diagnostic_item = "str_inherent_from_utf8"]
239 pub const fn from_utf8(v: &[u8]) -> Result<&str, Utf8Error> {
240 converts::from_utf8(v)
241 }
242
243 /// Converts a mutable slice of bytes to a mutable string slice.
244 ///
245 /// # Examples
246 ///
247 /// Basic usage:
248 ///
249 /// ```
250 /// // "Hello, Rust!" as a mutable vector
251 /// let mut hellorust = vec![72, 101, 108, 108, 111, 44, 32, 82, 117, 115, 116, 33];
252 ///
253 /// // As we know these bytes are valid, we can use `unwrap()`
254 /// let outstr = str::from_utf8_mut(&mut hellorust).unwrap();
255 ///
256 /// assert_eq!("Hello, Rust!", outstr);
257 /// ```
258 ///
259 /// Incorrect bytes:
260 ///
261 /// ```
262 /// // Some invalid bytes in a mutable vector
263 /// let mut invalid = vec![128, 223];
264 ///
265 /// assert!(str::from_utf8_mut(&mut invalid).is_err());
266 /// ```
267 /// See the docs for [`Utf8Error`] for more details on the kinds of
268 /// errors that can be returned.
269 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
270 #[rustc_const_stable(feature = "const_str_from_utf8", since = "1.87.0")]
271 #[rustc_diagnostic_item = "str_inherent_from_utf8_mut"]
272 pub const fn from_utf8_mut(v: &mut [u8]) -> Result<&mut str, Utf8Error> {
273 converts::from_utf8_mut(v)
274 }
275
276 /// Converts a slice of bytes to a string slice without checking
277 /// that the string contains valid UTF-8.
278 ///
279 /// See the safe version, [`from_utf8`], for more information.
280 ///
281 /// # Safety
282 ///
283 /// The bytes passed in must be valid UTF-8.
284 ///
285 /// # Examples
286 ///
287 /// Basic usage:
288 ///
289 /// ```
290 /// // some bytes, in a vector
291 /// let sparkle_heart = vec![240, 159, 146, 150];
292 ///
293 /// let sparkle_heart = unsafe {
294 /// str::from_utf8_unchecked(&sparkle_heart)
295 /// };
296 ///
297 /// assert_eq!("💖", sparkle_heart);
298 /// ```
299 #[inline]
300 #[must_use]
301 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
302 #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
303 #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked"]
304 pub const unsafe fn from_utf8_unchecked(v: &[u8]) -> &str {
305 // SAFETY: converts::from_utf8_unchecked has the same safety requirements as this function.
306 unsafe { converts::from_utf8_unchecked(v) }
307 }
308
309 /// Converts a slice of bytes to a string slice without checking
310 /// that the string contains valid UTF-8; mutable version.
311 ///
312 /// See the immutable version, [`from_utf8_unchecked()`] for documentation and safety requirements.
313 ///
314 /// # Examples
315 ///
316 /// Basic usage:
317 ///
318 /// ```
319 /// let mut heart = vec![240, 159, 146, 150];
320 /// let heart = unsafe { str::from_utf8_unchecked_mut(&mut heart) };
321 ///
322 /// assert_eq!("💖", heart);
323 /// ```
324 #[inline]
325 #[must_use]
326 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
327 #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
328 #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked_mut"]
329 pub const unsafe fn from_utf8_unchecked_mut(v: &mut [u8]) -> &mut str {
330 // SAFETY: converts::from_utf8_unchecked_mut has the same safety requirements as this function.
331 unsafe { converts::from_utf8_unchecked_mut(v) }
332 }
333
334 /// Checks that `index`-th byte is the first byte in a UTF-8 code point
335 /// sequence or the end of the string.
336 ///
337 /// The start and end of the string (when `index == self.len()`) are
338 /// considered to be boundaries.
339 ///
340 /// Returns `false` if `index` is greater than `self.len()`.
341 ///
342 /// # Examples
343 ///
344 /// ```
345 /// let s = "Löwe 老虎 Léopard";
346 /// assert!(s.is_char_boundary(0));
347 /// // start of `老`
348 /// assert!(s.is_char_boundary(6));
349 /// assert!(s.is_char_boundary(s.len()));
350 ///
351 /// // second byte of `ö`
352 /// assert!(!s.is_char_boundary(2));
353 ///
354 /// // third byte of `老`
355 /// assert!(!s.is_char_boundary(8));
356 /// ```
357 #[must_use]
358 #[stable(feature = "is_char_boundary", since = "1.9.0")]
359 #[rustc_const_stable(feature = "const_is_char_boundary", since = "1.86.0")]
360 #[inline]
361 pub const fn is_char_boundary(&self, index: usize) -> bool {
362 // 0 is always ok.
363 // Test for 0 explicitly so that it can optimize out the check
364 // easily and skip reading string data for that case.
365 // Note that optimizing `self.get(..index)` relies on this.
366 if index == 0 {
367 return true;
368 }
369
370 if index >= self.len() {
371 // For `true` we have two options:
372 //
373 // - index == self.len()
374 // Empty strings are valid, so return true
375 // - index > self.len()
376 // In this case return false
377 //
378 // The check is placed exactly here, because it improves generated
379 // code on higher opt-levels. See PR #84751 for more details.
380 index == self.len()
381 } else {
382 self.as_bytes()[index].is_utf8_char_boundary()
383 }
384 }
385
386 /// Finds the closest `x` not exceeding `index` where [`is_char_boundary(x)`] is `true`.
387 ///
388 /// This method can help you truncate a string so that it's still valid UTF-8, but doesn't
389 /// exceed a given number of bytes. Note that this is done purely at the character level
390 /// and can still visually split graphemes, even though the underlying characters aren't
391 /// split. For example, the emoji 🧑🔬 (scientist) could be split so that the string only
392 /// includes 🧑 (person) instead.
393 ///
394 /// [`is_char_boundary(x)`]: Self::is_char_boundary
395 ///
396 /// # Examples
397 ///
398 /// ```
399 /// #![feature(round_char_boundary)]
400 /// let s = "❤️🧡💛💚💙💜";
401 /// assert_eq!(s.len(), 26);
402 /// assert!(!s.is_char_boundary(13));
403 ///
404 /// let closest = s.floor_char_boundary(13);
405 /// assert_eq!(closest, 10);
406 /// assert_eq!(&s[..closest], "❤️🧡");
407 /// ```
408 #[unstable(feature = "round_char_boundary", issue = "93743")]
409 #[inline]
410 pub const fn floor_char_boundary(&self, index: usize) -> usize {
411 if index >= self.len() {
412 self.len()
413 } else {
414 let mut i = index;
415 while i > 0 {
416 if self.as_bytes()[i].is_utf8_char_boundary() {
417 break;
418 }
419 i -= 1;
420 }
421
422 // The character boundary will be within four bytes of the index
423 debug_assert!(i >= index.saturating_sub(3));
424
425 i
426 }
427 }
428
429 /// Finds the closest `x` not below `index` where [`is_char_boundary(x)`] is `true`.
430 ///
431 /// If `index` is greater than the length of the string, this returns the length of the string.
432 ///
433 /// This method is the natural complement to [`floor_char_boundary`]. See that method
434 /// for more details.
435 ///
436 /// [`floor_char_boundary`]: str::floor_char_boundary
437 /// [`is_char_boundary(x)`]: Self::is_char_boundary
438 ///
439 /// # Examples
440 ///
441 /// ```
442 /// #![feature(round_char_boundary)]
443 /// let s = "❤️🧡💛💚💙💜";
444 /// assert_eq!(s.len(), 26);
445 /// assert!(!s.is_char_boundary(13));
446 ///
447 /// let closest = s.ceil_char_boundary(13);
448 /// assert_eq!(closest, 14);
449 /// assert_eq!(&s[..closest], "❤️🧡💛");
450 /// ```
451 #[unstable(feature = "round_char_boundary", issue = "93743")]
452 #[inline]
453 pub const fn ceil_char_boundary(&self, index: usize) -> usize {
454 if index >= self.len() {
455 self.len()
456 } else {
457 let mut i = index;
458 while i < self.len() {
459 if self.as_bytes()[i].is_utf8_char_boundary() {
460 break;
461 }
462 i += 1;
463 }
464
465 // The character boundary will be within four bytes of the index
466 debug_assert!(i <= index + 3);
467
468 i
469 }
470 }
471
472 /// Converts a string slice to a byte slice. To convert the byte slice back
473 /// into a string slice, use the [`from_utf8`] function.
474 ///
475 /// # Examples
476 ///
477 /// ```
478 /// let bytes = "bors".as_bytes();
479 /// assert_eq!(b"bors", bytes);
480 /// ```
481 #[stable(feature = "rust1", since = "1.0.0")]
482 #[rustc_const_stable(feature = "str_as_bytes", since = "1.39.0")]
483 #[must_use]
484 #[inline(always)]
485 #[allow(unused_attributes)]
486 pub const fn as_bytes(&self) -> &[u8] {
487 // SAFETY: const sound because we transmute two types with the same layout
488 unsafe { mem::transmute(self) }
489 }
490
491 /// Converts a mutable string slice to a mutable byte slice.
492 ///
493 /// # Safety
494 ///
495 /// The caller must ensure that the content of the slice is valid UTF-8
496 /// before the borrow ends and the underlying `str` is used.
497 ///
498 /// Use of a `str` whose contents are not valid UTF-8 is undefined behavior.
499 ///
500 /// # Examples
501 ///
502 /// Basic usage:
503 ///
504 /// ```
505 /// let mut s = String::from("Hello");
506 /// let bytes = unsafe { s.as_bytes_mut() };
507 ///
508 /// assert_eq!(b"Hello", bytes);
509 /// ```
510 ///
511 /// Mutability:
512 ///
513 /// ```
514 /// let mut s = String::from("🗻∈🌏");
515 ///
516 /// unsafe {
517 /// let bytes = s.as_bytes_mut();
518 ///
519 /// bytes[0] = 0xF0;
520 /// bytes[1] = 0x9F;
521 /// bytes[2] = 0x8D;
522 /// bytes[3] = 0x94;
523 /// }
524 ///
525 /// assert_eq!("🍔∈🌏", s);
526 /// ```
527 #[stable(feature = "str_mut_extras", since = "1.20.0")]
528 #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
529 #[must_use]
530 #[inline(always)]
531 pub const unsafe fn as_bytes_mut(&mut self) -> &mut [u8] {
532 // SAFETY: the cast from `&str` to `&[u8]` is safe since `str`
533 // has the same layout as `&[u8]` (only std can make this guarantee).
534 // The pointer dereference is safe since it comes from a mutable reference which
535 // is guaranteed to be valid for writes.
536 unsafe { &mut *(self as *mut str as *mut [u8]) }
537 }
538
539 /// Converts a string slice to a raw pointer.
540 ///
541 /// As string slices are a slice of bytes, the raw pointer points to a
542 /// [`u8`]. This pointer will be pointing to the first byte of the string
543 /// slice.
544 ///
545 /// The caller must ensure that the returned pointer is never written to.
546 /// If you need to mutate the contents of the string slice, use [`as_mut_ptr`].
547 ///
548 /// [`as_mut_ptr`]: str::as_mut_ptr
549 ///
550 /// # Examples
551 ///
552 /// ```
553 /// let s = "Hello";
554 /// let ptr = s.as_ptr();
555 /// ```
556 #[stable(feature = "rust1", since = "1.0.0")]
557 #[rustc_const_stable(feature = "rustc_str_as_ptr", since = "1.32.0")]
558 #[rustc_never_returns_null_ptr]
559 #[rustc_as_ptr]
560 #[must_use]
561 #[inline(always)]
562 pub const fn as_ptr(&self) -> *const u8 {
563 self as *const str as *const u8
564 }
565
566 /// Converts a mutable string slice to a raw pointer.
567 ///
568 /// As string slices are a slice of bytes, the raw pointer points to a
569 /// [`u8`]. This pointer will be pointing to the first byte of the string
570 /// slice.
571 ///
572 /// It is your responsibility to make sure that the string slice only gets
573 /// modified in a way that it remains valid UTF-8.
574 #[stable(feature = "str_as_mut_ptr", since = "1.36.0")]
575 #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
576 #[rustc_never_returns_null_ptr]
577 #[rustc_as_ptr]
578 #[must_use]
579 #[inline(always)]
580 pub const fn as_mut_ptr(&mut self) -> *mut u8 {
581 self as *mut str as *mut u8
582 }
583
584 /// Returns a subslice of `str`.
585 ///
586 /// This is the non-panicking alternative to indexing the `str`. Returns
587 /// [`None`] whenever equivalent indexing operation would panic.
588 ///
589 /// # Examples
590 ///
591 /// ```
592 /// let v = String::from("🗻∈🌏");
593 ///
594 /// assert_eq!(Some("🗻"), v.get(0..4));
595 ///
596 /// // indices not on UTF-8 sequence boundaries
597 /// assert!(v.get(1..).is_none());
598 /// assert!(v.get(..8).is_none());
599 ///
600 /// // out of bounds
601 /// assert!(v.get(..42).is_none());
602 /// ```
603 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
604 #[rustc_const_unstable(feature = "const_index", issue = "143775")]
605 #[inline]
606 pub const fn get<I: [const] SliceIndex<str>>(&self, i: I) -> Option<&I::Output> {
607 i.get(self)
608 }
609
610 /// Returns a mutable subslice of `str`.
611 ///
612 /// This is the non-panicking alternative to indexing the `str`. Returns
613 /// [`None`] whenever equivalent indexing operation would panic.
614 ///
615 /// # Examples
616 ///
617 /// ```
618 /// let mut v = String::from("hello");
619 /// // correct length
620 /// assert!(v.get_mut(0..5).is_some());
621 /// // out of bounds
622 /// assert!(v.get_mut(..42).is_none());
623 /// assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v));
624 ///
625 /// assert_eq!("hello", v);
626 /// {
627 /// let s = v.get_mut(0..2);
628 /// let s = s.map(|s| {
629 /// s.make_ascii_uppercase();
630 /// &*s
631 /// });
632 /// assert_eq!(Some("HE"), s);
633 /// }
634 /// assert_eq!("HEllo", v);
635 /// ```
636 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
637 #[rustc_const_unstable(feature = "const_index", issue = "143775")]
638 #[inline]
639 pub const fn get_mut<I: [const] SliceIndex<str>>(&mut self, i: I) -> Option<&mut I::Output> {
640 i.get_mut(self)
641 }
642
643 /// Returns an unchecked subslice of `str`.
644 ///
645 /// This is the unchecked alternative to indexing the `str`.
646 ///
647 /// # Safety
648 ///
649 /// Callers of this function are responsible that these preconditions are
650 /// satisfied:
651 ///
652 /// * The starting index must not exceed the ending index;
653 /// * Indexes must be within bounds of the original slice;
654 /// * Indexes must lie on UTF-8 sequence boundaries.
655 ///
656 /// Failing that, the returned string slice may reference invalid memory or
657 /// violate the invariants communicated by the `str` type.
658 ///
659 /// # Examples
660 ///
661 /// ```
662 /// let v = "🗻∈🌏";
663 /// unsafe {
664 /// assert_eq!("🗻", v.get_unchecked(0..4));
665 /// assert_eq!("∈", v.get_unchecked(4..7));
666 /// assert_eq!("🌏", v.get_unchecked(7..11));
667 /// }
668 /// ```
669 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
670 #[inline]
671 pub unsafe fn get_unchecked<I: SliceIndex<str>>(&self, i: I) -> &I::Output {
672 // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
673 // the slice is dereferenceable because `self` is a safe reference.
674 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
675 unsafe { &*i.get_unchecked(self) }
676 }
677
678 /// Returns a mutable, unchecked subslice of `str`.
679 ///
680 /// This is the unchecked alternative to indexing the `str`.
681 ///
682 /// # Safety
683 ///
684 /// Callers of this function are responsible that these preconditions are
685 /// satisfied:
686 ///
687 /// * The starting index must not exceed the ending index;
688 /// * Indexes must be within bounds of the original slice;
689 /// * Indexes must lie on UTF-8 sequence boundaries.
690 ///
691 /// Failing that, the returned string slice may reference invalid memory or
692 /// violate the invariants communicated by the `str` type.
693 ///
694 /// # Examples
695 ///
696 /// ```
697 /// let mut v = String::from("🗻∈🌏");
698 /// unsafe {
699 /// assert_eq!("🗻", v.get_unchecked_mut(0..4));
700 /// assert_eq!("∈", v.get_unchecked_mut(4..7));
701 /// assert_eq!("🌏", v.get_unchecked_mut(7..11));
702 /// }
703 /// ```
704 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
705 #[inline]
706 pub unsafe fn get_unchecked_mut<I: SliceIndex<str>>(&mut self, i: I) -> &mut I::Output {
707 // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
708 // the slice is dereferenceable because `self` is a safe reference.
709 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
710 unsafe { &mut *i.get_unchecked_mut(self) }
711 }
712
713 /// Creates a string slice from another string slice, bypassing safety
714 /// checks.
715 ///
716 /// This is generally not recommended, use with caution! For a safe
717 /// alternative see [`str`] and [`Index`].
718 ///
719 /// [`Index`]: crate::ops::Index
720 ///
721 /// This new slice goes from `begin` to `end`, including `begin` but
722 /// excluding `end`.
723 ///
724 /// To get a mutable string slice instead, see the
725 /// [`slice_mut_unchecked`] method.
726 ///
727 /// [`slice_mut_unchecked`]: str::slice_mut_unchecked
728 ///
729 /// # Safety
730 ///
731 /// Callers of this function are responsible that three preconditions are
732 /// satisfied:
733 ///
734 /// * `begin` must not exceed `end`.
735 /// * `begin` and `end` must be byte positions within the string slice.
736 /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
737 ///
738 /// # Examples
739 ///
740 /// ```
741 /// let s = "Löwe 老虎 Léopard";
742 ///
743 /// unsafe {
744 /// assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
745 /// }
746 ///
747 /// let s = "Hello, world!";
748 ///
749 /// unsafe {
750 /// assert_eq!("world", s.slice_unchecked(7, 12));
751 /// }
752 /// ```
753 #[stable(feature = "rust1", since = "1.0.0")]
754 #[deprecated(since = "1.29.0", note = "use `get_unchecked(begin..end)` instead")]
755 #[must_use]
756 #[inline]
757 pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str {
758 // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
759 // the slice is dereferenceable because `self` is a safe reference.
760 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
761 unsafe { &*(begin..end).get_unchecked(self) }
762 }
763
764 /// Creates a string slice from another string slice, bypassing safety
765 /// checks.
766 ///
767 /// This is generally not recommended, use with caution! For a safe
768 /// alternative see [`str`] and [`IndexMut`].
769 ///
770 /// [`IndexMut`]: crate::ops::IndexMut
771 ///
772 /// This new slice goes from `begin` to `end`, including `begin` but
773 /// excluding `end`.
774 ///
775 /// To get an immutable string slice instead, see the
776 /// [`slice_unchecked`] method.
777 ///
778 /// [`slice_unchecked`]: str::slice_unchecked
779 ///
780 /// # Safety
781 ///
782 /// Callers of this function are responsible that three preconditions are
783 /// satisfied:
784 ///
785 /// * `begin` must not exceed `end`.
786 /// * `begin` and `end` must be byte positions within the string slice.
787 /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
788 #[stable(feature = "str_slice_mut", since = "1.5.0")]
789 #[deprecated(since = "1.29.0", note = "use `get_unchecked_mut(begin..end)` instead")]
790 #[inline]
791 pub unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str {
792 // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
793 // the slice is dereferenceable because `self` is a safe reference.
794 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
795 unsafe { &mut *(begin..end).get_unchecked_mut(self) }
796 }
797
798 /// Divides one string slice into two at an index.
799 ///
800 /// The argument, `mid`, should be a byte offset from the start of the
801 /// string. It must also be on the boundary of a UTF-8 code point.
802 ///
803 /// The two slices returned go from the start of the string slice to `mid`,
804 /// and from `mid` to the end of the string slice.
805 ///
806 /// To get mutable string slices instead, see the [`split_at_mut`]
807 /// method.
808 ///
809 /// [`split_at_mut`]: str::split_at_mut
810 ///
811 /// # Panics
812 ///
813 /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
814 /// the end of the last code point of the string slice. For a non-panicking
815 /// alternative see [`split_at_checked`](str::split_at_checked).
816 ///
817 /// # Examples
818 ///
819 /// ```
820 /// let s = "Per Martin-Löf";
821 ///
822 /// let (first, last) = s.split_at(3);
823 ///
824 /// assert_eq!("Per", first);
825 /// assert_eq!(" Martin-Löf", last);
826 /// ```
827 #[inline]
828 #[must_use]
829 #[stable(feature = "str_split_at", since = "1.4.0")]
830 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
831 pub const fn split_at(&self, mid: usize) -> (&str, &str) {
832 match self.split_at_checked(mid) {
833 None => slice_error_fail(self, 0, mid),
834 Some(pair) => pair,
835 }
836 }
837
838 /// Divides one mutable string slice into two at an index.
839 ///
840 /// The argument, `mid`, should be a byte offset from the start of the
841 /// string. It must also be on the boundary of a UTF-8 code point.
842 ///
843 /// The two slices returned go from the start of the string slice to `mid`,
844 /// and from `mid` to the end of the string slice.
845 ///
846 /// To get immutable string slices instead, see the [`split_at`] method.
847 ///
848 /// [`split_at`]: str::split_at
849 ///
850 /// # Panics
851 ///
852 /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
853 /// the end of the last code point of the string slice. For a non-panicking
854 /// alternative see [`split_at_mut_checked`](str::split_at_mut_checked).
855 ///
856 /// # Examples
857 ///
858 /// ```
859 /// let mut s = "Per Martin-Löf".to_string();
860 /// {
861 /// let (first, last) = s.split_at_mut(3);
862 /// first.make_ascii_uppercase();
863 /// assert_eq!("PER", first);
864 /// assert_eq!(" Martin-Löf", last);
865 /// }
866 /// assert_eq!("PER Martin-Löf", s);
867 /// ```
868 #[inline]
869 #[must_use]
870 #[stable(feature = "str_split_at", since = "1.4.0")]
871 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
872 pub const fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str) {
873 // is_char_boundary checks that the index is in [0, .len()]
874 if self.is_char_boundary(mid) {
875 // SAFETY: just checked that `mid` is on a char boundary.
876 unsafe { self.split_at_mut_unchecked(mid) }
877 } else {
878 slice_error_fail(self, 0, mid)
879 }
880 }
881
882 /// Divides one string slice into two at an index.
883 ///
884 /// The argument, `mid`, should be a valid byte offset from the start of the
885 /// string. It must also be on the boundary of a UTF-8 code point. The
886 /// method returns `None` if that’s not the case.
887 ///
888 /// The two slices returned go from the start of the string slice to `mid`,
889 /// and from `mid` to the end of the string slice.
890 ///
891 /// To get mutable string slices instead, see the [`split_at_mut_checked`]
892 /// method.
893 ///
894 /// [`split_at_mut_checked`]: str::split_at_mut_checked
895 ///
896 /// # Examples
897 ///
898 /// ```
899 /// let s = "Per Martin-Löf";
900 ///
901 /// let (first, last) = s.split_at_checked(3).unwrap();
902 /// assert_eq!("Per", first);
903 /// assert_eq!(" Martin-Löf", last);
904 ///
905 /// assert_eq!(None, s.split_at_checked(13)); // Inside “ö”
906 /// assert_eq!(None, s.split_at_checked(16)); // Beyond the string length
907 /// ```
908 #[inline]
909 #[must_use]
910 #[stable(feature = "split_at_checked", since = "1.80.0")]
911 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
912 pub const fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)> {
913 // is_char_boundary checks that the index is in [0, .len()]
914 if self.is_char_boundary(mid) {
915 // SAFETY: just checked that `mid` is on a char boundary.
916 Some(unsafe { self.split_at_unchecked(mid) })
917 } else {
918 None
919 }
920 }
921
922 /// Divides one mutable string slice into two at an index.
923 ///
924 /// The argument, `mid`, should be a valid byte offset from the start of the
925 /// string. It must also be on the boundary of a UTF-8 code point. The
926 /// method returns `None` if that’s not the case.
927 ///
928 /// The two slices returned go from the start of the string slice to `mid`,
929 /// and from `mid` to the end of the string slice.
930 ///
931 /// To get immutable string slices instead, see the [`split_at_checked`] method.
932 ///
933 /// [`split_at_checked`]: str::split_at_checked
934 ///
935 /// # Examples
936 ///
937 /// ```
938 /// let mut s = "Per Martin-Löf".to_string();
939 /// if let Some((first, last)) = s.split_at_mut_checked(3) {
940 /// first.make_ascii_uppercase();
941 /// assert_eq!("PER", first);
942 /// assert_eq!(" Martin-Löf", last);
943 /// }
944 /// assert_eq!("PER Martin-Löf", s);
945 ///
946 /// assert_eq!(None, s.split_at_mut_checked(13)); // Inside “ö”
947 /// assert_eq!(None, s.split_at_mut_checked(16)); // Beyond the string length
948 /// ```
949 #[inline]
950 #[must_use]
951 #[stable(feature = "split_at_checked", since = "1.80.0")]
952 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
953 pub const fn split_at_mut_checked(&mut self, mid: usize) -> Option<(&mut str, &mut str)> {
954 // is_char_boundary checks that the index is in [0, .len()]
955 if self.is_char_boundary(mid) {
956 // SAFETY: just checked that `mid` is on a char boundary.
957 Some(unsafe { self.split_at_mut_unchecked(mid) })
958 } else {
959 None
960 }
961 }
962
963 /// Divides one string slice into two at an index.
964 ///
965 /// # Safety
966 ///
967 /// The caller must ensure that `mid` is a valid byte offset from the start
968 /// of the string and falls on the boundary of a UTF-8 code point.
969 #[inline]
970 const unsafe fn split_at_unchecked(&self, mid: usize) -> (&str, &str) {
971 let len = self.len();
972 let ptr = self.as_ptr();
973 // SAFETY: caller guarantees `mid` is on a char boundary.
974 unsafe {
975 (
976 from_utf8_unchecked(slice::from_raw_parts(ptr, mid)),
977 from_utf8_unchecked(slice::from_raw_parts(ptr.add(mid), len - mid)),
978 )
979 }
980 }
981
982 /// Divides one string slice into two at an index.
983 ///
984 /// # Safety
985 ///
986 /// The caller must ensure that `mid` is a valid byte offset from the start
987 /// of the string and falls on the boundary of a UTF-8 code point.
988 const unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut str, &mut str) {
989 let len = self.len();
990 let ptr = self.as_mut_ptr();
991 // SAFETY: caller guarantees `mid` is on a char boundary.
992 unsafe {
993 (
994 from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr, mid)),
995 from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr.add(mid), len - mid)),
996 )
997 }
998 }
999
1000 /// Returns an iterator over the [`char`]s of a string slice.
1001 ///
1002 /// As a string slice consists of valid UTF-8, we can iterate through a
1003 /// string slice by [`char`]. This method returns such an iterator.
1004 ///
1005 /// It's important to remember that [`char`] represents a Unicode Scalar
1006 /// Value, and might not match your idea of what a 'character' is. Iteration
1007 /// over grapheme clusters may be what you actually want. This functionality
1008 /// is not provided by Rust's standard library, check crates.io instead.
1009 ///
1010 /// # Examples
1011 ///
1012 /// Basic usage:
1013 ///
1014 /// ```
1015 /// let word = "goodbye";
1016 ///
1017 /// let count = word.chars().count();
1018 /// assert_eq!(7, count);
1019 ///
1020 /// let mut chars = word.chars();
1021 ///
1022 /// assert_eq!(Some('g'), chars.next());
1023 /// assert_eq!(Some('o'), chars.next());
1024 /// assert_eq!(Some('o'), chars.next());
1025 /// assert_eq!(Some('d'), chars.next());
1026 /// assert_eq!(Some('b'), chars.next());
1027 /// assert_eq!(Some('y'), chars.next());
1028 /// assert_eq!(Some('e'), chars.next());
1029 ///
1030 /// assert_eq!(None, chars.next());
1031 /// ```
1032 ///
1033 /// Remember, [`char`]s might not match your intuition about characters:
1034 ///
1035 /// [`char`]: prim@char
1036 ///
1037 /// ```
1038 /// let y = "y̆";
1039 ///
1040 /// let mut chars = y.chars();
1041 ///
1042 /// assert_eq!(Some('y'), chars.next()); // not 'y̆'
1043 /// assert_eq!(Some('\u{0306}'), chars.next());
1044 ///
1045 /// assert_eq!(None, chars.next());
1046 /// ```
1047 #[stable(feature = "rust1", since = "1.0.0")]
1048 #[inline]
1049 #[rustc_diagnostic_item = "str_chars"]
1050 pub fn chars(&self) -> Chars<'_> {
1051 Chars { iter: self.as_bytes().iter() }
1052 }
1053
1054 /// Returns an iterator over the [`char`]s of a string slice, and their
1055 /// positions.
1056 ///
1057 /// As a string slice consists of valid UTF-8, we can iterate through a
1058 /// string slice by [`char`]. This method returns an iterator of both
1059 /// these [`char`]s, as well as their byte positions.
1060 ///
1061 /// The iterator yields tuples. The position is first, the [`char`] is
1062 /// second.
1063 ///
1064 /// # Examples
1065 ///
1066 /// Basic usage:
1067 ///
1068 /// ```
1069 /// let word = "goodbye";
1070 ///
1071 /// let count = word.char_indices().count();
1072 /// assert_eq!(7, count);
1073 ///
1074 /// let mut char_indices = word.char_indices();
1075 ///
1076 /// assert_eq!(Some((0, 'g')), char_indices.next());
1077 /// assert_eq!(Some((1, 'o')), char_indices.next());
1078 /// assert_eq!(Some((2, 'o')), char_indices.next());
1079 /// assert_eq!(Some((3, 'd')), char_indices.next());
1080 /// assert_eq!(Some((4, 'b')), char_indices.next());
1081 /// assert_eq!(Some((5, 'y')), char_indices.next());
1082 /// assert_eq!(Some((6, 'e')), char_indices.next());
1083 ///
1084 /// assert_eq!(None, char_indices.next());
1085 /// ```
1086 ///
1087 /// Remember, [`char`]s might not match your intuition about characters:
1088 ///
1089 /// [`char`]: prim@char
1090 ///
1091 /// ```
1092 /// let yes = "y̆es";
1093 ///
1094 /// let mut char_indices = yes.char_indices();
1095 ///
1096 /// assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
1097 /// assert_eq!(Some((1, '\u{0306}')), char_indices.next());
1098 ///
1099 /// // note the 3 here - the previous character took up two bytes
1100 /// assert_eq!(Some((3, 'e')), char_indices.next());
1101 /// assert_eq!(Some((4, 's')), char_indices.next());
1102 ///
1103 /// assert_eq!(None, char_indices.next());
1104 /// ```
1105 #[stable(feature = "rust1", since = "1.0.0")]
1106 #[inline]
1107 pub fn char_indices(&self) -> CharIndices<'_> {
1108 CharIndices { front_offset: 0, iter: self.chars() }
1109 }
1110
1111 /// Returns an iterator over the bytes of a string slice.
1112 ///
1113 /// As a string slice consists of a sequence of bytes, we can iterate
1114 /// through a string slice by byte. This method returns such an iterator.
1115 ///
1116 /// # Examples
1117 ///
1118 /// ```
1119 /// let mut bytes = "bors".bytes();
1120 ///
1121 /// assert_eq!(Some(b'b'), bytes.next());
1122 /// assert_eq!(Some(b'o'), bytes.next());
1123 /// assert_eq!(Some(b'r'), bytes.next());
1124 /// assert_eq!(Some(b's'), bytes.next());
1125 ///
1126 /// assert_eq!(None, bytes.next());
1127 /// ```
1128 #[stable(feature = "rust1", since = "1.0.0")]
1129 #[inline]
1130 pub fn bytes(&self) -> Bytes<'_> {
1131 Bytes(self.as_bytes().iter().copied())
1132 }
1133
1134 /// Splits a string slice by whitespace.
1135 ///
1136 /// The iterator returned will return string slices that are sub-slices of
1137 /// the original string slice, separated by any amount of whitespace.
1138 ///
1139 /// 'Whitespace' is defined according to the terms of the Unicode Derived
1140 /// Core Property `White_Space`. If you only want to split on ASCII whitespace
1141 /// instead, use [`split_ascii_whitespace`].
1142 ///
1143 /// [`split_ascii_whitespace`]: str::split_ascii_whitespace
1144 ///
1145 /// # Examples
1146 ///
1147 /// Basic usage:
1148 ///
1149 /// ```
1150 /// let mut iter = "A few words".split_whitespace();
1151 ///
1152 /// assert_eq!(Some("A"), iter.next());
1153 /// assert_eq!(Some("few"), iter.next());
1154 /// assert_eq!(Some("words"), iter.next());
1155 ///
1156 /// assert_eq!(None, iter.next());
1157 /// ```
1158 ///
1159 /// All kinds of whitespace are considered:
1160 ///
1161 /// ```
1162 /// let mut iter = " Mary had\ta\u{2009}little \n\t lamb".split_whitespace();
1163 /// assert_eq!(Some("Mary"), iter.next());
1164 /// assert_eq!(Some("had"), iter.next());
1165 /// assert_eq!(Some("a"), iter.next());
1166 /// assert_eq!(Some("little"), iter.next());
1167 /// assert_eq!(Some("lamb"), iter.next());
1168 ///
1169 /// assert_eq!(None, iter.next());
1170 /// ```
1171 ///
1172 /// If the string is empty or all whitespace, the iterator yields no string slices:
1173 /// ```
1174 /// assert_eq!("".split_whitespace().next(), None);
1175 /// assert_eq!(" ".split_whitespace().next(), None);
1176 /// ```
1177 #[must_use = "this returns the split string as an iterator, \
1178 without modifying the original"]
1179 #[stable(feature = "split_whitespace", since = "1.1.0")]
1180 #[rustc_diagnostic_item = "str_split_whitespace"]
1181 #[inline]
1182 pub fn split_whitespace(&self) -> SplitWhitespace<'_> {
1183 SplitWhitespace { inner: self.split(IsWhitespace).filter(IsNotEmpty) }
1184 }
1185
1186 /// Splits a string slice by ASCII whitespace.
1187 ///
1188 /// The iterator returned will return string slices that are sub-slices of
1189 /// the original string slice, separated by any amount of ASCII whitespace.
1190 ///
1191 /// This uses the same definition as [`char::is_ascii_whitespace`].
1192 /// To split by Unicode `Whitespace` instead, use [`split_whitespace`].
1193 ///
1194 /// [`split_whitespace`]: str::split_whitespace
1195 ///
1196 /// # Examples
1197 ///
1198 /// Basic usage:
1199 ///
1200 /// ```
1201 /// let mut iter = "A few words".split_ascii_whitespace();
1202 ///
1203 /// assert_eq!(Some("A"), iter.next());
1204 /// assert_eq!(Some("few"), iter.next());
1205 /// assert_eq!(Some("words"), iter.next());
1206 ///
1207 /// assert_eq!(None, iter.next());
1208 /// ```
1209 ///
1210 /// Various kinds of ASCII whitespace are considered
1211 /// (see [`char::is_ascii_whitespace`]):
1212 ///
1213 /// ```
1214 /// let mut iter = " Mary had\ta little \n\t lamb".split_ascii_whitespace();
1215 /// assert_eq!(Some("Mary"), iter.next());
1216 /// assert_eq!(Some("had"), iter.next());
1217 /// assert_eq!(Some("a"), iter.next());
1218 /// assert_eq!(Some("little"), iter.next());
1219 /// assert_eq!(Some("lamb"), iter.next());
1220 ///
1221 /// assert_eq!(None, iter.next());
1222 /// ```
1223 ///
1224 /// If the string is empty or all ASCII whitespace, the iterator yields no string slices:
1225 /// ```
1226 /// assert_eq!("".split_ascii_whitespace().next(), None);
1227 /// assert_eq!(" ".split_ascii_whitespace().next(), None);
1228 /// ```
1229 #[must_use = "this returns the split string as an iterator, \
1230 without modifying the original"]
1231 #[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
1232 #[inline]
1233 pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_> {
1234 let inner =
1235 self.as_bytes().split(IsAsciiWhitespace).filter(BytesIsNotEmpty).map(UnsafeBytesToStr);
1236 SplitAsciiWhitespace { inner }
1237 }
1238
1239 /// Returns an iterator over the lines of a string, as string slices.
1240 ///
1241 /// Lines are split at line endings that are either newlines (`\n`) or
1242 /// sequences of a carriage return followed by a line feed (`\r\n`).
1243 ///
1244 /// Line terminators are not included in the lines returned by the iterator.
1245 ///
1246 /// Note that any carriage return (`\r`) not immediately followed by a
1247 /// line feed (`\n`) does not split a line. These carriage returns are
1248 /// thereby included in the produced lines.
1249 ///
1250 /// The final line ending is optional. A string that ends with a final line
1251 /// ending will return the same lines as an otherwise identical string
1252 /// without a final line ending.
1253 ///
1254 /// # Examples
1255 ///
1256 /// Basic usage:
1257 ///
1258 /// ```
1259 /// let text = "foo\r\nbar\n\nbaz\r";
1260 /// let mut lines = text.lines();
1261 ///
1262 /// assert_eq!(Some("foo"), lines.next());
1263 /// assert_eq!(Some("bar"), lines.next());
1264 /// assert_eq!(Some(""), lines.next());
1265 /// // Trailing carriage return is included in the last line
1266 /// assert_eq!(Some("baz\r"), lines.next());
1267 ///
1268 /// assert_eq!(None, lines.next());
1269 /// ```
1270 ///
1271 /// The final line does not require any ending:
1272 ///
1273 /// ```
1274 /// let text = "foo\nbar\n\r\nbaz";
1275 /// let mut lines = text.lines();
1276 ///
1277 /// assert_eq!(Some("foo"), lines.next());
1278 /// assert_eq!(Some("bar"), lines.next());
1279 /// assert_eq!(Some(""), lines.next());
1280 /// assert_eq!(Some("baz"), lines.next());
1281 ///
1282 /// assert_eq!(None, lines.next());
1283 /// ```
1284 #[stable(feature = "rust1", since = "1.0.0")]
1285 #[inline]
1286 pub fn lines(&self) -> Lines<'_> {
1287 Lines(self.split_inclusive('\n').map(LinesMap))
1288 }
1289
1290 /// Returns an iterator over the lines of a string.
1291 #[stable(feature = "rust1", since = "1.0.0")]
1292 #[deprecated(since = "1.4.0", note = "use lines() instead now", suggestion = "lines")]
1293 #[inline]
1294 #[allow(deprecated)]
1295 pub fn lines_any(&self) -> LinesAny<'_> {
1296 LinesAny(self.lines())
1297 }
1298
1299 /// Returns an iterator of `u16` over the string encoded
1300 /// as native endian UTF-16 (without byte-order mark).
1301 ///
1302 /// # Examples
1303 ///
1304 /// ```
1305 /// let text = "Zażółć gęślą jaźń";
1306 ///
1307 /// let utf8_len = text.len();
1308 /// let utf16_len = text.encode_utf16().count();
1309 ///
1310 /// assert!(utf16_len <= utf8_len);
1311 /// ```
1312 #[must_use = "this returns the encoded string as an iterator, \
1313 without modifying the original"]
1314 #[stable(feature = "encode_utf16", since = "1.8.0")]
1315 pub fn encode_utf16(&self) -> EncodeUtf16<'_> {
1316 EncodeUtf16 { chars: self.chars(), extra: 0 }
1317 }
1318
1319 /// Returns `true` if the given pattern matches a sub-slice of
1320 /// this string slice.
1321 ///
1322 /// Returns `false` if it does not.
1323 ///
1324 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1325 /// function or closure that determines if a character matches.
1326 ///
1327 /// [`char`]: prim@char
1328 /// [pattern]: self::pattern
1329 ///
1330 /// # Examples
1331 ///
1332 /// ```
1333 /// let bananas = "bananas";
1334 ///
1335 /// assert!(bananas.contains("nana"));
1336 /// assert!(!bananas.contains("apples"));
1337 /// ```
1338 #[stable(feature = "rust1", since = "1.0.0")]
1339 #[inline]
1340 pub fn contains<P: Pattern>(&self, pat: P) -> bool {
1341 pat.is_contained_in(self)
1342 }
1343
1344 /// Returns `true` if the given pattern matches a prefix of this
1345 /// string slice.
1346 ///
1347 /// Returns `false` if it does not.
1348 ///
1349 /// The [pattern] can be a `&str`, in which case this function will return true if
1350 /// the `&str` is a prefix of this string slice.
1351 ///
1352 /// The [pattern] can also be a [`char`], a slice of [`char`]s, or a
1353 /// function or closure that determines if a character matches.
1354 /// These will only be checked against the first character of this string slice.
1355 /// Look at the second example below regarding behavior for slices of [`char`]s.
1356 ///
1357 /// [`char`]: prim@char
1358 /// [pattern]: self::pattern
1359 ///
1360 /// # Examples
1361 ///
1362 /// ```
1363 /// let bananas = "bananas";
1364 ///
1365 /// assert!(bananas.starts_with("bana"));
1366 /// assert!(!bananas.starts_with("nana"));
1367 /// ```
1368 ///
1369 /// ```
1370 /// let bananas = "bananas";
1371 ///
1372 /// // Note that both of these assert successfully.
1373 /// assert!(bananas.starts_with(&['b', 'a', 'n', 'a']));
1374 /// assert!(bananas.starts_with(&['a', 'b', 'c', 'd']));
1375 /// ```
1376 #[stable(feature = "rust1", since = "1.0.0")]
1377 #[rustc_diagnostic_item = "str_starts_with"]
1378 pub fn starts_with<P: Pattern>(&self, pat: P) -> bool {
1379 pat.is_prefix_of(self)
1380 }
1381
1382 /// Returns `true` if the given pattern matches a suffix of this
1383 /// string slice.
1384 ///
1385 /// Returns `false` if it does not.
1386 ///
1387 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1388 /// function or closure that determines if a character matches.
1389 ///
1390 /// [`char`]: prim@char
1391 /// [pattern]: self::pattern
1392 ///
1393 /// # Examples
1394 ///
1395 /// ```
1396 /// let bananas = "bananas";
1397 ///
1398 /// assert!(bananas.ends_with("anas"));
1399 /// assert!(!bananas.ends_with("nana"));
1400 /// ```
1401 #[stable(feature = "rust1", since = "1.0.0")]
1402 #[rustc_diagnostic_item = "str_ends_with"]
1403 pub fn ends_with<P: Pattern>(&self, pat: P) -> bool
1404 where
1405 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1406 {
1407 pat.is_suffix_of(self)
1408 }
1409
1410 /// Returns the byte index of the first character of this string slice that
1411 /// matches the pattern.
1412 ///
1413 /// Returns [`None`] if the pattern doesn't match.
1414 ///
1415 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1416 /// function or closure that determines if a character matches.
1417 ///
1418 /// [`char`]: prim@char
1419 /// [pattern]: self::pattern
1420 ///
1421 /// # Examples
1422 ///
1423 /// Simple patterns:
1424 ///
1425 /// ```
1426 /// let s = "Löwe 老虎 Léopard Gepardi";
1427 ///
1428 /// assert_eq!(s.find('L'), Some(0));
1429 /// assert_eq!(s.find('é'), Some(14));
1430 /// assert_eq!(s.find("pard"), Some(17));
1431 /// ```
1432 ///
1433 /// More complex patterns using point-free style and closures:
1434 ///
1435 /// ```
1436 /// let s = "Löwe 老虎 Léopard";
1437 ///
1438 /// assert_eq!(s.find(char::is_whitespace), Some(5));
1439 /// assert_eq!(s.find(char::is_lowercase), Some(1));
1440 /// assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
1441 /// assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));
1442 /// ```
1443 ///
1444 /// Not finding the pattern:
1445 ///
1446 /// ```
1447 /// let s = "Löwe 老虎 Léopard";
1448 /// let x: &[_] = &['1', '2'];
1449 ///
1450 /// assert_eq!(s.find(x), None);
1451 /// ```
1452 #[stable(feature = "rust1", since = "1.0.0")]
1453 #[inline]
1454 pub fn find<P: Pattern>(&self, pat: P) -> Option<usize> {
1455 pat.into_searcher(self).next_match().map(|(i, _)| i)
1456 }
1457
1458 /// Returns the byte index for the first character of the last match of the pattern in
1459 /// this string slice.
1460 ///
1461 /// Returns [`None`] if the pattern doesn't match.
1462 ///
1463 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1464 /// function or closure that determines if a character matches.
1465 ///
1466 /// [`char`]: prim@char
1467 /// [pattern]: self::pattern
1468 ///
1469 /// # Examples
1470 ///
1471 /// Simple patterns:
1472 ///
1473 /// ```
1474 /// let s = "Löwe 老虎 Léopard Gepardi";
1475 ///
1476 /// assert_eq!(s.rfind('L'), Some(13));
1477 /// assert_eq!(s.rfind('é'), Some(14));
1478 /// assert_eq!(s.rfind("pard"), Some(24));
1479 /// ```
1480 ///
1481 /// More complex patterns with closures:
1482 ///
1483 /// ```
1484 /// let s = "Löwe 老虎 Léopard";
1485 ///
1486 /// assert_eq!(s.rfind(char::is_whitespace), Some(12));
1487 /// assert_eq!(s.rfind(char::is_lowercase), Some(20));
1488 /// ```
1489 ///
1490 /// Not finding the pattern:
1491 ///
1492 /// ```
1493 /// let s = "Löwe 老虎 Léopard";
1494 /// let x: &[_] = &['1', '2'];
1495 ///
1496 /// assert_eq!(s.rfind(x), None);
1497 /// ```
1498 #[stable(feature = "rust1", since = "1.0.0")]
1499 #[inline]
1500 pub fn rfind<P: Pattern>(&self, pat: P) -> Option<usize>
1501 where
1502 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1503 {
1504 pat.into_searcher(self).next_match_back().map(|(i, _)| i)
1505 }
1506
1507 /// Returns an iterator over substrings of this string slice, separated by
1508 /// characters matched by a pattern.
1509 ///
1510 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1511 /// function or closure that determines if a character matches.
1512 ///
1513 /// If there are no matches the full string slice is returned as the only
1514 /// item in the iterator.
1515 ///
1516 /// [`char`]: prim@char
1517 /// [pattern]: self::pattern
1518 ///
1519 /// # Iterator behavior
1520 ///
1521 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1522 /// allows a reverse search and forward/reverse search yields the same
1523 /// elements. This is true for, e.g., [`char`], but not for `&str`.
1524 ///
1525 /// If the pattern allows a reverse search but its results might differ
1526 /// from a forward search, the [`rsplit`] method can be used.
1527 ///
1528 /// [`rsplit`]: str::rsplit
1529 ///
1530 /// # Examples
1531 ///
1532 /// Simple patterns:
1533 ///
1534 /// ```
1535 /// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
1536 /// assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);
1537 ///
1538 /// let v: Vec<&str> = "".split('X').collect();
1539 /// assert_eq!(v, [""]);
1540 ///
1541 /// let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
1542 /// assert_eq!(v, ["lion", "", "tiger", "leopard"]);
1543 ///
1544 /// let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
1545 /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1546 ///
1547 /// let v: Vec<&str> = "AABBCC".split("DD").collect();
1548 /// assert_eq!(v, ["AABBCC"]);
1549 ///
1550 /// let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
1551 /// assert_eq!(v, ["abc", "def", "ghi"]);
1552 ///
1553 /// let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
1554 /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1555 /// ```
1556 ///
1557 /// If the pattern is a slice of chars, split on each occurrence of any of the characters:
1558 ///
1559 /// ```
1560 /// let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect();
1561 /// assert_eq!(v, ["2020", "11", "03", "23", "59"]);
1562 /// ```
1563 ///
1564 /// A more complex pattern, using a closure:
1565 ///
1566 /// ```
1567 /// let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
1568 /// assert_eq!(v, ["abc", "def", "ghi"]);
1569 /// ```
1570 ///
1571 /// If a string contains multiple contiguous separators, you will end up
1572 /// with empty strings in the output:
1573 ///
1574 /// ```
1575 /// let x = "||||a||b|c".to_string();
1576 /// let d: Vec<_> = x.split('|').collect();
1577 ///
1578 /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1579 /// ```
1580 ///
1581 /// Contiguous separators are separated by the empty string.
1582 ///
1583 /// ```
1584 /// let x = "(///)".to_string();
1585 /// let d: Vec<_> = x.split('/').collect();
1586 ///
1587 /// assert_eq!(d, &["(", "", "", ")"]);
1588 /// ```
1589 ///
1590 /// Separators at the start or end of a string are neighbored
1591 /// by empty strings.
1592 ///
1593 /// ```
1594 /// let d: Vec<_> = "010".split("0").collect();
1595 /// assert_eq!(d, &["", "1", ""]);
1596 /// ```
1597 ///
1598 /// When the empty string is used as a separator, it separates
1599 /// every character in the string, along with the beginning
1600 /// and end of the string.
1601 ///
1602 /// ```
1603 /// let f: Vec<_> = "rust".split("").collect();
1604 /// assert_eq!(f, &["", "r", "u", "s", "t", ""]);
1605 /// ```
1606 ///
1607 /// Contiguous separators can lead to possibly surprising behavior
1608 /// when whitespace is used as the separator. This code is correct:
1609 ///
1610 /// ```
1611 /// let x = " a b c".to_string();
1612 /// let d: Vec<_> = x.split(' ').collect();
1613 ///
1614 /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1615 /// ```
1616 ///
1617 /// It does _not_ give you:
1618 ///
1619 /// ```,ignore
1620 /// assert_eq!(d, &["a", "b", "c"]);
1621 /// ```
1622 ///
1623 /// Use [`split_whitespace`] for this behavior.
1624 ///
1625 /// [`split_whitespace`]: str::split_whitespace
1626 #[stable(feature = "rust1", since = "1.0.0")]
1627 #[inline]
1628 pub fn split<P: Pattern>(&self, pat: P) -> Split<'_, P> {
1629 Split(SplitInternal {
1630 start: 0,
1631 end: self.len(),
1632 matcher: pat.into_searcher(self),
1633 allow_trailing_empty: true,
1634 finished: false,
1635 })
1636 }
1637
1638 /// Returns an iterator over substrings of this string slice, separated by
1639 /// characters matched by a pattern.
1640 ///
1641 /// Differs from the iterator produced by `split` in that `split_inclusive`
1642 /// leaves the matched part as the terminator of the substring.
1643 ///
1644 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1645 /// function or closure that determines if a character matches.
1646 ///
1647 /// [`char`]: prim@char
1648 /// [pattern]: self::pattern
1649 ///
1650 /// # Examples
1651 ///
1652 /// ```
1653 /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb."
1654 /// .split_inclusive('\n').collect();
1655 /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]);
1656 /// ```
1657 ///
1658 /// If the last element of the string is matched,
1659 /// that element will be considered the terminator of the preceding substring.
1660 /// That substring will be the last item returned by the iterator.
1661 ///
1662 /// ```
1663 /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n"
1664 /// .split_inclusive('\n').collect();
1665 /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]);
1666 /// ```
1667 #[stable(feature = "split_inclusive", since = "1.51.0")]
1668 #[inline]
1669 pub fn split_inclusive<P: Pattern>(&self, pat: P) -> SplitInclusive<'_, P> {
1670 SplitInclusive(SplitInternal {
1671 start: 0,
1672 end: self.len(),
1673 matcher: pat.into_searcher(self),
1674 allow_trailing_empty: false,
1675 finished: false,
1676 })
1677 }
1678
1679 /// Returns an iterator over substrings of the given string slice, separated
1680 /// by characters matched by a pattern and yielded in reverse order.
1681 ///
1682 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1683 /// function or closure that determines if a character matches.
1684 ///
1685 /// [`char`]: prim@char
1686 /// [pattern]: self::pattern
1687 ///
1688 /// # Iterator behavior
1689 ///
1690 /// The returned iterator requires that the pattern supports a reverse
1691 /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
1692 /// search yields the same elements.
1693 ///
1694 /// For iterating from the front, the [`split`] method can be used.
1695 ///
1696 /// [`split`]: str::split
1697 ///
1698 /// # Examples
1699 ///
1700 /// Simple patterns:
1701 ///
1702 /// ```
1703 /// let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
1704 /// assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);
1705 ///
1706 /// let v: Vec<&str> = "".rsplit('X').collect();
1707 /// assert_eq!(v, [""]);
1708 ///
1709 /// let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
1710 /// assert_eq!(v, ["leopard", "tiger", "", "lion"]);
1711 ///
1712 /// let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
1713 /// assert_eq!(v, ["leopard", "tiger", "lion"]);
1714 /// ```
1715 ///
1716 /// A more complex pattern, using a closure:
1717 ///
1718 /// ```
1719 /// let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
1720 /// assert_eq!(v, ["ghi", "def", "abc"]);
1721 /// ```
1722 #[stable(feature = "rust1", since = "1.0.0")]
1723 #[inline]
1724 pub fn rsplit<P: Pattern>(&self, pat: P) -> RSplit<'_, P>
1725 where
1726 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1727 {
1728 RSplit(self.split(pat).0)
1729 }
1730
1731 /// Returns an iterator over substrings of the given string slice, separated
1732 /// by characters matched by a pattern.
1733 ///
1734 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1735 /// function or closure that determines if a character matches.
1736 ///
1737 /// [`char`]: prim@char
1738 /// [pattern]: self::pattern
1739 ///
1740 /// Equivalent to [`split`], except that the trailing substring
1741 /// is skipped if empty.
1742 ///
1743 /// [`split`]: str::split
1744 ///
1745 /// This method can be used for string data that is _terminated_,
1746 /// rather than _separated_ by a pattern.
1747 ///
1748 /// # Iterator behavior
1749 ///
1750 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1751 /// allows a reverse search and forward/reverse search yields the same
1752 /// elements. This is true for, e.g., [`char`], but not for `&str`.
1753 ///
1754 /// If the pattern allows a reverse search but its results might differ
1755 /// from a forward search, the [`rsplit_terminator`] method can be used.
1756 ///
1757 /// [`rsplit_terminator`]: str::rsplit_terminator
1758 ///
1759 /// # Examples
1760 ///
1761 /// ```
1762 /// let v: Vec<&str> = "A.B.".split_terminator('.').collect();
1763 /// assert_eq!(v, ["A", "B"]);
1764 ///
1765 /// let v: Vec<&str> = "A..B..".split_terminator(".").collect();
1766 /// assert_eq!(v, ["A", "", "B", ""]);
1767 ///
1768 /// let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect();
1769 /// assert_eq!(v, ["A", "B", "C", "D"]);
1770 /// ```
1771 #[stable(feature = "rust1", since = "1.0.0")]
1772 #[inline]
1773 pub fn split_terminator<P: Pattern>(&self, pat: P) -> SplitTerminator<'_, P> {
1774 SplitTerminator(SplitInternal { allow_trailing_empty: false, ..self.split(pat).0 })
1775 }
1776
1777 /// Returns an iterator over substrings of `self`, separated by characters
1778 /// matched by a pattern and yielded in reverse order.
1779 ///
1780 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1781 /// function or closure that determines if a character matches.
1782 ///
1783 /// [`char`]: prim@char
1784 /// [pattern]: self::pattern
1785 ///
1786 /// Equivalent to [`split`], except that the trailing substring is
1787 /// skipped if empty.
1788 ///
1789 /// [`split`]: str::split
1790 ///
1791 /// This method can be used for string data that is _terminated_,
1792 /// rather than _separated_ by a pattern.
1793 ///
1794 /// # Iterator behavior
1795 ///
1796 /// The returned iterator requires that the pattern supports a
1797 /// reverse search, and it will be double ended if a forward/reverse
1798 /// search yields the same elements.
1799 ///
1800 /// For iterating from the front, the [`split_terminator`] method can be
1801 /// used.
1802 ///
1803 /// [`split_terminator`]: str::split_terminator
1804 ///
1805 /// # Examples
1806 ///
1807 /// ```
1808 /// let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
1809 /// assert_eq!(v, ["B", "A"]);
1810 ///
1811 /// let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
1812 /// assert_eq!(v, ["", "B", "", "A"]);
1813 ///
1814 /// let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect();
1815 /// assert_eq!(v, ["D", "C", "B", "A"]);
1816 /// ```
1817 #[stable(feature = "rust1", since = "1.0.0")]
1818 #[inline]
1819 pub fn rsplit_terminator<P: Pattern>(&self, pat: P) -> RSplitTerminator<'_, P>
1820 where
1821 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1822 {
1823 RSplitTerminator(self.split_terminator(pat).0)
1824 }
1825
1826 /// Returns an iterator over substrings of the given string slice, separated
1827 /// by a pattern, restricted to returning at most `n` items.
1828 ///
1829 /// If `n` substrings are returned, the last substring (the `n`th substring)
1830 /// will contain the remainder of the string.
1831 ///
1832 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1833 /// function or closure that determines if a character matches.
1834 ///
1835 /// [`char`]: prim@char
1836 /// [pattern]: self::pattern
1837 ///
1838 /// # Iterator behavior
1839 ///
1840 /// The returned iterator will not be double ended, because it is
1841 /// not efficient to support.
1842 ///
1843 /// If the pattern allows a reverse search, the [`rsplitn`] method can be
1844 /// used.
1845 ///
1846 /// [`rsplitn`]: str::rsplitn
1847 ///
1848 /// # Examples
1849 ///
1850 /// Simple patterns:
1851 ///
1852 /// ```
1853 /// let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
1854 /// assert_eq!(v, ["Mary", "had", "a little lambda"]);
1855 ///
1856 /// let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
1857 /// assert_eq!(v, ["lion", "", "tigerXleopard"]);
1858 ///
1859 /// let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
1860 /// assert_eq!(v, ["abcXdef"]);
1861 ///
1862 /// let v: Vec<&str> = "".splitn(1, 'X').collect();
1863 /// assert_eq!(v, [""]);
1864 /// ```
1865 ///
1866 /// A more complex pattern, using a closure:
1867 ///
1868 /// ```
1869 /// let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
1870 /// assert_eq!(v, ["abc", "defXghi"]);
1871 /// ```
1872 #[stable(feature = "rust1", since = "1.0.0")]
1873 #[inline]
1874 pub fn splitn<P: Pattern>(&self, n: usize, pat: P) -> SplitN<'_, P> {
1875 SplitN(SplitNInternal { iter: self.split(pat).0, count: n })
1876 }
1877
1878 /// Returns an iterator over substrings of this string slice, separated by a
1879 /// pattern, starting from the end of the string, restricted to returning at
1880 /// most `n` items.
1881 ///
1882 /// If `n` substrings are returned, the last substring (the `n`th substring)
1883 /// will contain the remainder of the string.
1884 ///
1885 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1886 /// function or closure that determines if a character matches.
1887 ///
1888 /// [`char`]: prim@char
1889 /// [pattern]: self::pattern
1890 ///
1891 /// # Iterator behavior
1892 ///
1893 /// The returned iterator will not be double ended, because it is not
1894 /// efficient to support.
1895 ///
1896 /// For splitting from the front, the [`splitn`] method can be used.
1897 ///
1898 /// [`splitn`]: str::splitn
1899 ///
1900 /// # Examples
1901 ///
1902 /// Simple patterns:
1903 ///
1904 /// ```
1905 /// let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
1906 /// assert_eq!(v, ["lamb", "little", "Mary had a"]);
1907 ///
1908 /// let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
1909 /// assert_eq!(v, ["leopard", "tiger", "lionX"]);
1910 ///
1911 /// let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
1912 /// assert_eq!(v, ["leopard", "lion::tiger"]);
1913 /// ```
1914 ///
1915 /// A more complex pattern, using a closure:
1916 ///
1917 /// ```
1918 /// let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
1919 /// assert_eq!(v, ["ghi", "abc1def"]);
1920 /// ```
1921 #[stable(feature = "rust1", since = "1.0.0")]
1922 #[inline]
1923 pub fn rsplitn<P: Pattern>(&self, n: usize, pat: P) -> RSplitN<'_, P>
1924 where
1925 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1926 {
1927 RSplitN(self.splitn(n, pat).0)
1928 }
1929
1930 /// Splits the string on the first occurrence of the specified delimiter and
1931 /// returns prefix before delimiter and suffix after delimiter.
1932 ///
1933 /// # Examples
1934 ///
1935 /// ```
1936 /// assert_eq!("cfg".split_once('='), None);
1937 /// assert_eq!("cfg=".split_once('='), Some(("cfg", "")));
1938 /// assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo")));
1939 /// assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar")));
1940 /// ```
1941 #[stable(feature = "str_split_once", since = "1.52.0")]
1942 #[inline]
1943 pub fn split_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)> {
1944 let (start, end) = delimiter.into_searcher(self).next_match()?;
1945 // SAFETY: `Searcher` is known to return valid indices.
1946 unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
1947 }
1948
1949 /// Splits the string on the last occurrence of the specified delimiter and
1950 /// returns prefix before delimiter and suffix after delimiter.
1951 ///
1952 /// # Examples
1953 ///
1954 /// ```
1955 /// assert_eq!("cfg".rsplit_once('='), None);
1956 /// assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo")));
1957 /// assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar")));
1958 /// ```
1959 #[stable(feature = "str_split_once", since = "1.52.0")]
1960 #[inline]
1961 pub fn rsplit_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)>
1962 where
1963 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1964 {
1965 let (start, end) = delimiter.into_searcher(self).next_match_back()?;
1966 // SAFETY: `Searcher` is known to return valid indices.
1967 unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
1968 }
1969
1970 /// Returns an iterator over the disjoint matches of a pattern within the
1971 /// given string slice.
1972 ///
1973 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1974 /// function or closure that determines if a character matches.
1975 ///
1976 /// [`char`]: prim@char
1977 /// [pattern]: self::pattern
1978 ///
1979 /// # Iterator behavior
1980 ///
1981 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1982 /// allows a reverse search and forward/reverse search yields the same
1983 /// elements. This is true for, e.g., [`char`], but not for `&str`.
1984 ///
1985 /// If the pattern allows a reverse search but its results might differ
1986 /// from a forward search, the [`rmatches`] method can be used.
1987 ///
1988 /// [`rmatches`]: str::rmatches
1989 ///
1990 /// # Examples
1991 ///
1992 /// ```
1993 /// let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
1994 /// assert_eq!(v, ["abc", "abc", "abc"]);
1995 ///
1996 /// let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
1997 /// assert_eq!(v, ["1", "2", "3"]);
1998 /// ```
1999 #[stable(feature = "str_matches", since = "1.2.0")]
2000 #[inline]
2001 pub fn matches<P: Pattern>(&self, pat: P) -> Matches<'_, P> {
2002 Matches(MatchesInternal(pat.into_searcher(self)))
2003 }
2004
2005 /// Returns an iterator over the disjoint matches of a pattern within this
2006 /// string slice, yielded in reverse order.
2007 ///
2008 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2009 /// function or closure that determines if a character matches.
2010 ///
2011 /// [`char`]: prim@char
2012 /// [pattern]: self::pattern
2013 ///
2014 /// # Iterator behavior
2015 ///
2016 /// The returned iterator requires that the pattern supports a reverse
2017 /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
2018 /// search yields the same elements.
2019 ///
2020 /// For iterating from the front, the [`matches`] method can be used.
2021 ///
2022 /// [`matches`]: str::matches
2023 ///
2024 /// # Examples
2025 ///
2026 /// ```
2027 /// let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
2028 /// assert_eq!(v, ["abc", "abc", "abc"]);
2029 ///
2030 /// let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
2031 /// assert_eq!(v, ["3", "2", "1"]);
2032 /// ```
2033 #[stable(feature = "str_matches", since = "1.2.0")]
2034 #[inline]
2035 pub fn rmatches<P: Pattern>(&self, pat: P) -> RMatches<'_, P>
2036 where
2037 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2038 {
2039 RMatches(self.matches(pat).0)
2040 }
2041
2042 /// Returns an iterator over the disjoint matches of a pattern within this string
2043 /// slice as well as the index that the match starts at.
2044 ///
2045 /// For matches of `pat` within `self` that overlap, only the indices
2046 /// corresponding to the first match are returned.
2047 ///
2048 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2049 /// function or closure that determines if a character matches.
2050 ///
2051 /// [`char`]: prim@char
2052 /// [pattern]: self::pattern
2053 ///
2054 /// # Iterator behavior
2055 ///
2056 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
2057 /// allows a reverse search and forward/reverse search yields the same
2058 /// elements. This is true for, e.g., [`char`], but not for `&str`.
2059 ///
2060 /// If the pattern allows a reverse search but its results might differ
2061 /// from a forward search, the [`rmatch_indices`] method can be used.
2062 ///
2063 /// [`rmatch_indices`]: str::rmatch_indices
2064 ///
2065 /// # Examples
2066 ///
2067 /// ```
2068 /// let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
2069 /// assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);
2070 ///
2071 /// let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
2072 /// assert_eq!(v, [(1, "abc"), (4, "abc")]);
2073 ///
2074 /// let v: Vec<_> = "ababa".match_indices("aba").collect();
2075 /// assert_eq!(v, [(0, "aba")]); // only the first `aba`
2076 /// ```
2077 #[stable(feature = "str_match_indices", since = "1.5.0")]
2078 #[inline]
2079 pub fn match_indices<P: Pattern>(&self, pat: P) -> MatchIndices<'_, P> {
2080 MatchIndices(MatchIndicesInternal(pat.into_searcher(self)))
2081 }
2082
2083 /// Returns an iterator over the disjoint matches of a pattern within `self`,
2084 /// yielded in reverse order along with the index of the match.
2085 ///
2086 /// For matches of `pat` within `self` that overlap, only the indices
2087 /// corresponding to the last match are returned.
2088 ///
2089 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2090 /// function or closure that determines if a character matches.
2091 ///
2092 /// [`char`]: prim@char
2093 /// [pattern]: self::pattern
2094 ///
2095 /// # Iterator behavior
2096 ///
2097 /// The returned iterator requires that the pattern supports a reverse
2098 /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
2099 /// search yields the same elements.
2100 ///
2101 /// For iterating from the front, the [`match_indices`] method can be used.
2102 ///
2103 /// [`match_indices`]: str::match_indices
2104 ///
2105 /// # Examples
2106 ///
2107 /// ```
2108 /// let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
2109 /// assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);
2110 ///
2111 /// let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
2112 /// assert_eq!(v, [(4, "abc"), (1, "abc")]);
2113 ///
2114 /// let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
2115 /// assert_eq!(v, [(2, "aba")]); // only the last `aba`
2116 /// ```
2117 #[stable(feature = "str_match_indices", since = "1.5.0")]
2118 #[inline]
2119 pub fn rmatch_indices<P: Pattern>(&self, pat: P) -> RMatchIndices<'_, P>
2120 where
2121 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2122 {
2123 RMatchIndices(self.match_indices(pat).0)
2124 }
2125
2126 /// Returns a string slice with leading and trailing whitespace removed.
2127 ///
2128 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2129 /// Core Property `White_Space`, which includes newlines.
2130 ///
2131 /// # Examples
2132 ///
2133 /// ```
2134 /// let s = "\n Hello\tworld\t\n";
2135 ///
2136 /// assert_eq!("Hello\tworld", s.trim());
2137 /// ```
2138 #[inline]
2139 #[must_use = "this returns the trimmed string as a slice, \
2140 without modifying the original"]
2141 #[stable(feature = "rust1", since = "1.0.0")]
2142 #[rustc_diagnostic_item = "str_trim"]
2143 pub fn trim(&self) -> &str {
2144 self.trim_matches(char::is_whitespace)
2145 }
2146
2147 /// Returns a string slice with leading whitespace removed.
2148 ///
2149 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2150 /// Core Property `White_Space`, which includes newlines.
2151 ///
2152 /// # Text directionality
2153 ///
2154 /// A string is a sequence of bytes. `start` in this context means the first
2155 /// position of that byte string; for a left-to-right language like English or
2156 /// Russian, this will be left side, and for right-to-left languages like
2157 /// Arabic or Hebrew, this will be the right side.
2158 ///
2159 /// # Examples
2160 ///
2161 /// Basic usage:
2162 ///
2163 /// ```
2164 /// let s = "\n Hello\tworld\t\n";
2165 /// assert_eq!("Hello\tworld\t\n", s.trim_start());
2166 /// ```
2167 ///
2168 /// Directionality:
2169 ///
2170 /// ```
2171 /// let s = " English ";
2172 /// assert!(Some('E') == s.trim_start().chars().next());
2173 ///
2174 /// let s = " עברית ";
2175 /// assert!(Some('ע') == s.trim_start().chars().next());
2176 /// ```
2177 #[inline]
2178 #[must_use = "this returns the trimmed string as a new slice, \
2179 without modifying the original"]
2180 #[stable(feature = "trim_direction", since = "1.30.0")]
2181 #[rustc_diagnostic_item = "str_trim_start"]
2182 pub fn trim_start(&self) -> &str {
2183 self.trim_start_matches(char::is_whitespace)
2184 }
2185
2186 /// Returns a string slice with trailing whitespace removed.
2187 ///
2188 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2189 /// Core Property `White_Space`, which includes newlines.
2190 ///
2191 /// # Text directionality
2192 ///
2193 /// A string is a sequence of bytes. `end` in this context means the last
2194 /// position of that byte string; for a left-to-right language like English or
2195 /// Russian, this will be right side, and for right-to-left languages like
2196 /// Arabic or Hebrew, this will be the left side.
2197 ///
2198 /// # Examples
2199 ///
2200 /// Basic usage:
2201 ///
2202 /// ```
2203 /// let s = "\n Hello\tworld\t\n";
2204 /// assert_eq!("\n Hello\tworld", s.trim_end());
2205 /// ```
2206 ///
2207 /// Directionality:
2208 ///
2209 /// ```
2210 /// let s = " English ";
2211 /// assert!(Some('h') == s.trim_end().chars().rev().next());
2212 ///
2213 /// let s = " עברית ";
2214 /// assert!(Some('ת') == s.trim_end().chars().rev().next());
2215 /// ```
2216 #[inline]
2217 #[must_use = "this returns the trimmed string as a new slice, \
2218 without modifying the original"]
2219 #[stable(feature = "trim_direction", since = "1.30.0")]
2220 #[rustc_diagnostic_item = "str_trim_end"]
2221 pub fn trim_end(&self) -> &str {
2222 self.trim_end_matches(char::is_whitespace)
2223 }
2224
2225 /// Returns a string slice with leading whitespace removed.
2226 ///
2227 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2228 /// Core Property `White_Space`.
2229 ///
2230 /// # Text directionality
2231 ///
2232 /// A string is a sequence of bytes. 'Left' in this context means the first
2233 /// position of that byte string; for a language like Arabic or Hebrew
2234 /// which are 'right to left' rather than 'left to right', this will be
2235 /// the _right_ side, not the left.
2236 ///
2237 /// # Examples
2238 ///
2239 /// Basic usage:
2240 ///
2241 /// ```
2242 /// let s = " Hello\tworld\t";
2243 ///
2244 /// assert_eq!("Hello\tworld\t", s.trim_left());
2245 /// ```
2246 ///
2247 /// Directionality:
2248 ///
2249 /// ```
2250 /// let s = " English";
2251 /// assert!(Some('E') == s.trim_left().chars().next());
2252 ///
2253 /// let s = " עברית";
2254 /// assert!(Some('ע') == s.trim_left().chars().next());
2255 /// ```
2256 #[must_use = "this returns the trimmed string as a new slice, \
2257 without modifying the original"]
2258 #[inline]
2259 #[stable(feature = "rust1", since = "1.0.0")]
2260 #[deprecated(since = "1.33.0", note = "superseded by `trim_start`", suggestion = "trim_start")]
2261 pub fn trim_left(&self) -> &str {
2262 self.trim_start()
2263 }
2264
2265 /// Returns a string slice with trailing whitespace removed.
2266 ///
2267 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2268 /// Core Property `White_Space`.
2269 ///
2270 /// # Text directionality
2271 ///
2272 /// A string is a sequence of bytes. 'Right' in this context means the last
2273 /// position of that byte string; for a language like Arabic or Hebrew
2274 /// which are 'right to left' rather than 'left to right', this will be
2275 /// the _left_ side, not the right.
2276 ///
2277 /// # Examples
2278 ///
2279 /// Basic usage:
2280 ///
2281 /// ```
2282 /// let s = " Hello\tworld\t";
2283 ///
2284 /// assert_eq!(" Hello\tworld", s.trim_right());
2285 /// ```
2286 ///
2287 /// Directionality:
2288 ///
2289 /// ```
2290 /// let s = "English ";
2291 /// assert!(Some('h') == s.trim_right().chars().rev().next());
2292 ///
2293 /// let s = "עברית ";
2294 /// assert!(Some('ת') == s.trim_right().chars().rev().next());
2295 /// ```
2296 #[must_use = "this returns the trimmed string as a new slice, \
2297 without modifying the original"]
2298 #[inline]
2299 #[stable(feature = "rust1", since = "1.0.0")]
2300 #[deprecated(since = "1.33.0", note = "superseded by `trim_end`", suggestion = "trim_end")]
2301 pub fn trim_right(&self) -> &str {
2302 self.trim_end()
2303 }
2304
2305 /// Returns a string slice with all prefixes and suffixes that match a
2306 /// pattern repeatedly removed.
2307 ///
2308 /// The [pattern] can be a [`char`], a slice of [`char`]s, or a function
2309 /// or closure that determines if a character matches.
2310 ///
2311 /// [`char`]: prim@char
2312 /// [pattern]: self::pattern
2313 ///
2314 /// # Examples
2315 ///
2316 /// Simple patterns:
2317 ///
2318 /// ```
2319 /// assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
2320 /// assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");
2321 ///
2322 /// let x: &[_] = &['1', '2'];
2323 /// assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");
2324 /// ```
2325 ///
2326 /// A more complex pattern, using a closure:
2327 ///
2328 /// ```
2329 /// assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
2330 /// ```
2331 #[must_use = "this returns the trimmed string as a new slice, \
2332 without modifying the original"]
2333 #[stable(feature = "rust1", since = "1.0.0")]
2334 pub fn trim_matches<P: Pattern>(&self, pat: P) -> &str
2335 where
2336 for<'a> P::Searcher<'a>: DoubleEndedSearcher<'a>,
2337 {
2338 let mut i = 0;
2339 let mut j = 0;
2340 let mut matcher = pat.into_searcher(self);
2341 if let Some((a, b)) = matcher.next_reject() {
2342 i = a;
2343 j = b; // Remember earliest known match, correct it below if
2344 // last match is different
2345 }
2346 if let Some((_, b)) = matcher.next_reject_back() {
2347 j = b;
2348 }
2349 // SAFETY: `Searcher` is known to return valid indices.
2350 unsafe { self.get_unchecked(i..j) }
2351 }
2352
2353 /// Returns a string slice with all prefixes that match a pattern
2354 /// repeatedly removed.
2355 ///
2356 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2357 /// function or closure that determines if a character matches.
2358 ///
2359 /// [`char`]: prim@char
2360 /// [pattern]: self::pattern
2361 ///
2362 /// # Text directionality
2363 ///
2364 /// A string is a sequence of bytes. `start` in this context means the first
2365 /// position of that byte string; for a left-to-right language like English or
2366 /// Russian, this will be left side, and for right-to-left languages like
2367 /// Arabic or Hebrew, this will be the right side.
2368 ///
2369 /// # Examples
2370 ///
2371 /// ```
2372 /// assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11");
2373 /// assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123");
2374 ///
2375 /// let x: &[_] = &['1', '2'];
2376 /// assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");
2377 /// ```
2378 #[must_use = "this returns the trimmed string as a new slice, \
2379 without modifying the original"]
2380 #[stable(feature = "trim_direction", since = "1.30.0")]
2381 pub fn trim_start_matches<P: Pattern>(&self, pat: P) -> &str {
2382 let mut i = self.len();
2383 let mut matcher = pat.into_searcher(self);
2384 if let Some((a, _)) = matcher.next_reject() {
2385 i = a;
2386 }
2387 // SAFETY: `Searcher` is known to return valid indices.
2388 unsafe { self.get_unchecked(i..self.len()) }
2389 }
2390
2391 /// Returns a string slice with the prefix removed.
2392 ///
2393 /// If the string starts with the pattern `prefix`, returns the substring after the prefix,
2394 /// wrapped in `Some`. Unlike [`trim_start_matches`], this method removes the prefix exactly once.
2395 ///
2396 /// If the string does not start with `prefix`, returns `None`.
2397 ///
2398 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2399 /// function or closure that determines if a character matches.
2400 ///
2401 /// [`char`]: prim@char
2402 /// [pattern]: self::pattern
2403 /// [`trim_start_matches`]: Self::trim_start_matches
2404 ///
2405 /// # Examples
2406 ///
2407 /// ```
2408 /// assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar"));
2409 /// assert_eq!("foo:bar".strip_prefix("bar"), None);
2410 /// assert_eq!("foofoo".strip_prefix("foo"), Some("foo"));
2411 /// ```
2412 #[must_use = "this returns the remaining substring as a new slice, \
2413 without modifying the original"]
2414 #[stable(feature = "str_strip", since = "1.45.0")]
2415 pub fn strip_prefix<P: Pattern>(&self, prefix: P) -> Option<&str> {
2416 prefix.strip_prefix_of(self)
2417 }
2418
2419 /// Returns a string slice with the suffix removed.
2420 ///
2421 /// If the string ends with the pattern `suffix`, returns the substring before the suffix,
2422 /// wrapped in `Some`. Unlike [`trim_end_matches`], this method removes the suffix exactly once.
2423 ///
2424 /// If the string does not end with `suffix`, returns `None`.
2425 ///
2426 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2427 /// function or closure that determines if a character matches.
2428 ///
2429 /// [`char`]: prim@char
2430 /// [pattern]: self::pattern
2431 /// [`trim_end_matches`]: Self::trim_end_matches
2432 ///
2433 /// # Examples
2434 ///
2435 /// ```
2436 /// assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar"));
2437 /// assert_eq!("bar:foo".strip_suffix("bar"), None);
2438 /// assert_eq!("foofoo".strip_suffix("foo"), Some("foo"));
2439 /// ```
2440 #[must_use = "this returns the remaining substring as a new slice, \
2441 without modifying the original"]
2442 #[stable(feature = "str_strip", since = "1.45.0")]
2443 pub fn strip_suffix<P: Pattern>(&self, suffix: P) -> Option<&str>
2444 where
2445 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2446 {
2447 suffix.strip_suffix_of(self)
2448 }
2449
2450 /// Returns a string slice with the optional prefix removed.
2451 ///
2452 /// If the string starts with the pattern `prefix`, returns the substring after the prefix.
2453 /// Unlike [`strip_prefix`], this method always returns `&str` for easy method chaining,
2454 /// instead of returning [`Option<&str>`].
2455 ///
2456 /// If the string does not start with `prefix`, returns the original string unchanged.
2457 ///
2458 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2459 /// function or closure that determines if a character matches.
2460 ///
2461 /// [`char`]: prim@char
2462 /// [pattern]: self::pattern
2463 /// [`strip_prefix`]: Self::strip_prefix
2464 ///
2465 /// # Examples
2466 ///
2467 /// ```
2468 /// #![feature(trim_prefix_suffix)]
2469 ///
2470 /// // Prefix present - removes it
2471 /// assert_eq!("foo:bar".trim_prefix("foo:"), "bar");
2472 /// assert_eq!("foofoo".trim_prefix("foo"), "foo");
2473 ///
2474 /// // Prefix absent - returns original string
2475 /// assert_eq!("foo:bar".trim_prefix("bar"), "foo:bar");
2476 ///
2477 /// // Method chaining example
2478 /// assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");
2479 /// ```
2480 #[must_use = "this returns the remaining substring as a new slice, \
2481 without modifying the original"]
2482 #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2483 pub fn trim_prefix<P: Pattern>(&self, prefix: P) -> &str {
2484 prefix.strip_prefix_of(self).unwrap_or(self)
2485 }
2486
2487 /// Returns a string slice with the optional suffix removed.
2488 ///
2489 /// If the string ends with the pattern `suffix`, returns the substring before the suffix.
2490 /// Unlike [`strip_suffix`], this method always returns `&str` for easy method chaining,
2491 /// instead of returning [`Option<&str>`].
2492 ///
2493 /// If the string does not end with `suffix`, returns the original string unchanged.
2494 ///
2495 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2496 /// function or closure that determines if a character matches.
2497 ///
2498 /// [`char`]: prim@char
2499 /// [pattern]: self::pattern
2500 /// [`strip_suffix`]: Self::strip_suffix
2501 ///
2502 /// # Examples
2503 ///
2504 /// ```
2505 /// #![feature(trim_prefix_suffix)]
2506 ///
2507 /// // Suffix present - removes it
2508 /// assert_eq!("bar:foo".trim_suffix(":foo"), "bar");
2509 /// assert_eq!("foofoo".trim_suffix("foo"), "foo");
2510 ///
2511 /// // Suffix absent - returns original string
2512 /// assert_eq!("bar:foo".trim_suffix("bar"), "bar:foo");
2513 ///
2514 /// // Method chaining example
2515 /// assert_eq!("<https://example.com/>".trim_prefix('<').trim_suffix('>'), "https://example.com/");
2516 /// ```
2517 #[must_use = "this returns the remaining substring as a new slice, \
2518 without modifying the original"]
2519 #[unstable(feature = "trim_prefix_suffix", issue = "142312")]
2520 pub fn trim_suffix<P: Pattern>(&self, suffix: P) -> &str
2521 where
2522 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2523 {
2524 suffix.strip_suffix_of(self).unwrap_or(self)
2525 }
2526
2527 /// Returns a string slice with all suffixes that match a pattern
2528 /// repeatedly removed.
2529 ///
2530 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2531 /// function or closure that determines if a character matches.
2532 ///
2533 /// [`char`]: prim@char
2534 /// [pattern]: self::pattern
2535 ///
2536 /// # Text directionality
2537 ///
2538 /// A string is a sequence of bytes. `end` in this context means the last
2539 /// position of that byte string; for a left-to-right language like English or
2540 /// Russian, this will be right side, and for right-to-left languages like
2541 /// Arabic or Hebrew, this will be the left side.
2542 ///
2543 /// # Examples
2544 ///
2545 /// Simple patterns:
2546 ///
2547 /// ```
2548 /// assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar");
2549 /// assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar");
2550 ///
2551 /// let x: &[_] = &['1', '2'];
2552 /// assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");
2553 /// ```
2554 ///
2555 /// A more complex pattern, using a closure:
2556 ///
2557 /// ```
2558 /// assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");
2559 /// ```
2560 #[must_use = "this returns the trimmed string as a new slice, \
2561 without modifying the original"]
2562 #[stable(feature = "trim_direction", since = "1.30.0")]
2563 pub fn trim_end_matches<P: Pattern>(&self, pat: P) -> &str
2564 where
2565 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2566 {
2567 let mut j = 0;
2568 let mut matcher = pat.into_searcher(self);
2569 if let Some((_, b)) = matcher.next_reject_back() {
2570 j = b;
2571 }
2572 // SAFETY: `Searcher` is known to return valid indices.
2573 unsafe { self.get_unchecked(0..j) }
2574 }
2575
2576 /// Returns a string slice with all prefixes that match a pattern
2577 /// repeatedly removed.
2578 ///
2579 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2580 /// function or closure that determines if a character matches.
2581 ///
2582 /// [`char`]: prim@char
2583 /// [pattern]: self::pattern
2584 ///
2585 /// # Text directionality
2586 ///
2587 /// A string is a sequence of bytes. 'Left' in this context means the first
2588 /// position of that byte string; for a language like Arabic or Hebrew
2589 /// which are 'right to left' rather than 'left to right', this will be
2590 /// the _right_ side, not the left.
2591 ///
2592 /// # Examples
2593 ///
2594 /// ```
2595 /// assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
2596 /// assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");
2597 ///
2598 /// let x: &[_] = &['1', '2'];
2599 /// assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
2600 /// ```
2601 #[stable(feature = "rust1", since = "1.0.0")]
2602 #[deprecated(
2603 since = "1.33.0",
2604 note = "superseded by `trim_start_matches`",
2605 suggestion = "trim_start_matches"
2606 )]
2607 pub fn trim_left_matches<P: Pattern>(&self, pat: P) -> &str {
2608 self.trim_start_matches(pat)
2609 }
2610
2611 /// Returns a string slice with all suffixes that match a pattern
2612 /// repeatedly removed.
2613 ///
2614 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2615 /// function or closure that determines if a character matches.
2616 ///
2617 /// [`char`]: prim@char
2618 /// [pattern]: self::pattern
2619 ///
2620 /// # Text directionality
2621 ///
2622 /// A string is a sequence of bytes. 'Right' in this context means the last
2623 /// position of that byte string; for a language like Arabic or Hebrew
2624 /// which are 'right to left' rather than 'left to right', this will be
2625 /// the _left_ side, not the right.
2626 ///
2627 /// # Examples
2628 ///
2629 /// Simple patterns:
2630 ///
2631 /// ```
2632 /// assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
2633 /// assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");
2634 ///
2635 /// let x: &[_] = &['1', '2'];
2636 /// assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");
2637 /// ```
2638 ///
2639 /// A more complex pattern, using a closure:
2640 ///
2641 /// ```
2642 /// assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");
2643 /// ```
2644 #[stable(feature = "rust1", since = "1.0.0")]
2645 #[deprecated(
2646 since = "1.33.0",
2647 note = "superseded by `trim_end_matches`",
2648 suggestion = "trim_end_matches"
2649 )]
2650 pub fn trim_right_matches<P: Pattern>(&self, pat: P) -> &str
2651 where
2652 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2653 {
2654 self.trim_end_matches(pat)
2655 }
2656
2657 /// Parses this string slice into another type.
2658 ///
2659 /// Because `parse` is so general, it can cause problems with type
2660 /// inference. As such, `parse` is one of the few times you'll see
2661 /// the syntax affectionately known as the 'turbofish': `::<>`. This
2662 /// helps the inference algorithm understand specifically which type
2663 /// you're trying to parse into.
2664 ///
2665 /// `parse` can parse into any type that implements the [`FromStr`] trait.
2666 ///
2667 /// # Errors
2668 ///
2669 /// Will return [`Err`] if it's not possible to parse this string slice into
2670 /// the desired type.
2671 ///
2672 /// [`Err`]: FromStr::Err
2673 ///
2674 /// # Examples
2675 ///
2676 /// Basic usage:
2677 ///
2678 /// ```
2679 /// let four: u32 = "4".parse().unwrap();
2680 ///
2681 /// assert_eq!(4, four);
2682 /// ```
2683 ///
2684 /// Using the 'turbofish' instead of annotating `four`:
2685 ///
2686 /// ```
2687 /// let four = "4".parse::<u32>();
2688 ///
2689 /// assert_eq!(Ok(4), four);
2690 /// ```
2691 ///
2692 /// Failing to parse:
2693 ///
2694 /// ```
2695 /// let nope = "j".parse::<u32>();
2696 ///
2697 /// assert!(nope.is_err());
2698 /// ```
2699 #[inline]
2700 #[stable(feature = "rust1", since = "1.0.0")]
2701 pub fn parse<F: FromStr>(&self) -> Result<F, F::Err> {
2702 FromStr::from_str(self)
2703 }
2704
2705 /// Checks if all characters in this string are within the ASCII range.
2706 ///
2707 /// # Examples
2708 ///
2709 /// ```
2710 /// let ascii = "hello!\n";
2711 /// let non_ascii = "Grüße, Jürgen ❤";
2712 ///
2713 /// assert!(ascii.is_ascii());
2714 /// assert!(!non_ascii.is_ascii());
2715 /// ```
2716 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2717 #[rustc_const_stable(feature = "const_slice_is_ascii", since = "1.74.0")]
2718 #[must_use]
2719 #[inline]
2720 pub const fn is_ascii(&self) -> bool {
2721 // We can treat each byte as character here: all multibyte characters
2722 // start with a byte that is not in the ASCII range, so we will stop
2723 // there already.
2724 self.as_bytes().is_ascii()
2725 }
2726
2727 /// If this string slice [`is_ascii`](Self::is_ascii), returns it as a slice
2728 /// of [ASCII characters](`ascii::Char`), otherwise returns `None`.
2729 #[unstable(feature = "ascii_char", issue = "110998")]
2730 #[must_use]
2731 #[inline]
2732 pub const fn as_ascii(&self) -> Option<&[ascii::Char]> {
2733 // Like in `is_ascii`, we can work on the bytes directly.
2734 self.as_bytes().as_ascii()
2735 }
2736
2737 /// Converts this string slice into a slice of [ASCII characters](ascii::Char),
2738 /// without checking whether they are valid.
2739 ///
2740 /// # Safety
2741 ///
2742 /// Every character in this string must be ASCII, or else this is UB.
2743 #[unstable(feature = "ascii_char", issue = "110998")]
2744 #[must_use]
2745 #[inline]
2746 pub const unsafe fn as_ascii_unchecked(&self) -> &[ascii::Char] {
2747 assert_unsafe_precondition!(
2748 check_library_ub,
2749 "as_ascii_unchecked requires that the string is valid ASCII",
2750 (it: &str = self) => it.is_ascii()
2751 );
2752
2753 // SAFETY: the caller promised that every byte of this string slice
2754 // is ASCII.
2755 unsafe { self.as_bytes().as_ascii_unchecked() }
2756 }
2757
2758 /// Checks that two strings are an ASCII case-insensitive match.
2759 ///
2760 /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`,
2761 /// but without allocating and copying temporaries.
2762 ///
2763 /// # Examples
2764 ///
2765 /// ```
2766 /// assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
2767 /// assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
2768 /// assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));
2769 /// ```
2770 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2771 #[rustc_const_stable(feature = "const_eq_ignore_ascii_case", since = "1.89.0")]
2772 #[must_use]
2773 #[inline]
2774 pub const fn eq_ignore_ascii_case(&self, other: &str) -> bool {
2775 self.as_bytes().eq_ignore_ascii_case(other.as_bytes())
2776 }
2777
2778 /// Converts this string to its ASCII upper case equivalent in-place.
2779 ///
2780 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
2781 /// but non-ASCII letters are unchanged.
2782 ///
2783 /// To return a new uppercased value without modifying the existing one, use
2784 /// [`to_ascii_uppercase()`].
2785 ///
2786 /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
2787 ///
2788 /// # Examples
2789 ///
2790 /// ```
2791 /// let mut s = String::from("Grüße, Jürgen ❤");
2792 ///
2793 /// s.make_ascii_uppercase();
2794 ///
2795 /// assert_eq!("GRüßE, JüRGEN ❤", s);
2796 /// ```
2797 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2798 #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2799 #[inline]
2800 pub const fn make_ascii_uppercase(&mut self) {
2801 // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2802 let me = unsafe { self.as_bytes_mut() };
2803 me.make_ascii_uppercase()
2804 }
2805
2806 /// Converts this string to its ASCII lower case equivalent in-place.
2807 ///
2808 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
2809 /// but non-ASCII letters are unchanged.
2810 ///
2811 /// To return a new lowercased value without modifying the existing one, use
2812 /// [`to_ascii_lowercase()`].
2813 ///
2814 /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
2815 ///
2816 /// # Examples
2817 ///
2818 /// ```
2819 /// let mut s = String::from("GRÜßE, JÜRGEN ❤");
2820 ///
2821 /// s.make_ascii_lowercase();
2822 ///
2823 /// assert_eq!("grÜße, jÜrgen ❤", s);
2824 /// ```
2825 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2826 #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2827 #[inline]
2828 pub const fn make_ascii_lowercase(&mut self) {
2829 // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2830 let me = unsafe { self.as_bytes_mut() };
2831 me.make_ascii_lowercase()
2832 }
2833
2834 /// Returns a string slice with leading ASCII whitespace removed.
2835 ///
2836 /// 'Whitespace' refers to the definition used by
2837 /// [`u8::is_ascii_whitespace`].
2838 ///
2839 /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2840 ///
2841 /// # Examples
2842 ///
2843 /// ```
2844 /// assert_eq!(" \t \u{3000}hello world\n".trim_ascii_start(), "\u{3000}hello world\n");
2845 /// assert_eq!(" ".trim_ascii_start(), "");
2846 /// assert_eq!("".trim_ascii_start(), "");
2847 /// ```
2848 #[must_use = "this returns the trimmed string as a new slice, \
2849 without modifying the original"]
2850 #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2851 #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2852 #[inline]
2853 pub const fn trim_ascii_start(&self) -> &str {
2854 // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2855 // UTF-8.
2856 unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_start()) }
2857 }
2858
2859 /// Returns a string slice with trailing ASCII whitespace removed.
2860 ///
2861 /// 'Whitespace' refers to the definition used by
2862 /// [`u8::is_ascii_whitespace`].
2863 ///
2864 /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2865 ///
2866 /// # Examples
2867 ///
2868 /// ```
2869 /// assert_eq!("\r hello world\u{3000}\n ".trim_ascii_end(), "\r hello world\u{3000}");
2870 /// assert_eq!(" ".trim_ascii_end(), "");
2871 /// assert_eq!("".trim_ascii_end(), "");
2872 /// ```
2873 #[must_use = "this returns the trimmed string as a new slice, \
2874 without modifying the original"]
2875 #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2876 #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2877 #[inline]
2878 pub const fn trim_ascii_end(&self) -> &str {
2879 // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2880 // UTF-8.
2881 unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_end()) }
2882 }
2883
2884 /// Returns a string slice with leading and trailing ASCII whitespace
2885 /// removed.
2886 ///
2887 /// 'Whitespace' refers to the definition used by
2888 /// [`u8::is_ascii_whitespace`].
2889 ///
2890 /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2891 ///
2892 /// # Examples
2893 ///
2894 /// ```
2895 /// assert_eq!("\r hello world\n ".trim_ascii(), "hello world");
2896 /// assert_eq!(" ".trim_ascii(), "");
2897 /// assert_eq!("".trim_ascii(), "");
2898 /// ```
2899 #[must_use = "this returns the trimmed string as a new slice, \
2900 without modifying the original"]
2901 #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2902 #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2903 #[inline]
2904 pub const fn trim_ascii(&self) -> &str {
2905 // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2906 // UTF-8.
2907 unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii()) }
2908 }
2909
2910 /// Returns an iterator that escapes each char in `self` with [`char::escape_debug`].
2911 ///
2912 /// Note: only extended grapheme codepoints that begin the string will be
2913 /// escaped.
2914 ///
2915 /// # Examples
2916 ///
2917 /// As an iterator:
2918 ///
2919 /// ```
2920 /// for c in "❤\n!".escape_debug() {
2921 /// print!("{c}");
2922 /// }
2923 /// println!();
2924 /// ```
2925 ///
2926 /// Using `println!` directly:
2927 ///
2928 /// ```
2929 /// println!("{}", "❤\n!".escape_debug());
2930 /// ```
2931 ///
2932 ///
2933 /// Both are equivalent to:
2934 ///
2935 /// ```
2936 /// println!("❤\\n!");
2937 /// ```
2938 ///
2939 /// Using `to_string`:
2940 ///
2941 /// ```
2942 /// assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!");
2943 /// ```
2944 #[must_use = "this returns the escaped string as an iterator, \
2945 without modifying the original"]
2946 #[stable(feature = "str_escape", since = "1.34.0")]
2947 pub fn escape_debug(&self) -> EscapeDebug<'_> {
2948 let mut chars = self.chars();
2949 EscapeDebug {
2950 inner: chars
2951 .next()
2952 .map(|first| first.escape_debug_ext(EscapeDebugExtArgs::ESCAPE_ALL))
2953 .into_iter()
2954 .flatten()
2955 .chain(chars.flat_map(CharEscapeDebugContinue)),
2956 }
2957 }
2958
2959 /// Returns an iterator that escapes each char in `self` with [`char::escape_default`].
2960 ///
2961 /// # Examples
2962 ///
2963 /// As an iterator:
2964 ///
2965 /// ```
2966 /// for c in "❤\n!".escape_default() {
2967 /// print!("{c}");
2968 /// }
2969 /// println!();
2970 /// ```
2971 ///
2972 /// Using `println!` directly:
2973 ///
2974 /// ```
2975 /// println!("{}", "❤\n!".escape_default());
2976 /// ```
2977 ///
2978 ///
2979 /// Both are equivalent to:
2980 ///
2981 /// ```
2982 /// println!("\\u{{2764}}\\n!");
2983 /// ```
2984 ///
2985 /// Using `to_string`:
2986 ///
2987 /// ```
2988 /// assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!");
2989 /// ```
2990 #[must_use = "this returns the escaped string as an iterator, \
2991 without modifying the original"]
2992 #[stable(feature = "str_escape", since = "1.34.0")]
2993 pub fn escape_default(&self) -> EscapeDefault<'_> {
2994 EscapeDefault { inner: self.chars().flat_map(CharEscapeDefault) }
2995 }
2996
2997 /// Returns an iterator that escapes each char in `self` with [`char::escape_unicode`].
2998 ///
2999 /// # Examples
3000 ///
3001 /// As an iterator:
3002 ///
3003 /// ```
3004 /// for c in "❤\n!".escape_unicode() {
3005 /// print!("{c}");
3006 /// }
3007 /// println!();
3008 /// ```
3009 ///
3010 /// Using `println!` directly:
3011 ///
3012 /// ```
3013 /// println!("{}", "❤\n!".escape_unicode());
3014 /// ```
3015 ///
3016 ///
3017 /// Both are equivalent to:
3018 ///
3019 /// ```
3020 /// println!("\\u{{2764}}\\u{{a}}\\u{{21}}");
3021 /// ```
3022 ///
3023 /// Using `to_string`:
3024 ///
3025 /// ```
3026 /// assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}");
3027 /// ```
3028 #[must_use = "this returns the escaped string as an iterator, \
3029 without modifying the original"]
3030 #[stable(feature = "str_escape", since = "1.34.0")]
3031 pub fn escape_unicode(&self) -> EscapeUnicode<'_> {
3032 EscapeUnicode { inner: self.chars().flat_map(CharEscapeUnicode) }
3033 }
3034
3035 /// Returns the range that a substring points to.
3036 ///
3037 /// Returns `None` if `substr` does not point within `self`.
3038 ///
3039 /// Unlike [`str::find`], **this does not search through the string**.
3040 /// Instead, it uses pointer arithmetic to find where in the string
3041 /// `substr` is derived from.
3042 ///
3043 /// This is useful for extending [`str::split`] and similar methods.
3044 ///
3045 /// Note that this method may return false positives (typically either
3046 /// `Some(0..0)` or `Some(self.len()..self.len())`) if `substr` is a
3047 /// zero-length `str` that points at the beginning or end of another,
3048 /// independent, `str`.
3049 ///
3050 /// # Examples
3051 /// ```
3052 /// #![feature(substr_range)]
3053 ///
3054 /// let data = "a, b, b, a";
3055 /// let mut iter = data.split(", ").map(|s| data.substr_range(s).unwrap());
3056 ///
3057 /// assert_eq!(iter.next(), Some(0..1));
3058 /// assert_eq!(iter.next(), Some(3..4));
3059 /// assert_eq!(iter.next(), Some(6..7));
3060 /// assert_eq!(iter.next(), Some(9..10));
3061 /// ```
3062 #[must_use]
3063 #[unstable(feature = "substr_range", issue = "126769")]
3064 pub fn substr_range(&self, substr: &str) -> Option<Range<usize>> {
3065 self.as_bytes().subslice_range(substr.as_bytes())
3066 }
3067
3068 /// Returns the same string as a string slice `&str`.
3069 ///
3070 /// This method is redundant when used directly on `&str`, but
3071 /// it helps dereferencing other string-like types to string slices,
3072 /// for example references to `Box<str>` or `Arc<str>`.
3073 #[inline]
3074 #[unstable(feature = "str_as_str", issue = "130366")]
3075 pub fn as_str(&self) -> &str {
3076 self
3077 }
3078}
3079
3080#[stable(feature = "rust1", since = "1.0.0")]
3081impl AsRef<[u8]> for str {
3082 #[inline]
3083 fn as_ref(&self) -> &[u8] {
3084 self.as_bytes()
3085 }
3086}
3087
3088#[stable(feature = "rust1", since = "1.0.0")]
3089#[rustc_const_unstable(feature = "const_default", issue = "143894")]
3090impl const Default for &str {
3091 /// Creates an empty str
3092 #[inline]
3093 fn default() -> Self {
3094 ""
3095 }
3096}
3097
3098#[stable(feature = "default_mut_str", since = "1.28.0")]
3099#[rustc_const_unstable(feature = "const_default", issue = "143894")]
3100impl const Default for &mut str {
3101 /// Creates an empty mutable str
3102 #[inline]
3103 fn default() -> Self {
3104 // SAFETY: The empty string is valid UTF-8.
3105 unsafe { from_utf8_unchecked_mut(&mut []) }
3106 }
3107}
3108
3109impl_fn_for_zst! {
3110 /// A nameable, cloneable fn type
3111 #[derive(Clone)]
3112 struct LinesMap impl<'a> Fn = |line: &'a str| -> &'a str {
3113 let Some(line) = line.strip_suffix('\n') else { return line };
3114 let Some(line) = line.strip_suffix('\r') else { return line };
3115 line
3116 };
3117
3118 #[derive(Clone)]
3119 struct CharEscapeDebugContinue impl Fn = |c: char| -> char::EscapeDebug {
3120 c.escape_debug_ext(EscapeDebugExtArgs {
3121 escape_grapheme_extended: false,
3122 escape_single_quote: true,
3123 escape_double_quote: true
3124 })
3125 };
3126
3127 #[derive(Clone)]
3128 struct CharEscapeUnicode impl Fn = |c: char| -> char::EscapeUnicode {
3129 c.escape_unicode()
3130 };
3131 #[derive(Clone)]
3132 struct CharEscapeDefault impl Fn = |c: char| -> char::EscapeDefault {
3133 c.escape_default()
3134 };
3135
3136 #[derive(Clone)]
3137 struct IsWhitespace impl Fn = |c: char| -> bool {
3138 c.is_whitespace()
3139 };
3140
3141 #[derive(Clone)]
3142 struct IsAsciiWhitespace impl Fn = |byte: &u8| -> bool {
3143 byte.is_ascii_whitespace()
3144 };
3145
3146 #[derive(Clone)]
3147 struct IsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b str| -> bool {
3148 !s.is_empty()
3149 };
3150
3151 #[derive(Clone)]
3152 struct BytesIsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b [u8]| -> bool {
3153 !s.is_empty()
3154 };
3155
3156 #[derive(Clone)]
3157 struct UnsafeBytesToStr impl<'a> Fn = |bytes: &'a [u8]| -> &'a str {
3158 // SAFETY: not safe
3159 unsafe { from_utf8_unchecked(bytes) }
3160 };
3161}
3162
3163// This is required to make `impl From<&str> for Box<dyn Error>` and `impl<E> From<E> for Box<dyn Error>` not overlap.
3164#[stable(feature = "error_in_core_neg_impl", since = "1.65.0")]
3165impl !crate::error::Error for &str {}