core/result.rs
1//! Error handling with the `Result` type.
2//!
3//! [`Result<T, E>`][`Result`] is the type used for returning and propagating
4//! errors. It is an enum with the variants, [`Ok(T)`], representing
5//! success and containing a value, and [`Err(E)`], representing error
6//! and containing an error value.
7//!
8//! ```
9//! # #[allow(dead_code)]
10//! enum Result<T, E> {
11//! Ok(T),
12//! Err(E),
13//! }
14//! ```
15//!
16//! Functions return [`Result`] whenever errors are expected and
17//! recoverable. In the `std` crate, [`Result`] is most prominently used
18//! for [I/O](../../std/io/index.html).
19//!
20//! A simple function returning [`Result`] might be
21//! defined and used like so:
22//!
23//! ```
24//! #[derive(Debug)]
25//! enum Version { Version1, Version2 }
26//!
27//! fn parse_version(header: &[u8]) -> Result<Version, &'static str> {
28//! match header.get(0) {
29//! None => Err("invalid header length"),
30//! Some(&1) => Ok(Version::Version1),
31//! Some(&2) => Ok(Version::Version2),
32//! Some(_) => Err("invalid version"),
33//! }
34//! }
35//!
36//! let version = parse_version(&[1, 2, 3, 4]);
37//! match version {
38//! Ok(v) => println!("working with version: {v:?}"),
39//! Err(e) => println!("error parsing header: {e:?}"),
40//! }
41//! ```
42//!
43//! Pattern matching on [`Result`]s is clear and straightforward for
44//! simple cases, but [`Result`] comes with some convenience methods
45//! that make working with it more succinct.
46//!
47//! ```
48//! // The `is_ok` and `is_err` methods do what they say.
49//! let good_result: Result<i32, i32> = Ok(10);
50//! let bad_result: Result<i32, i32> = Err(10);
51//! assert!(good_result.is_ok() && !good_result.is_err());
52//! assert!(bad_result.is_err() && !bad_result.is_ok());
53//!
54//! // `map` and `map_err` consume the `Result` and produce another.
55//! let good_result: Result<i32, i32> = good_result.map(|i| i + 1);
56//! let bad_result: Result<i32, i32> = bad_result.map_err(|i| i - 1);
57//! assert_eq!(good_result, Ok(11));
58//! assert_eq!(bad_result, Err(9));
59//!
60//! // Use `and_then` to continue the computation.
61//! let good_result: Result<bool, i32> = good_result.and_then(|i| Ok(i == 11));
62//! assert_eq!(good_result, Ok(true));
63//!
64//! // Use `or_else` to handle the error.
65//! let bad_result: Result<i32, i32> = bad_result.or_else(|i| Ok(i + 20));
66//! assert_eq!(bad_result, Ok(29));
67//!
68//! // Consume the result and return the contents with `unwrap`.
69//! let final_awesome_result = good_result.unwrap();
70//! assert!(final_awesome_result)
71//! ```
72//!
73//! # Results must be used
74//!
75//! A common problem with using return values to indicate errors is
76//! that it is easy to ignore the return value, thus failing to handle
77//! the error. [`Result`] is annotated with the `#[must_use]` attribute,
78//! which will cause the compiler to issue a warning when a Result
79//! value is ignored. This makes [`Result`] especially useful with
80//! functions that may encounter errors but don't otherwise return a
81//! useful value.
82//!
83//! Consider the [`write_all`] method defined for I/O types
84//! by the [`Write`] trait:
85//!
86//! ```
87//! use std::io;
88//!
89//! trait Write {
90//! fn write_all(&mut self, bytes: &[u8]) -> Result<(), io::Error>;
91//! }
92//! ```
93//!
94//! *Note: The actual definition of [`Write`] uses [`io::Result`], which
95//! is just a synonym for <code>[Result]<T, [io::Error]></code>.*
96//!
97//! This method doesn't produce a value, but the write may
98//! fail. It's crucial to handle the error case, and *not* write
99//! something like this:
100//!
101//! ```no_run
102//! # #![allow(unused_must_use)] // \o/
103//! use std::fs::File;
104//! use std::io::prelude::*;
105//!
106//! let mut file = File::create("valuable_data.txt").unwrap();
107//! // If `write_all` errors, then we'll never know, because the return
108//! // value is ignored.
109//! file.write_all(b"important message");
110//! ```
111//!
112//! If you *do* write that in Rust, the compiler will give you a
113//! warning (by default, controlled by the `unused_must_use` lint).
114//!
115//! You might instead, if you don't want to handle the error, simply
116//! assert success with [`expect`]. This will panic if the
117//! write fails, providing a marginally useful message indicating why:
118//!
119//! ```no_run
120//! use std::fs::File;
121//! use std::io::prelude::*;
122//!
123//! let mut file = File::create("valuable_data.txt").unwrap();
124//! file.write_all(b"important message").expect("failed to write message");
125//! ```
126//!
127//! You might also simply assert success:
128//!
129//! ```no_run
130//! # use std::fs::File;
131//! # use std::io::prelude::*;
132//! # let mut file = File::create("valuable_data.txt").unwrap();
133//! assert!(file.write_all(b"important message").is_ok());
134//! ```
135//!
136//! Or propagate the error up the call stack with [`?`]:
137//!
138//! ```
139//! # use std::fs::File;
140//! # use std::io::prelude::*;
141//! # use std::io;
142//! # #[allow(dead_code)]
143//! fn write_message() -> io::Result<()> {
144//! let mut file = File::create("valuable_data.txt")?;
145//! file.write_all(b"important message")?;
146//! Ok(())
147//! }
148//! ```
149//!
150//! # The question mark operator, `?`
151//!
152//! When writing code that calls many functions that return the
153//! [`Result`] type, the error handling can be tedious. The question mark
154//! operator, [`?`], hides some of the boilerplate of propagating errors
155//! up the call stack.
156//!
157//! It replaces this:
158//!
159//! ```
160//! # #![allow(dead_code)]
161//! use std::fs::File;
162//! use std::io::prelude::*;
163//! use std::io;
164//!
165//! struct Info {
166//! name: String,
167//! age: i32,
168//! rating: i32,
169//! }
170//!
171//! fn write_info(info: &Info) -> io::Result<()> {
172//! // Early return on error
173//! let mut file = match File::create("my_best_friends.txt") {
174//! Err(e) => return Err(e),
175//! Ok(f) => f,
176//! };
177//! if let Err(e) = file.write_all(format!("name: {}\n", info.name).as_bytes()) {
178//! return Err(e)
179//! }
180//! if let Err(e) = file.write_all(format!("age: {}\n", info.age).as_bytes()) {
181//! return Err(e)
182//! }
183//! if let Err(e) = file.write_all(format!("rating: {}\n", info.rating).as_bytes()) {
184//! return Err(e)
185//! }
186//! Ok(())
187//! }
188//! ```
189//!
190//! With this:
191//!
192//! ```
193//! # #![allow(dead_code)]
194//! use std::fs::File;
195//! use std::io::prelude::*;
196//! use std::io;
197//!
198//! struct Info {
199//! name: String,
200//! age: i32,
201//! rating: i32,
202//! }
203//!
204//! fn write_info(info: &Info) -> io::Result<()> {
205//! let mut file = File::create("my_best_friends.txt")?;
206//! // Early return on error
207//! file.write_all(format!("name: {}\n", info.name).as_bytes())?;
208//! file.write_all(format!("age: {}\n", info.age).as_bytes())?;
209//! file.write_all(format!("rating: {}\n", info.rating).as_bytes())?;
210//! Ok(())
211//! }
212//! ```
213//!
214//! *It's much nicer!*
215//!
216//! Ending the expression with [`?`] will result in the [`Ok`]'s unwrapped value, unless the result
217//! is [`Err`], in which case [`Err`] is returned early from the enclosing function.
218//!
219//! [`?`] can be used in functions that return [`Result`] because of the
220//! early return of [`Err`] that it provides.
221//!
222//! [`expect`]: Result::expect
223//! [`Write`]: ../../std/io/trait.Write.html "io::Write"
224//! [`write_all`]: ../../std/io/trait.Write.html#method.write_all "io::Write::write_all"
225//! [`io::Result`]: ../../std/io/type.Result.html "io::Result"
226//! [`?`]: crate::ops::Try
227//! [`Ok(T)`]: Ok
228//! [`Err(E)`]: Err
229//! [io::Error]: ../../std/io/struct.Error.html "io::Error"
230//!
231//! # Representation
232//!
233//! In some cases, [`Result<T, E>`] will gain the same size, alignment, and ABI
234//! guarantees as [`Option<U>`] has. One of either the `T` or `E` type must be a
235//! type that qualifies for the `Option` [representation guarantees][opt-rep],
236//! and the *other* type must meet all of the following conditions:
237//! * Is a zero-sized type with alignment 1 (a "1-ZST").
238//! * Has no fields.
239//! * Does not have the `#[non_exhaustive]` attribute.
240//!
241//! For example, `NonZeroI32` qualifies for the `Option` representation
242//! guarantees, and `()` is a zero-sized type with alignment 1, no fields, and
243//! it isn't `non_exhaustive`. This means that both `Result<NonZeroI32, ()>` and
244//! `Result<(), NonZeroI32>` have the same size, alignment, and ABI guarantees
245//! as `Option<NonZeroI32>`. The only difference is the implied semantics:
246//! * `Option<NonZeroI32>` is "a non-zero i32 might be present"
247//! * `Result<NonZeroI32, ()>` is "a non-zero i32 success result, if any"
248//! * `Result<(), NonZeroI32>` is "a non-zero i32 error result, if any"
249//!
250//! [opt-rep]: ../option/index.html#representation "Option Representation"
251//!
252//! # Method overview
253//!
254//! In addition to working with pattern matching, [`Result`] provides a
255//! wide variety of different methods.
256//!
257//! ## Querying the variant
258//!
259//! The [`is_ok`] and [`is_err`] methods return [`true`] if the [`Result`]
260//! is [`Ok`] or [`Err`], respectively.
261//!
262//! The [`is_ok_and`] and [`is_err_and`] methods apply the provided function
263//! to the contents of the [`Result`] to produce a boolean value. If the [`Result`] does not have the expected variant
264//! then [`false`] is returned instead without executing the function.
265//!
266//! [`is_err`]: Result::is_err
267//! [`is_ok`]: Result::is_ok
268//! [`is_ok_and`]: Result::is_ok_and
269//! [`is_err_and`]: Result::is_err_and
270//!
271//! ## Adapters for working with references
272//!
273//! * [`as_ref`] converts from `&Result<T, E>` to `Result<&T, &E>`
274//! * [`as_mut`] converts from `&mut Result<T, E>` to `Result<&mut T, &mut E>`
275//! * [`as_deref`] converts from `&Result<T, E>` to `Result<&T::Target, &E>`
276//! * [`as_deref_mut`] converts from `&mut Result<T, E>` to
277//! `Result<&mut T::Target, &mut E>`
278//!
279//! [`as_deref`]: Result::as_deref
280//! [`as_deref_mut`]: Result::as_deref_mut
281//! [`as_mut`]: Result::as_mut
282//! [`as_ref`]: Result::as_ref
283//!
284//! ## Extracting contained values
285//!
286//! These methods extract the contained value in a [`Result<T, E>`] when it
287//! is the [`Ok`] variant. If the [`Result`] is [`Err`]:
288//!
289//! * [`expect`] panics with a provided custom message
290//! * [`unwrap`] panics with a generic message
291//! * [`unwrap_or`] returns the provided default value
292//! * [`unwrap_or_default`] returns the default value of the type `T`
293//! (which must implement the [`Default`] trait)
294//! * [`unwrap_or_else`] returns the result of evaluating the provided
295//! function
296//! * [`unwrap_unchecked`] produces *[undefined behavior]*
297//!
298//! The panicking methods [`expect`] and [`unwrap`] require `E` to
299//! implement the [`Debug`] trait.
300//!
301//! [`Debug`]: crate::fmt::Debug
302//! [`expect`]: Result::expect
303//! [`unwrap`]: Result::unwrap
304//! [`unwrap_or`]: Result::unwrap_or
305//! [`unwrap_or_default`]: Result::unwrap_or_default
306//! [`unwrap_or_else`]: Result::unwrap_or_else
307//! [`unwrap_unchecked`]: Result::unwrap_unchecked
308//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
309//!
310//! These methods extract the contained value in a [`Result<T, E>`] when it
311//! is the [`Err`] variant. They require `T` to implement the [`Debug`]
312//! trait. If the [`Result`] is [`Ok`]:
313//!
314//! * [`expect_err`] panics with a provided custom message
315//! * [`unwrap_err`] panics with a generic message
316//! * [`unwrap_err_unchecked`] produces *[undefined behavior]*
317//!
318//! [`Debug`]: crate::fmt::Debug
319//! [`expect_err`]: Result::expect_err
320//! [`unwrap_err`]: Result::unwrap_err
321//! [`unwrap_err_unchecked`]: Result::unwrap_err_unchecked
322//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
323//!
324//! ## Transforming contained values
325//!
326//! These methods transform [`Result`] to [`Option`]:
327//!
328//! * [`err`][Result::err] transforms [`Result<T, E>`] into [`Option<E>`],
329//! mapping [`Err(e)`] to [`Some(e)`] and [`Ok(v)`] to [`None`]
330//! * [`ok`][Result::ok] transforms [`Result<T, E>`] into [`Option<T>`],
331//! mapping [`Ok(v)`] to [`Some(v)`] and [`Err(e)`] to [`None`]
332//! * [`transpose`] transposes a [`Result`] of an [`Option`] into an
333//! [`Option`] of a [`Result`]
334//!
335// Do NOT add link reference definitions for `err` or `ok`, because they
336// will generate numerous incorrect URLs for `Err` and `Ok` elsewhere, due
337// to case folding.
338//!
339//! [`Err(e)`]: Err
340//! [`Ok(v)`]: Ok
341//! [`Some(e)`]: Option::Some
342//! [`Some(v)`]: Option::Some
343//! [`transpose`]: Result::transpose
344//!
345//! These methods transform the contained value of the [`Ok`] variant:
346//!
347//! * [`map`] transforms [`Result<T, E>`] into [`Result<U, E>`] by applying
348//! the provided function to the contained value of [`Ok`] and leaving
349//! [`Err`] values unchanged
350//! * [`inspect`] takes ownership of the [`Result`], applies the
351//! provided function to the contained value by reference,
352//! and then returns the [`Result`]
353//!
354//! [`map`]: Result::map
355//! [`inspect`]: Result::inspect
356//!
357//! These methods transform the contained value of the [`Err`] variant:
358//!
359//! * [`map_err`] transforms [`Result<T, E>`] into [`Result<T, F>`] by
360//! applying the provided function to the contained value of [`Err`] and
361//! leaving [`Ok`] values unchanged
362//! * [`inspect_err`] takes ownership of the [`Result`], applies the
363//! provided function to the contained value of [`Err`] by reference,
364//! and then returns the [`Result`]
365//!
366//! [`map_err`]: Result::map_err
367//! [`inspect_err`]: Result::inspect_err
368//!
369//! These methods transform a [`Result<T, E>`] into a value of a possibly
370//! different type `U`:
371//!
372//! * [`map_or`] applies the provided function to the contained value of
373//! [`Ok`], or returns the provided default value if the [`Result`] is
374//! [`Err`]
375//! * [`map_or_else`] applies the provided function to the contained value
376//! of [`Ok`], or applies the provided default fallback function to the
377//! contained value of [`Err`]
378//!
379//! [`map_or`]: Result::map_or
380//! [`map_or_else`]: Result::map_or_else
381//!
382//! ## Boolean operators
383//!
384//! These methods treat the [`Result`] as a boolean value, where [`Ok`]
385//! acts like [`true`] and [`Err`] acts like [`false`]. There are two
386//! categories of these methods: ones that take a [`Result`] as input, and
387//! ones that take a function as input (to be lazily evaluated).
388//!
389//! The [`and`] and [`or`] methods take another [`Result`] as input, and
390//! produce a [`Result`] as output. The [`and`] method can produce a
391//! [`Result<U, E>`] value having a different inner type `U` than
392//! [`Result<T, E>`]. The [`or`] method can produce a [`Result<T, F>`]
393//! value having a different error type `F` than [`Result<T, E>`].
394//!
395//! | method | self | input | output |
396//! |---------|----------|-----------|----------|
397//! | [`and`] | `Err(e)` | (ignored) | `Err(e)` |
398//! | [`and`] | `Ok(x)` | `Err(d)` | `Err(d)` |
399//! | [`and`] | `Ok(x)` | `Ok(y)` | `Ok(y)` |
400//! | [`or`] | `Err(e)` | `Err(d)` | `Err(d)` |
401//! | [`or`] | `Err(e)` | `Ok(y)` | `Ok(y)` |
402//! | [`or`] | `Ok(x)` | (ignored) | `Ok(x)` |
403//!
404//! [`and`]: Result::and
405//! [`or`]: Result::or
406//!
407//! The [`and_then`] and [`or_else`] methods take a function as input, and
408//! only evaluate the function when they need to produce a new value. The
409//! [`and_then`] method can produce a [`Result<U, E>`] value having a
410//! different inner type `U` than [`Result<T, E>`]. The [`or_else`] method
411//! can produce a [`Result<T, F>`] value having a different error type `F`
412//! than [`Result<T, E>`].
413//!
414//! | method | self | function input | function result | output |
415//! |--------------|----------|----------------|-----------------|----------|
416//! | [`and_then`] | `Err(e)` | (not provided) | (not evaluated) | `Err(e)` |
417//! | [`and_then`] | `Ok(x)` | `x` | `Err(d)` | `Err(d)` |
418//! | [`and_then`] | `Ok(x)` | `x` | `Ok(y)` | `Ok(y)` |
419//! | [`or_else`] | `Err(e)` | `e` | `Err(d)` | `Err(d)` |
420//! | [`or_else`] | `Err(e)` | `e` | `Ok(y)` | `Ok(y)` |
421//! | [`or_else`] | `Ok(x)` | (not provided) | (not evaluated) | `Ok(x)` |
422//!
423//! [`and_then`]: Result::and_then
424//! [`or_else`]: Result::or_else
425//!
426//! ## Comparison operators
427//!
428//! If `T` and `E` both implement [`PartialOrd`] then [`Result<T, E>`] will
429//! derive its [`PartialOrd`] implementation. With this order, an [`Ok`]
430//! compares as less than any [`Err`], while two [`Ok`] or two [`Err`]
431//! compare as their contained values would in `T` or `E` respectively. If `T`
432//! and `E` both also implement [`Ord`], then so does [`Result<T, E>`].
433//!
434//! ```
435//! assert!(Ok(1) < Err(0));
436//! let x: Result<i32, ()> = Ok(0);
437//! let y = Ok(1);
438//! assert!(x < y);
439//! let x: Result<(), i32> = Err(0);
440//! let y = Err(1);
441//! assert!(x < y);
442//! ```
443//!
444//! ## Iterating over `Result`
445//!
446//! A [`Result`] can be iterated over. This can be helpful if you need an
447//! iterator that is conditionally empty. The iterator will either produce
448//! a single value (when the [`Result`] is [`Ok`]), or produce no values
449//! (when the [`Result`] is [`Err`]). For example, [`into_iter`] acts like
450//! [`once(v)`] if the [`Result`] is [`Ok(v)`], and like [`empty()`] if the
451//! [`Result`] is [`Err`].
452//!
453//! [`Ok(v)`]: Ok
454//! [`empty()`]: crate::iter::empty
455//! [`once(v)`]: crate::iter::once
456//!
457//! Iterators over [`Result<T, E>`] come in three types:
458//!
459//! * [`into_iter`] consumes the [`Result`] and produces the contained
460//! value
461//! * [`iter`] produces an immutable reference of type `&T` to the
462//! contained value
463//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
464//! contained value
465//!
466//! See [Iterating over `Option`] for examples of how this can be useful.
467//!
468//! [Iterating over `Option`]: crate::option#iterating-over-option
469//! [`into_iter`]: Result::into_iter
470//! [`iter`]: Result::iter
471//! [`iter_mut`]: Result::iter_mut
472//!
473//! You might want to use an iterator chain to do multiple instances of an
474//! operation that can fail, but would like to ignore failures while
475//! continuing to process the successful results. In this example, we take
476//! advantage of the iterable nature of [`Result`] to select only the
477//! [`Ok`] values using [`flatten`][Iterator::flatten].
478//!
479//! ```
480//! # use std::str::FromStr;
481//! let mut results = vec![];
482//! let mut errs = vec![];
483//! let nums: Vec<_> = ["17", "not a number", "99", "-27", "768"]
484//! .into_iter()
485//! .map(u8::from_str)
486//! // Save clones of the raw `Result` values to inspect
487//! .inspect(|x| results.push(x.clone()))
488//! // Challenge: explain how this captures only the `Err` values
489//! .inspect(|x| errs.extend(x.clone().err()))
490//! .flatten()
491//! .collect();
492//! assert_eq!(errs.len(), 3);
493//! assert_eq!(nums, [17, 99]);
494//! println!("results {results:?}");
495//! println!("errs {errs:?}");
496//! println!("nums {nums:?}");
497//! ```
498//!
499//! ## Collecting into `Result`
500//!
501//! [`Result`] implements the [`FromIterator`][impl-FromIterator] trait,
502//! which allows an iterator over [`Result`] values to be collected into a
503//! [`Result`] of a collection of each contained value of the original
504//! [`Result`] values, or [`Err`] if any of the elements was [`Err`].
505//!
506//! [impl-FromIterator]: Result#impl-FromIterator%3CResult%3CA,+E%3E%3E-for-Result%3CV,+E%3E
507//!
508//! ```
509//! let v = [Ok(2), Ok(4), Err("err!"), Ok(8)];
510//! let res: Result<Vec<_>, &str> = v.into_iter().collect();
511//! assert_eq!(res, Err("err!"));
512//! let v = [Ok(2), Ok(4), Ok(8)];
513//! let res: Result<Vec<_>, &str> = v.into_iter().collect();
514//! assert_eq!(res, Ok(vec![2, 4, 8]));
515//! ```
516//!
517//! [`Result`] also implements the [`Product`][impl-Product] and
518//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Result`] values
519//! to provide the [`product`][Iterator::product] and
520//! [`sum`][Iterator::sum] methods.
521//!
522//! [impl-Product]: Result#impl-Product%3CResult%3CU,+E%3E%3E-for-Result%3CT,+E%3E
523//! [impl-Sum]: Result#impl-Sum%3CResult%3CU,+E%3E%3E-for-Result%3CT,+E%3E
524//!
525//! ```
526//! let v = [Err("error!"), Ok(1), Ok(2), Ok(3), Err("foo")];
527//! let res: Result<i32, &str> = v.into_iter().sum();
528//! assert_eq!(res, Err("error!"));
529//! let v = [Ok(1), Ok(2), Ok(21)];
530//! let res: Result<i32, &str> = v.into_iter().product();
531//! assert_eq!(res, Ok(42));
532//! ```
533
534#![stable(feature = "rust1", since = "1.0.0")]
535
536use crate::iter::{self, FusedIterator, TrustedLen};
537use crate::marker::Destruct;
538use crate::ops::{self, ControlFlow, Deref, DerefMut};
539use crate::{convert, fmt, hint};
540
541/// `Result` is a type that represents either success ([`Ok`]) or failure ([`Err`]).
542///
543/// See the [module documentation](self) for details.
544#[doc(search_unbox)]
545#[derive(Copy, PartialEq, PartialOrd, Eq, Ord, Debug, Hash)]
546#[must_use = "this `Result` may be an `Err` variant, which should be handled"]
547#[rustc_diagnostic_item = "Result"]
548#[stable(feature = "rust1", since = "1.0.0")]
549pub enum Result<T, E> {
550 /// Contains the success value
551 #[lang = "Ok"]
552 #[stable(feature = "rust1", since = "1.0.0")]
553 Ok(#[stable(feature = "rust1", since = "1.0.0")] T),
554
555 /// Contains the error value
556 #[lang = "Err"]
557 #[stable(feature = "rust1", since = "1.0.0")]
558 Err(#[stable(feature = "rust1", since = "1.0.0")] E),
559}
560
561/////////////////////////////////////////////////////////////////////////////
562// Type implementation
563/////////////////////////////////////////////////////////////////////////////
564
565impl<T, E> Result<T, E> {
566 /////////////////////////////////////////////////////////////////////////
567 // Querying the contained values
568 /////////////////////////////////////////////////////////////////////////
569
570 /// Returns `true` if the result is [`Ok`].
571 ///
572 /// # Examples
573 ///
574 /// ```
575 /// let x: Result<i32, &str> = Ok(-3);
576 /// assert_eq!(x.is_ok(), true);
577 ///
578 /// let x: Result<i32, &str> = Err("Some error message");
579 /// assert_eq!(x.is_ok(), false);
580 /// ```
581 #[must_use = "if you intended to assert that this is ok, consider `.unwrap()` instead"]
582 #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
583 #[inline]
584 #[stable(feature = "rust1", since = "1.0.0")]
585 pub const fn is_ok(&self) -> bool {
586 matches!(*self, Ok(_))
587 }
588
589 /// Returns `true` if the result is [`Ok`] and the value inside of it matches a predicate.
590 ///
591 /// # Examples
592 ///
593 /// ```
594 /// let x: Result<u32, &str> = Ok(2);
595 /// assert_eq!(x.is_ok_and(|x| x > 1), true);
596 ///
597 /// let x: Result<u32, &str> = Ok(0);
598 /// assert_eq!(x.is_ok_and(|x| x > 1), false);
599 ///
600 /// let x: Result<u32, &str> = Err("hey");
601 /// assert_eq!(x.is_ok_and(|x| x > 1), false);
602 ///
603 /// let x: Result<String, &str> = Ok("ownership".to_string());
604 /// assert_eq!(x.as_ref().is_ok_and(|x| x.len() > 1), true);
605 /// println!("still alive {:?}", x);
606 /// ```
607 #[must_use]
608 #[inline]
609 #[stable(feature = "is_some_and", since = "1.70.0")]
610 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
611 pub const fn is_ok_and<F>(self, f: F) -> bool
612 where
613 F: [const] FnOnce(T) -> bool + [const] Destruct,
614 T: [const] Destruct,
615 E: [const] Destruct,
616 {
617 match self {
618 Err(_) => false,
619 Ok(x) => f(x),
620 }
621 }
622
623 /// Returns `true` if the result is [`Err`].
624 ///
625 /// # Examples
626 ///
627 /// ```
628 /// let x: Result<i32, &str> = Ok(-3);
629 /// assert_eq!(x.is_err(), false);
630 ///
631 /// let x: Result<i32, &str> = Err("Some error message");
632 /// assert_eq!(x.is_err(), true);
633 /// ```
634 #[must_use = "if you intended to assert that this is err, consider `.unwrap_err()` instead"]
635 #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
636 #[inline]
637 #[stable(feature = "rust1", since = "1.0.0")]
638 pub const fn is_err(&self) -> bool {
639 !self.is_ok()
640 }
641
642 /// Returns `true` if the result is [`Err`] and the value inside of it matches a predicate.
643 ///
644 /// # Examples
645 ///
646 /// ```
647 /// use std::io::{Error, ErrorKind};
648 ///
649 /// let x: Result<u32, Error> = Err(Error::new(ErrorKind::NotFound, "!"));
650 /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), true);
651 ///
652 /// let x: Result<u32, Error> = Err(Error::new(ErrorKind::PermissionDenied, "!"));
653 /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), false);
654 ///
655 /// let x: Result<u32, Error> = Ok(123);
656 /// assert_eq!(x.is_err_and(|x| x.kind() == ErrorKind::NotFound), false);
657 ///
658 /// let x: Result<u32, String> = Err("ownership".to_string());
659 /// assert_eq!(x.as_ref().is_err_and(|x| x.len() > 1), true);
660 /// println!("still alive {:?}", x);
661 /// ```
662 #[must_use]
663 #[inline]
664 #[stable(feature = "is_some_and", since = "1.70.0")]
665 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
666 pub const fn is_err_and<F>(self, f: F) -> bool
667 where
668 F: [const] FnOnce(E) -> bool + [const] Destruct,
669 E: [const] Destruct,
670 T: [const] Destruct,
671 {
672 match self {
673 Ok(_) => false,
674 Err(e) => f(e),
675 }
676 }
677
678 /////////////////////////////////////////////////////////////////////////
679 // Adapter for each variant
680 /////////////////////////////////////////////////////////////////////////
681
682 /// Converts from `Result<T, E>` to [`Option<T>`].
683 ///
684 /// Converts `self` into an [`Option<T>`], consuming `self`,
685 /// and discarding the error, if any.
686 ///
687 /// # Examples
688 ///
689 /// ```
690 /// let x: Result<u32, &str> = Ok(2);
691 /// assert_eq!(x.ok(), Some(2));
692 ///
693 /// let x: Result<u32, &str> = Err("Nothing here");
694 /// assert_eq!(x.ok(), None);
695 /// ```
696 #[inline]
697 #[stable(feature = "rust1", since = "1.0.0")]
698 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
699 #[rustc_diagnostic_item = "result_ok_method"]
700 pub const fn ok(self) -> Option<T>
701 where
702 T: [const] Destruct,
703 E: [const] Destruct,
704 {
705 match self {
706 Ok(x) => Some(x),
707 Err(_) => None,
708 }
709 }
710
711 /// Converts from `Result<T, E>` to [`Option<E>`].
712 ///
713 /// Converts `self` into an [`Option<E>`], consuming `self`,
714 /// and discarding the success value, if any.
715 ///
716 /// # Examples
717 ///
718 /// ```
719 /// let x: Result<u32, &str> = Ok(2);
720 /// assert_eq!(x.err(), None);
721 ///
722 /// let x: Result<u32, &str> = Err("Nothing here");
723 /// assert_eq!(x.err(), Some("Nothing here"));
724 /// ```
725 #[inline]
726 #[stable(feature = "rust1", since = "1.0.0")]
727 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
728 pub const fn err(self) -> Option<E>
729 where
730 T: [const] Destruct,
731 E: [const] Destruct,
732 {
733 match self {
734 Ok(_) => None,
735 Err(x) => Some(x),
736 }
737 }
738
739 /////////////////////////////////////////////////////////////////////////
740 // Adapter for working with references
741 /////////////////////////////////////////////////////////////////////////
742
743 /// Converts from `&Result<T, E>` to `Result<&T, &E>`.
744 ///
745 /// Produces a new `Result`, containing a reference
746 /// into the original, leaving the original in place.
747 ///
748 /// # Examples
749 ///
750 /// ```
751 /// let x: Result<u32, &str> = Ok(2);
752 /// assert_eq!(x.as_ref(), Ok(&2));
753 ///
754 /// let x: Result<u32, &str> = Err("Error");
755 /// assert_eq!(x.as_ref(), Err(&"Error"));
756 /// ```
757 #[inline]
758 #[rustc_const_stable(feature = "const_result_basics", since = "1.48.0")]
759 #[stable(feature = "rust1", since = "1.0.0")]
760 pub const fn as_ref(&self) -> Result<&T, &E> {
761 match *self {
762 Ok(ref x) => Ok(x),
763 Err(ref x) => Err(x),
764 }
765 }
766
767 /// Converts from `&mut Result<T, E>` to `Result<&mut T, &mut E>`.
768 ///
769 /// # Examples
770 ///
771 /// ```
772 /// fn mutate(r: &mut Result<i32, i32>) {
773 /// match r.as_mut() {
774 /// Ok(v) => *v = 42,
775 /// Err(e) => *e = 0,
776 /// }
777 /// }
778 ///
779 /// let mut x: Result<i32, i32> = Ok(2);
780 /// mutate(&mut x);
781 /// assert_eq!(x.unwrap(), 42);
782 ///
783 /// let mut x: Result<i32, i32> = Err(13);
784 /// mutate(&mut x);
785 /// assert_eq!(x.unwrap_err(), 0);
786 /// ```
787 #[inline]
788 #[stable(feature = "rust1", since = "1.0.0")]
789 #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
790 pub const fn as_mut(&mut self) -> Result<&mut T, &mut E> {
791 match *self {
792 Ok(ref mut x) => Ok(x),
793 Err(ref mut x) => Err(x),
794 }
795 }
796
797 /////////////////////////////////////////////////////////////////////////
798 // Transforming contained values
799 /////////////////////////////////////////////////////////////////////////
800
801 /// Maps a `Result<T, E>` to `Result<U, E>` by applying a function to a
802 /// contained [`Ok`] value, leaving an [`Err`] value untouched.
803 ///
804 /// This function can be used to compose the results of two functions.
805 ///
806 /// # Examples
807 ///
808 /// Print the numbers on each line of a string multiplied by two.
809 ///
810 /// ```
811 /// let line = "1\n2\n3\n4\n";
812 ///
813 /// for num in line.lines() {
814 /// match num.parse::<i32>().map(|i| i * 2) {
815 /// Ok(n) => println!("{n}"),
816 /// Err(..) => {}
817 /// }
818 /// }
819 /// ```
820 #[inline]
821 #[stable(feature = "rust1", since = "1.0.0")]
822 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
823 pub const fn map<U, F>(self, op: F) -> Result<U, E>
824 where
825 F: [const] FnOnce(T) -> U + [const] Destruct,
826 {
827 match self {
828 Ok(t) => Ok(op(t)),
829 Err(e) => Err(e),
830 }
831 }
832
833 /// Returns the provided default (if [`Err`]), or
834 /// applies a function to the contained value (if [`Ok`]).
835 ///
836 /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
837 /// the result of a function call, it is recommended to use [`map_or_else`],
838 /// which is lazily evaluated.
839 ///
840 /// [`map_or_else`]: Result::map_or_else
841 ///
842 /// # Examples
843 ///
844 /// ```
845 /// let x: Result<_, &str> = Ok("foo");
846 /// assert_eq!(x.map_or(42, |v| v.len()), 3);
847 ///
848 /// let x: Result<&str, _> = Err("bar");
849 /// assert_eq!(x.map_or(42, |v| v.len()), 42);
850 /// ```
851 #[inline]
852 #[stable(feature = "result_map_or", since = "1.41.0")]
853 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
854 #[must_use = "if you don't need the returned value, use `if let` instead"]
855 pub const fn map_or<U, F>(self, default: U, f: F) -> U
856 where
857 F: [const] FnOnce(T) -> U + [const] Destruct,
858 T: [const] Destruct,
859 E: [const] Destruct,
860 U: [const] Destruct,
861 {
862 match self {
863 Ok(t) => f(t),
864 Err(_) => default,
865 }
866 }
867
868 /// Maps a `Result<T, E>` to `U` by applying fallback function `default` to
869 /// a contained [`Err`] value, or function `f` to a contained [`Ok`] value.
870 ///
871 /// This function can be used to unpack a successful result
872 /// while handling an error.
873 ///
874 ///
875 /// # Examples
876 ///
877 /// ```
878 /// let k = 21;
879 ///
880 /// let x : Result<_, &str> = Ok("foo");
881 /// assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 3);
882 ///
883 /// let x : Result<&str, _> = Err("bar");
884 /// assert_eq!(x.map_or_else(|e| k * 2, |v| v.len()), 42);
885 /// ```
886 #[inline]
887 #[stable(feature = "result_map_or_else", since = "1.41.0")]
888 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
889 pub const fn map_or_else<U, D, F>(self, default: D, f: F) -> U
890 where
891 D: [const] FnOnce(E) -> U + [const] Destruct,
892 F: [const] FnOnce(T) -> U + [const] Destruct,
893 {
894 match self {
895 Ok(t) => f(t),
896 Err(e) => default(e),
897 }
898 }
899
900 /// Maps a `Result<T, E>` to a `U` by applying function `f` to the contained
901 /// value if the result is [`Ok`], otherwise if [`Err`], returns the
902 /// [default value] for the type `U`.
903 ///
904 /// # Examples
905 ///
906 /// ```
907 /// #![feature(result_option_map_or_default)]
908 ///
909 /// let x: Result<_, &str> = Ok("foo");
910 /// let y: Result<&str, _> = Err("bar");
911 ///
912 /// assert_eq!(x.map_or_default(|x| x.len()), 3);
913 /// assert_eq!(y.map_or_default(|y| y.len()), 0);
914 /// ```
915 ///
916 /// [default value]: Default::default
917 #[inline]
918 #[unstable(feature = "result_option_map_or_default", issue = "138099")]
919 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
920 pub const fn map_or_default<U, F>(self, f: F) -> U
921 where
922 F: [const] FnOnce(T) -> U + [const] Destruct,
923 U: [const] Default,
924 T: [const] Destruct,
925 E: [const] Destruct,
926 {
927 match self {
928 Ok(t) => f(t),
929 Err(_) => U::default(),
930 }
931 }
932
933 /// Maps a `Result<T, E>` to `Result<T, F>` by applying a function to a
934 /// contained [`Err`] value, leaving an [`Ok`] value untouched.
935 ///
936 /// This function can be used to pass through a successful result while handling
937 /// an error.
938 ///
939 ///
940 /// # Examples
941 ///
942 /// ```
943 /// fn stringify(x: u32) -> String { format!("error code: {x}") }
944 ///
945 /// let x: Result<u32, u32> = Ok(2);
946 /// assert_eq!(x.map_err(stringify), Ok(2));
947 ///
948 /// let x: Result<u32, u32> = Err(13);
949 /// assert_eq!(x.map_err(stringify), Err("error code: 13".to_string()));
950 /// ```
951 #[inline]
952 #[stable(feature = "rust1", since = "1.0.0")]
953 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
954 pub const fn map_err<F, O>(self, op: O) -> Result<T, F>
955 where
956 O: [const] FnOnce(E) -> F + [const] Destruct,
957 {
958 match self {
959 Ok(t) => Ok(t),
960 Err(e) => Err(op(e)),
961 }
962 }
963
964 /// Calls a function with a reference to the contained value if [`Ok`].
965 ///
966 /// Returns the original result.
967 ///
968 /// # Examples
969 ///
970 /// ```
971 /// let x: u8 = "4"
972 /// .parse::<u8>()
973 /// .inspect(|x| println!("original: {x}"))
974 /// .map(|x| x.pow(3))
975 /// .expect("failed to parse number");
976 /// ```
977 #[inline]
978 #[stable(feature = "result_option_inspect", since = "1.76.0")]
979 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
980 pub const fn inspect<F>(self, f: F) -> Self
981 where
982 F: [const] FnOnce(&T) + [const] Destruct,
983 {
984 if let Ok(ref t) = self {
985 f(t);
986 }
987
988 self
989 }
990
991 /// Calls a function with a reference to the contained value if [`Err`].
992 ///
993 /// Returns the original result.
994 ///
995 /// # Examples
996 ///
997 /// ```
998 /// use std::{fs, io};
999 ///
1000 /// fn read() -> io::Result<String> {
1001 /// fs::read_to_string("address.txt")
1002 /// .inspect_err(|e| eprintln!("failed to read file: {e}"))
1003 /// }
1004 /// ```
1005 #[inline]
1006 #[stable(feature = "result_option_inspect", since = "1.76.0")]
1007 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1008 pub const fn inspect_err<F>(self, f: F) -> Self
1009 where
1010 F: [const] FnOnce(&E) + [const] Destruct,
1011 {
1012 if let Err(ref e) = self {
1013 f(e);
1014 }
1015
1016 self
1017 }
1018
1019 /// Converts from `Result<T, E>` (or `&Result<T, E>`) to `Result<&<T as Deref>::Target, &E>`.
1020 ///
1021 /// Coerces the [`Ok`] variant of the original [`Result`] via [`Deref`](crate::ops::Deref)
1022 /// and returns the new [`Result`].
1023 ///
1024 /// # Examples
1025 ///
1026 /// ```
1027 /// let x: Result<String, u32> = Ok("hello".to_string());
1028 /// let y: Result<&str, &u32> = Ok("hello");
1029 /// assert_eq!(x.as_deref(), y);
1030 ///
1031 /// let x: Result<String, u32> = Err(42);
1032 /// let y: Result<&str, &u32> = Err(&42);
1033 /// assert_eq!(x.as_deref(), y);
1034 /// ```
1035 #[inline]
1036 #[stable(feature = "inner_deref", since = "1.47.0")]
1037 pub fn as_deref(&self) -> Result<&T::Target, &E>
1038 where
1039 T: Deref,
1040 {
1041 self.as_ref().map(|t| t.deref())
1042 }
1043
1044 /// Converts from `Result<T, E>` (or `&mut Result<T, E>`) to `Result<&mut <T as DerefMut>::Target, &mut E>`.
1045 ///
1046 /// Coerces the [`Ok`] variant of the original [`Result`] via [`DerefMut`](crate::ops::DerefMut)
1047 /// and returns the new [`Result`].
1048 ///
1049 /// # Examples
1050 ///
1051 /// ```
1052 /// let mut s = "HELLO".to_string();
1053 /// let mut x: Result<String, u32> = Ok("hello".to_string());
1054 /// let y: Result<&mut str, &mut u32> = Ok(&mut s);
1055 /// assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y);
1056 ///
1057 /// let mut i = 42;
1058 /// let mut x: Result<String, u32> = Err(42);
1059 /// let y: Result<&mut str, &mut u32> = Err(&mut i);
1060 /// assert_eq!(x.as_deref_mut().map(|x| { x.make_ascii_uppercase(); x }), y);
1061 /// ```
1062 #[inline]
1063 #[stable(feature = "inner_deref", since = "1.47.0")]
1064 pub fn as_deref_mut(&mut self) -> Result<&mut T::Target, &mut E>
1065 where
1066 T: DerefMut,
1067 {
1068 self.as_mut().map(|t| t.deref_mut())
1069 }
1070
1071 /////////////////////////////////////////////////////////////////////////
1072 // Iterator constructors
1073 /////////////////////////////////////////////////////////////////////////
1074
1075 /// Returns an iterator over the possibly contained value.
1076 ///
1077 /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1078 ///
1079 /// # Examples
1080 ///
1081 /// ```
1082 /// let x: Result<u32, &str> = Ok(7);
1083 /// assert_eq!(x.iter().next(), Some(&7));
1084 ///
1085 /// let x: Result<u32, &str> = Err("nothing!");
1086 /// assert_eq!(x.iter().next(), None);
1087 /// ```
1088 #[inline]
1089 #[stable(feature = "rust1", since = "1.0.0")]
1090 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1091 pub const fn iter(&self) -> Iter<'_, T> {
1092 Iter { inner: self.as_ref().ok() }
1093 }
1094
1095 /// Returns a mutable iterator over the possibly contained value.
1096 ///
1097 /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1098 ///
1099 /// # Examples
1100 ///
1101 /// ```
1102 /// let mut x: Result<u32, &str> = Ok(7);
1103 /// match x.iter_mut().next() {
1104 /// Some(v) => *v = 40,
1105 /// None => {},
1106 /// }
1107 /// assert_eq!(x, Ok(40));
1108 ///
1109 /// let mut x: Result<u32, &str> = Err("nothing!");
1110 /// assert_eq!(x.iter_mut().next(), None);
1111 /// ```
1112 #[inline]
1113 #[stable(feature = "rust1", since = "1.0.0")]
1114 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1115 pub const fn iter_mut(&mut self) -> IterMut<'_, T> {
1116 IterMut { inner: self.as_mut().ok() }
1117 }
1118
1119 /////////////////////////////////////////////////////////////////////////
1120 // Extract a value
1121 /////////////////////////////////////////////////////////////////////////
1122
1123 /// Returns the contained [`Ok`] value, consuming the `self` value.
1124 ///
1125 /// Because this function may panic, its use is generally discouraged.
1126 /// Instead, prefer to use pattern matching and handle the [`Err`]
1127 /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
1128 /// [`unwrap_or_default`].
1129 ///
1130 /// [`unwrap_or`]: Result::unwrap_or
1131 /// [`unwrap_or_else`]: Result::unwrap_or_else
1132 /// [`unwrap_or_default`]: Result::unwrap_or_default
1133 ///
1134 /// # Panics
1135 ///
1136 /// Panics if the value is an [`Err`], with a panic message including the
1137 /// passed message, and the content of the [`Err`].
1138 ///
1139 ///
1140 /// # Examples
1141 ///
1142 /// ```should_panic
1143 /// let x: Result<u32, &str> = Err("emergency failure");
1144 /// x.expect("Testing expect"); // panics with `Testing expect: emergency failure`
1145 /// ```
1146 ///
1147 /// # Recommended Message Style
1148 ///
1149 /// We recommend that `expect` messages are used to describe the reason you
1150 /// _expect_ the `Result` should be `Ok`.
1151 ///
1152 /// ```should_panic
1153 /// let path = std::env::var("IMPORTANT_PATH")
1154 /// .expect("env variable `IMPORTANT_PATH` should be set by `wrapper_script.sh`");
1155 /// ```
1156 ///
1157 /// **Hint**: If you're having trouble remembering how to phrase expect
1158 /// error messages remember to focus on the word "should" as in "env
1159 /// variable should be set by blah" or "the given binary should be available
1160 /// and executable by the current user".
1161 ///
1162 /// For more detail on expect message styles and the reasoning behind our recommendation please
1163 /// refer to the section on ["Common Message
1164 /// Styles"](../../std/error/index.html#common-message-styles) in the
1165 /// [`std::error`](../../std/error/index.html) module docs.
1166 #[inline]
1167 #[track_caller]
1168 #[stable(feature = "result_expect", since = "1.4.0")]
1169 pub fn expect(self, msg: &str) -> T
1170 where
1171 E: fmt::Debug,
1172 {
1173 match self {
1174 Ok(t) => t,
1175 Err(e) => unwrap_failed(msg, &e),
1176 }
1177 }
1178
1179 /// Returns the contained [`Ok`] value, consuming the `self` value.
1180 ///
1181 /// Because this function may panic, its use is generally discouraged.
1182 /// Panics are meant for unrecoverable errors, and
1183 /// [may abort the entire program][panic-abort].
1184 ///
1185 /// Instead, prefer to use [the `?` (try) operator][try-operator], or pattern matching
1186 /// to handle the [`Err`] case explicitly, or call [`unwrap_or`],
1187 /// [`unwrap_or_else`], or [`unwrap_or_default`].
1188 ///
1189 /// [panic-abort]: https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html
1190 /// [try-operator]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#a-shortcut-for-propagating-errors-the--operator
1191 /// [`unwrap_or`]: Result::unwrap_or
1192 /// [`unwrap_or_else`]: Result::unwrap_or_else
1193 /// [`unwrap_or_default`]: Result::unwrap_or_default
1194 ///
1195 /// # Panics
1196 ///
1197 /// Panics if the value is an [`Err`], with a panic message provided by the
1198 /// [`Err`]'s value.
1199 ///
1200 ///
1201 /// # Examples
1202 ///
1203 /// Basic usage:
1204 ///
1205 /// ```
1206 /// let x: Result<u32, &str> = Ok(2);
1207 /// assert_eq!(x.unwrap(), 2);
1208 /// ```
1209 ///
1210 /// ```should_panic
1211 /// let x: Result<u32, &str> = Err("emergency failure");
1212 /// x.unwrap(); // panics with `emergency failure`
1213 /// ```
1214 #[inline(always)]
1215 #[track_caller]
1216 #[stable(feature = "rust1", since = "1.0.0")]
1217 pub fn unwrap(self) -> T
1218 where
1219 E: fmt::Debug,
1220 {
1221 match self {
1222 Ok(t) => t,
1223 Err(e) => unwrap_failed("called `Result::unwrap()` on an `Err` value", &e),
1224 }
1225 }
1226
1227 /// Returns the contained [`Ok`] value or a default
1228 ///
1229 /// Consumes the `self` argument then, if [`Ok`], returns the contained
1230 /// value, otherwise if [`Err`], returns the default value for that
1231 /// type.
1232 ///
1233 /// # Examples
1234 ///
1235 /// Converts a string to an integer, turning poorly-formed strings
1236 /// into 0 (the default value for integers). [`parse`] converts
1237 /// a string to any other type that implements [`FromStr`], returning an
1238 /// [`Err`] on error.
1239 ///
1240 /// ```
1241 /// let good_year_from_input = "1909";
1242 /// let bad_year_from_input = "190blarg";
1243 /// let good_year = good_year_from_input.parse().unwrap_or_default();
1244 /// let bad_year = bad_year_from_input.parse().unwrap_or_default();
1245 ///
1246 /// assert_eq!(1909, good_year);
1247 /// assert_eq!(0, bad_year);
1248 /// ```
1249 ///
1250 /// [`parse`]: str::parse
1251 /// [`FromStr`]: crate::str::FromStr
1252 #[inline]
1253 #[stable(feature = "result_unwrap_or_default", since = "1.16.0")]
1254 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1255 pub const fn unwrap_or_default(self) -> T
1256 where
1257 T: [const] Default + [const] Destruct,
1258 E: [const] Destruct,
1259 {
1260 match self {
1261 Ok(x) => x,
1262 Err(_) => Default::default(),
1263 }
1264 }
1265
1266 /// Returns the contained [`Err`] value, consuming the `self` value.
1267 ///
1268 /// # Panics
1269 ///
1270 /// Panics if the value is an [`Ok`], with a panic message including the
1271 /// passed message, and the content of the [`Ok`].
1272 ///
1273 ///
1274 /// # Examples
1275 ///
1276 /// ```should_panic
1277 /// let x: Result<u32, &str> = Ok(10);
1278 /// x.expect_err("Testing expect_err"); // panics with `Testing expect_err: 10`
1279 /// ```
1280 #[inline]
1281 #[track_caller]
1282 #[stable(feature = "result_expect_err", since = "1.17.0")]
1283 pub fn expect_err(self, msg: &str) -> E
1284 where
1285 T: fmt::Debug,
1286 {
1287 match self {
1288 Ok(t) => unwrap_failed(msg, &t),
1289 Err(e) => e,
1290 }
1291 }
1292
1293 /// Returns the contained [`Err`] value, consuming the `self` value.
1294 ///
1295 /// # Panics
1296 ///
1297 /// Panics if the value is an [`Ok`], with a custom panic message provided
1298 /// by the [`Ok`]'s value.
1299 ///
1300 /// # Examples
1301 ///
1302 /// ```should_panic
1303 /// let x: Result<u32, &str> = Ok(2);
1304 /// x.unwrap_err(); // panics with `2`
1305 /// ```
1306 ///
1307 /// ```
1308 /// let x: Result<u32, &str> = Err("emergency failure");
1309 /// assert_eq!(x.unwrap_err(), "emergency failure");
1310 /// ```
1311 #[inline]
1312 #[track_caller]
1313 #[stable(feature = "rust1", since = "1.0.0")]
1314 pub fn unwrap_err(self) -> E
1315 where
1316 T: fmt::Debug,
1317 {
1318 match self {
1319 Ok(t) => unwrap_failed("called `Result::unwrap_err()` on an `Ok` value", &t),
1320 Err(e) => e,
1321 }
1322 }
1323
1324 /// Returns the contained [`Ok`] value, but never panics.
1325 ///
1326 /// Unlike [`unwrap`], this method is known to never panic on the
1327 /// result types it is implemented for. Therefore, it can be used
1328 /// instead of `unwrap` as a maintainability safeguard that will fail
1329 /// to compile if the error type of the `Result` is later changed
1330 /// to an error that can actually occur.
1331 ///
1332 /// [`unwrap`]: Result::unwrap
1333 ///
1334 /// # Examples
1335 ///
1336 /// ```
1337 /// # #![feature(never_type)]
1338 /// # #![feature(unwrap_infallible)]
1339 ///
1340 /// fn only_good_news() -> Result<String, !> {
1341 /// Ok("this is fine".into())
1342 /// }
1343 ///
1344 /// let s: String = only_good_news().into_ok();
1345 /// println!("{s}");
1346 /// ```
1347 #[unstable(feature = "unwrap_infallible", reason = "newly added", issue = "61695")]
1348 #[inline]
1349 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1350 #[rustc_const_unstable(feature = "const_try", issue = "74935")]
1351 pub const fn into_ok(self) -> T
1352 where
1353 E: [const] Into<!>,
1354 {
1355 match self {
1356 Ok(x) => x,
1357 Err(e) => e.into(),
1358 }
1359 }
1360
1361 /// Returns the contained [`Err`] value, but never panics.
1362 ///
1363 /// Unlike [`unwrap_err`], this method is known to never panic on the
1364 /// result types it is implemented for. Therefore, it can be used
1365 /// instead of `unwrap_err` as a maintainability safeguard that will fail
1366 /// to compile if the ok type of the `Result` is later changed
1367 /// to a type that can actually occur.
1368 ///
1369 /// [`unwrap_err`]: Result::unwrap_err
1370 ///
1371 /// # Examples
1372 ///
1373 /// ```
1374 /// # #![feature(never_type)]
1375 /// # #![feature(unwrap_infallible)]
1376 ///
1377 /// fn only_bad_news() -> Result<!, String> {
1378 /// Err("Oops, it failed".into())
1379 /// }
1380 ///
1381 /// let error: String = only_bad_news().into_err();
1382 /// println!("{error}");
1383 /// ```
1384 #[unstable(feature = "unwrap_infallible", reason = "newly added", issue = "61695")]
1385 #[inline]
1386 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1387 #[rustc_const_unstable(feature = "const_try", issue = "74935")]
1388 pub const fn into_err(self) -> E
1389 where
1390 T: [const] Into<!>,
1391 {
1392 match self {
1393 Ok(x) => x.into(),
1394 Err(e) => e,
1395 }
1396 }
1397
1398 ////////////////////////////////////////////////////////////////////////
1399 // Boolean operations on the values, eager and lazy
1400 /////////////////////////////////////////////////////////////////////////
1401
1402 /// Returns `res` if the result is [`Ok`], otherwise returns the [`Err`] value of `self`.
1403 ///
1404 /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1405 /// result of a function call, it is recommended to use [`and_then`], which is
1406 /// lazily evaluated.
1407 ///
1408 /// [`and_then`]: Result::and_then
1409 ///
1410 /// # Examples
1411 ///
1412 /// ```
1413 /// let x: Result<u32, &str> = Ok(2);
1414 /// let y: Result<&str, &str> = Err("late error");
1415 /// assert_eq!(x.and(y), Err("late error"));
1416 ///
1417 /// let x: Result<u32, &str> = Err("early error");
1418 /// let y: Result<&str, &str> = Ok("foo");
1419 /// assert_eq!(x.and(y), Err("early error"));
1420 ///
1421 /// let x: Result<u32, &str> = Err("not a 2");
1422 /// let y: Result<&str, &str> = Err("late error");
1423 /// assert_eq!(x.and(y), Err("not a 2"));
1424 ///
1425 /// let x: Result<u32, &str> = Ok(2);
1426 /// let y: Result<&str, &str> = Ok("different result type");
1427 /// assert_eq!(x.and(y), Ok("different result type"));
1428 /// ```
1429 #[inline]
1430 #[stable(feature = "rust1", since = "1.0.0")]
1431 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1432 pub const fn and<U>(self, res: Result<U, E>) -> Result<U, E>
1433 where
1434 T: [const] Destruct,
1435 E: [const] Destruct,
1436 U: [const] Destruct,
1437 {
1438 match self {
1439 Ok(_) => res,
1440 Err(e) => Err(e),
1441 }
1442 }
1443
1444 /// Calls `op` if the result is [`Ok`], otherwise returns the [`Err`] value of `self`.
1445 ///
1446 ///
1447 /// This function can be used for control flow based on `Result` values.
1448 ///
1449 /// # Examples
1450 ///
1451 /// ```
1452 /// fn sq_then_to_string(x: u32) -> Result<String, &'static str> {
1453 /// x.checked_mul(x).map(|sq| sq.to_string()).ok_or("overflowed")
1454 /// }
1455 ///
1456 /// assert_eq!(Ok(2).and_then(sq_then_to_string), Ok(4.to_string()));
1457 /// assert_eq!(Ok(1_000_000).and_then(sq_then_to_string), Err("overflowed"));
1458 /// assert_eq!(Err("not a number").and_then(sq_then_to_string), Err("not a number"));
1459 /// ```
1460 ///
1461 /// Often used to chain fallible operations that may return [`Err`].
1462 ///
1463 /// ```
1464 /// use std::{io::ErrorKind, path::Path};
1465 ///
1466 /// // Note: on Windows "/" maps to "C:\"
1467 /// let root_modified_time = Path::new("/").metadata().and_then(|md| md.modified());
1468 /// assert!(root_modified_time.is_ok());
1469 ///
1470 /// let should_fail = Path::new("/bad/path").metadata().and_then(|md| md.modified());
1471 /// assert!(should_fail.is_err());
1472 /// assert_eq!(should_fail.unwrap_err().kind(), ErrorKind::NotFound);
1473 /// ```
1474 #[inline]
1475 #[stable(feature = "rust1", since = "1.0.0")]
1476 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1477 #[rustc_confusables("flat_map", "flatmap")]
1478 pub const fn and_then<U, F>(self, op: F) -> Result<U, E>
1479 where
1480 F: [const] FnOnce(T) -> Result<U, E> + [const] Destruct,
1481 {
1482 match self {
1483 Ok(t) => op(t),
1484 Err(e) => Err(e),
1485 }
1486 }
1487
1488 /// Returns `res` if the result is [`Err`], otherwise returns the [`Ok`] value of `self`.
1489 ///
1490 /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1491 /// result of a function call, it is recommended to use [`or_else`], which is
1492 /// lazily evaluated.
1493 ///
1494 /// [`or_else`]: Result::or_else
1495 ///
1496 /// # Examples
1497 ///
1498 /// ```
1499 /// let x: Result<u32, &str> = Ok(2);
1500 /// let y: Result<u32, &str> = Err("late error");
1501 /// assert_eq!(x.or(y), Ok(2));
1502 ///
1503 /// let x: Result<u32, &str> = Err("early error");
1504 /// let y: Result<u32, &str> = Ok(2);
1505 /// assert_eq!(x.or(y), Ok(2));
1506 ///
1507 /// let x: Result<u32, &str> = Err("not a 2");
1508 /// let y: Result<u32, &str> = Err("late error");
1509 /// assert_eq!(x.or(y), Err("late error"));
1510 ///
1511 /// let x: Result<u32, &str> = Ok(2);
1512 /// let y: Result<u32, &str> = Ok(100);
1513 /// assert_eq!(x.or(y), Ok(2));
1514 /// ```
1515 #[inline]
1516 #[stable(feature = "rust1", since = "1.0.0")]
1517 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1518 pub const fn or<F>(self, res: Result<T, F>) -> Result<T, F>
1519 where
1520 T: [const] Destruct,
1521 E: [const] Destruct,
1522 F: [const] Destruct,
1523 {
1524 match self {
1525 Ok(v) => Ok(v),
1526 Err(_) => res,
1527 }
1528 }
1529
1530 /// Calls `op` if the result is [`Err`], otherwise returns the [`Ok`] value of `self`.
1531 ///
1532 /// This function can be used for control flow based on result values.
1533 ///
1534 ///
1535 /// # Examples
1536 ///
1537 /// ```
1538 /// fn sq(x: u32) -> Result<u32, u32> { Ok(x * x) }
1539 /// fn err(x: u32) -> Result<u32, u32> { Err(x) }
1540 ///
1541 /// assert_eq!(Ok(2).or_else(sq).or_else(sq), Ok(2));
1542 /// assert_eq!(Ok(2).or_else(err).or_else(sq), Ok(2));
1543 /// assert_eq!(Err(3).or_else(sq).or_else(err), Ok(9));
1544 /// assert_eq!(Err(3).or_else(err).or_else(err), Err(3));
1545 /// ```
1546 #[inline]
1547 #[stable(feature = "rust1", since = "1.0.0")]
1548 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1549 pub const fn or_else<F, O>(self, op: O) -> Result<T, F>
1550 where
1551 O: [const] FnOnce(E) -> Result<T, F> + [const] Destruct,
1552 {
1553 match self {
1554 Ok(t) => Ok(t),
1555 Err(e) => op(e),
1556 }
1557 }
1558
1559 /// Returns the contained [`Ok`] value or a provided default.
1560 ///
1561 /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
1562 /// the result of a function call, it is recommended to use [`unwrap_or_else`],
1563 /// which is lazily evaluated.
1564 ///
1565 /// [`unwrap_or_else`]: Result::unwrap_or_else
1566 ///
1567 /// # Examples
1568 ///
1569 /// ```
1570 /// let default = 2;
1571 /// let x: Result<u32, &str> = Ok(9);
1572 /// assert_eq!(x.unwrap_or(default), 9);
1573 ///
1574 /// let x: Result<u32, &str> = Err("error");
1575 /// assert_eq!(x.unwrap_or(default), default);
1576 /// ```
1577 #[inline]
1578 #[stable(feature = "rust1", since = "1.0.0")]
1579 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1580 pub const fn unwrap_or(self, default: T) -> T
1581 where
1582 T: [const] Destruct,
1583 E: [const] Destruct,
1584 {
1585 match self {
1586 Ok(t) => t,
1587 Err(_) => default,
1588 }
1589 }
1590
1591 /// Returns the contained [`Ok`] value or computes it from a closure.
1592 ///
1593 ///
1594 /// # Examples
1595 ///
1596 /// ```
1597 /// fn count(x: &str) -> usize { x.len() }
1598 ///
1599 /// assert_eq!(Ok(2).unwrap_or_else(count), 2);
1600 /// assert_eq!(Err("foo").unwrap_or_else(count), 3);
1601 /// ```
1602 #[inline]
1603 #[track_caller]
1604 #[stable(feature = "rust1", since = "1.0.0")]
1605 #[rustc_const_unstable(feature = "const_result_trait_fn", issue = "144211")]
1606 pub const fn unwrap_or_else<F>(self, op: F) -> T
1607 where
1608 F: [const] FnOnce(E) -> T + [const] Destruct,
1609 {
1610 match self {
1611 Ok(t) => t,
1612 Err(e) => op(e),
1613 }
1614 }
1615
1616 /// Returns the contained [`Ok`] value, consuming the `self` value,
1617 /// without checking that the value is not an [`Err`].
1618 ///
1619 /// # Safety
1620 ///
1621 /// Calling this method on an [`Err`] is *[undefined behavior]*.
1622 ///
1623 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1624 ///
1625 /// # Examples
1626 ///
1627 /// ```
1628 /// let x: Result<u32, &str> = Ok(2);
1629 /// assert_eq!(unsafe { x.unwrap_unchecked() }, 2);
1630 /// ```
1631 ///
1632 /// ```no_run
1633 /// let x: Result<u32, &str> = Err("emergency failure");
1634 /// unsafe { x.unwrap_unchecked() }; // Undefined behavior!
1635 /// ```
1636 #[inline]
1637 #[track_caller]
1638 #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1639 pub unsafe fn unwrap_unchecked(self) -> T {
1640 match self {
1641 Ok(t) => t,
1642 // SAFETY: the safety contract must be upheld by the caller.
1643 Err(_) => unsafe { hint::unreachable_unchecked() },
1644 }
1645 }
1646
1647 /// Returns the contained [`Err`] value, consuming the `self` value,
1648 /// without checking that the value is not an [`Ok`].
1649 ///
1650 /// # Safety
1651 ///
1652 /// Calling this method on an [`Ok`] is *[undefined behavior]*.
1653 ///
1654 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1655 ///
1656 /// # Examples
1657 ///
1658 /// ```no_run
1659 /// let x: Result<u32, &str> = Ok(2);
1660 /// unsafe { x.unwrap_err_unchecked() }; // Undefined behavior!
1661 /// ```
1662 ///
1663 /// ```
1664 /// let x: Result<u32, &str> = Err("emergency failure");
1665 /// assert_eq!(unsafe { x.unwrap_err_unchecked() }, "emergency failure");
1666 /// ```
1667 #[inline]
1668 #[track_caller]
1669 #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1670 pub unsafe fn unwrap_err_unchecked(self) -> E {
1671 match self {
1672 // SAFETY: the safety contract must be upheld by the caller.
1673 Ok(_) => unsafe { hint::unreachable_unchecked() },
1674 Err(e) => e,
1675 }
1676 }
1677}
1678
1679impl<T, E> Result<&T, E> {
1680 /// Maps a `Result<&T, E>` to a `Result<T, E>` by copying the contents of the
1681 /// `Ok` part.
1682 ///
1683 /// # Examples
1684 ///
1685 /// ```
1686 /// let val = 12;
1687 /// let x: Result<&i32, i32> = Ok(&val);
1688 /// assert_eq!(x, Ok(&12));
1689 /// let copied = x.copied();
1690 /// assert_eq!(copied, Ok(12));
1691 /// ```
1692 #[inline]
1693 #[stable(feature = "result_copied", since = "1.59.0")]
1694 #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1695 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1696 pub const fn copied(self) -> Result<T, E>
1697 where
1698 T: Copy,
1699 {
1700 // FIXME(const-hack): this implementation, which sidesteps using `Result::map` since it's not const
1701 // ready yet, should be reverted when possible to avoid code repetition
1702 match self {
1703 Ok(&v) => Ok(v),
1704 Err(e) => Err(e),
1705 }
1706 }
1707
1708 /// Maps a `Result<&T, E>` to a `Result<T, E>` by cloning the contents of the
1709 /// `Ok` part.
1710 ///
1711 /// # Examples
1712 ///
1713 /// ```
1714 /// let val = 12;
1715 /// let x: Result<&i32, i32> = Ok(&val);
1716 /// assert_eq!(x, Ok(&12));
1717 /// let cloned = x.cloned();
1718 /// assert_eq!(cloned, Ok(12));
1719 /// ```
1720 #[inline]
1721 #[stable(feature = "result_cloned", since = "1.59.0")]
1722 pub fn cloned(self) -> Result<T, E>
1723 where
1724 T: Clone,
1725 {
1726 self.map(|t| t.clone())
1727 }
1728}
1729
1730impl<T, E> Result<&mut T, E> {
1731 /// Maps a `Result<&mut T, E>` to a `Result<T, E>` by copying the contents of the
1732 /// `Ok` part.
1733 ///
1734 /// # Examples
1735 ///
1736 /// ```
1737 /// let mut val = 12;
1738 /// let x: Result<&mut i32, i32> = Ok(&mut val);
1739 /// assert_eq!(x, Ok(&mut 12));
1740 /// let copied = x.copied();
1741 /// assert_eq!(copied, Ok(12));
1742 /// ```
1743 #[inline]
1744 #[stable(feature = "result_copied", since = "1.59.0")]
1745 #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1746 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1747 pub const fn copied(self) -> Result<T, E>
1748 where
1749 T: Copy,
1750 {
1751 // FIXME(const-hack): this implementation, which sidesteps using `Result::map` since it's not const
1752 // ready yet, should be reverted when possible to avoid code repetition
1753 match self {
1754 Ok(&mut v) => Ok(v),
1755 Err(e) => Err(e),
1756 }
1757 }
1758
1759 /// Maps a `Result<&mut T, E>` to a `Result<T, E>` by cloning the contents of the
1760 /// `Ok` part.
1761 ///
1762 /// # Examples
1763 ///
1764 /// ```
1765 /// let mut val = 12;
1766 /// let x: Result<&mut i32, i32> = Ok(&mut val);
1767 /// assert_eq!(x, Ok(&mut 12));
1768 /// let cloned = x.cloned();
1769 /// assert_eq!(cloned, Ok(12));
1770 /// ```
1771 #[inline]
1772 #[stable(feature = "result_cloned", since = "1.59.0")]
1773 pub fn cloned(self) -> Result<T, E>
1774 where
1775 T: Clone,
1776 {
1777 self.map(|t| t.clone())
1778 }
1779}
1780
1781impl<T, E> Result<Option<T>, E> {
1782 /// Transposes a `Result` of an `Option` into an `Option` of a `Result`.
1783 ///
1784 /// `Ok(None)` will be mapped to `None`.
1785 /// `Ok(Some(_))` and `Err(_)` will be mapped to `Some(Ok(_))` and `Some(Err(_))`.
1786 ///
1787 /// # Examples
1788 ///
1789 /// ```
1790 /// #[derive(Debug, Eq, PartialEq)]
1791 /// struct SomeErr;
1792 ///
1793 /// let x: Result<Option<i32>, SomeErr> = Ok(Some(5));
1794 /// let y: Option<Result<i32, SomeErr>> = Some(Ok(5));
1795 /// assert_eq!(x.transpose(), y);
1796 /// ```
1797 #[inline]
1798 #[stable(feature = "transpose_result", since = "1.33.0")]
1799 #[rustc_const_stable(feature = "const_result", since = "1.83.0")]
1800 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1801 pub const fn transpose(self) -> Option<Result<T, E>> {
1802 match self {
1803 Ok(Some(x)) => Some(Ok(x)),
1804 Ok(None) => None,
1805 Err(e) => Some(Err(e)),
1806 }
1807 }
1808}
1809
1810impl<T, E> Result<Result<T, E>, E> {
1811 /// Converts from `Result<Result<T, E>, E>` to `Result<T, E>`
1812 ///
1813 /// # Examples
1814 ///
1815 /// ```
1816 /// let x: Result<Result<&'static str, u32>, u32> = Ok(Ok("hello"));
1817 /// assert_eq!(Ok("hello"), x.flatten());
1818 ///
1819 /// let x: Result<Result<&'static str, u32>, u32> = Ok(Err(6));
1820 /// assert_eq!(Err(6), x.flatten());
1821 ///
1822 /// let x: Result<Result<&'static str, u32>, u32> = Err(6);
1823 /// assert_eq!(Err(6), x.flatten());
1824 /// ```
1825 ///
1826 /// Flattening only removes one level of nesting at a time:
1827 ///
1828 /// ```
1829 /// let x: Result<Result<Result<&'static str, u32>, u32>, u32> = Ok(Ok(Ok("hello")));
1830 /// assert_eq!(Ok(Ok("hello")), x.flatten());
1831 /// assert_eq!(Ok("hello"), x.flatten().flatten());
1832 /// ```
1833 #[inline]
1834 #[stable(feature = "result_flattening", since = "1.89.0")]
1835 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1836 #[rustc_const_stable(feature = "result_flattening", since = "1.89.0")]
1837 pub const fn flatten(self) -> Result<T, E> {
1838 // FIXME(const-hack): could be written with `and_then`
1839 match self {
1840 Ok(inner) => inner,
1841 Err(e) => Err(e),
1842 }
1843 }
1844}
1845
1846// This is a separate function to reduce the code size of the methods
1847#[cfg(not(feature = "panic_immediate_abort"))]
1848#[inline(never)]
1849#[cold]
1850#[track_caller]
1851fn unwrap_failed(msg: &str, error: &dyn fmt::Debug) -> ! {
1852 panic!("{msg}: {error:?}");
1853}
1854
1855// This is a separate function to avoid constructing a `dyn Debug`
1856// that gets immediately thrown away, since vtables don't get cleaned up
1857// by dead code elimination if a trait object is constructed even if it goes
1858// unused
1859#[cfg(feature = "panic_immediate_abort")]
1860#[inline]
1861#[cold]
1862#[track_caller]
1863const fn unwrap_failed<T>(_msg: &str, _error: &T) -> ! {
1864 panic!()
1865}
1866
1867/////////////////////////////////////////////////////////////////////////////
1868// Trait implementations
1869/////////////////////////////////////////////////////////////////////////////
1870
1871#[stable(feature = "rust1", since = "1.0.0")]
1872impl<T, E> Clone for Result<T, E>
1873where
1874 T: Clone,
1875 E: Clone,
1876{
1877 #[inline]
1878 fn clone(&self) -> Self {
1879 match self {
1880 Ok(x) => Ok(x.clone()),
1881 Err(x) => Err(x.clone()),
1882 }
1883 }
1884
1885 #[inline]
1886 fn clone_from(&mut self, source: &Self) {
1887 match (self, source) {
1888 (Ok(to), Ok(from)) => to.clone_from(from),
1889 (Err(to), Err(from)) => to.clone_from(from),
1890 (to, from) => *to = from.clone(),
1891 }
1892 }
1893}
1894
1895#[unstable(feature = "ergonomic_clones", issue = "132290")]
1896impl<T, E> crate::clone::UseCloned for Result<T, E>
1897where
1898 T: crate::clone::UseCloned,
1899 E: crate::clone::UseCloned,
1900{
1901}
1902
1903#[stable(feature = "rust1", since = "1.0.0")]
1904impl<T, E> IntoIterator for Result<T, E> {
1905 type Item = T;
1906 type IntoIter = IntoIter<T>;
1907
1908 /// Returns a consuming iterator over the possibly contained value.
1909 ///
1910 /// The iterator yields one value if the result is [`Result::Ok`], otherwise none.
1911 ///
1912 /// # Examples
1913 ///
1914 /// ```
1915 /// let x: Result<u32, &str> = Ok(5);
1916 /// let v: Vec<u32> = x.into_iter().collect();
1917 /// assert_eq!(v, [5]);
1918 ///
1919 /// let x: Result<u32, &str> = Err("nothing!");
1920 /// let v: Vec<u32> = x.into_iter().collect();
1921 /// assert_eq!(v, []);
1922 /// ```
1923 #[inline]
1924 fn into_iter(self) -> IntoIter<T> {
1925 IntoIter { inner: self.ok() }
1926 }
1927}
1928
1929#[stable(since = "1.4.0", feature = "result_iter")]
1930impl<'a, T, E> IntoIterator for &'a Result<T, E> {
1931 type Item = &'a T;
1932 type IntoIter = Iter<'a, T>;
1933
1934 fn into_iter(self) -> Iter<'a, T> {
1935 self.iter()
1936 }
1937}
1938
1939#[stable(since = "1.4.0", feature = "result_iter")]
1940impl<'a, T, E> IntoIterator for &'a mut Result<T, E> {
1941 type Item = &'a mut T;
1942 type IntoIter = IterMut<'a, T>;
1943
1944 fn into_iter(self) -> IterMut<'a, T> {
1945 self.iter_mut()
1946 }
1947}
1948
1949/////////////////////////////////////////////////////////////////////////////
1950// The Result Iterators
1951/////////////////////////////////////////////////////////////////////////////
1952
1953/// An iterator over a reference to the [`Ok`] variant of a [`Result`].
1954///
1955/// The iterator yields one value if the result is [`Ok`], otherwise none.
1956///
1957/// Created by [`Result::iter`].
1958#[derive(Debug)]
1959#[stable(feature = "rust1", since = "1.0.0")]
1960pub struct Iter<'a, T: 'a> {
1961 inner: Option<&'a T>,
1962}
1963
1964#[stable(feature = "rust1", since = "1.0.0")]
1965impl<'a, T> Iterator for Iter<'a, T> {
1966 type Item = &'a T;
1967
1968 #[inline]
1969 fn next(&mut self) -> Option<&'a T> {
1970 self.inner.take()
1971 }
1972 #[inline]
1973 fn size_hint(&self) -> (usize, Option<usize>) {
1974 let n = if self.inner.is_some() { 1 } else { 0 };
1975 (n, Some(n))
1976 }
1977}
1978
1979#[stable(feature = "rust1", since = "1.0.0")]
1980impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
1981 #[inline]
1982 fn next_back(&mut self) -> Option<&'a T> {
1983 self.inner.take()
1984 }
1985}
1986
1987#[stable(feature = "rust1", since = "1.0.0")]
1988impl<T> ExactSizeIterator for Iter<'_, T> {}
1989
1990#[stable(feature = "fused", since = "1.26.0")]
1991impl<T> FusedIterator for Iter<'_, T> {}
1992
1993#[unstable(feature = "trusted_len", issue = "37572")]
1994unsafe impl<A> TrustedLen for Iter<'_, A> {}
1995
1996#[stable(feature = "rust1", since = "1.0.0")]
1997impl<T> Clone for Iter<'_, T> {
1998 #[inline]
1999 fn clone(&self) -> Self {
2000 Iter { inner: self.inner }
2001 }
2002}
2003
2004/// An iterator over a mutable reference to the [`Ok`] variant of a [`Result`].
2005///
2006/// Created by [`Result::iter_mut`].
2007#[derive(Debug)]
2008#[stable(feature = "rust1", since = "1.0.0")]
2009pub struct IterMut<'a, T: 'a> {
2010 inner: Option<&'a mut T>,
2011}
2012
2013#[stable(feature = "rust1", since = "1.0.0")]
2014impl<'a, T> Iterator for IterMut<'a, T> {
2015 type Item = &'a mut T;
2016
2017 #[inline]
2018 fn next(&mut self) -> Option<&'a mut T> {
2019 self.inner.take()
2020 }
2021 #[inline]
2022 fn size_hint(&self) -> (usize, Option<usize>) {
2023 let n = if self.inner.is_some() { 1 } else { 0 };
2024 (n, Some(n))
2025 }
2026}
2027
2028#[stable(feature = "rust1", since = "1.0.0")]
2029impl<'a, T> DoubleEndedIterator for IterMut<'a, T> {
2030 #[inline]
2031 fn next_back(&mut self) -> Option<&'a mut T> {
2032 self.inner.take()
2033 }
2034}
2035
2036#[stable(feature = "rust1", since = "1.0.0")]
2037impl<T> ExactSizeIterator for IterMut<'_, T> {}
2038
2039#[stable(feature = "fused", since = "1.26.0")]
2040impl<T> FusedIterator for IterMut<'_, T> {}
2041
2042#[unstable(feature = "trusted_len", issue = "37572")]
2043unsafe impl<A> TrustedLen for IterMut<'_, A> {}
2044
2045/// An iterator over the value in a [`Ok`] variant of a [`Result`].
2046///
2047/// The iterator yields one value if the result is [`Ok`], otherwise none.
2048///
2049/// This struct is created by the [`into_iter`] method on
2050/// [`Result`] (provided by the [`IntoIterator`] trait).
2051///
2052/// [`into_iter`]: IntoIterator::into_iter
2053#[derive(Clone, Debug)]
2054#[stable(feature = "rust1", since = "1.0.0")]
2055pub struct IntoIter<T> {
2056 inner: Option<T>,
2057}
2058
2059#[stable(feature = "rust1", since = "1.0.0")]
2060impl<T> Iterator for IntoIter<T> {
2061 type Item = T;
2062
2063 #[inline]
2064 fn next(&mut self) -> Option<T> {
2065 self.inner.take()
2066 }
2067 #[inline]
2068 fn size_hint(&self) -> (usize, Option<usize>) {
2069 let n = if self.inner.is_some() { 1 } else { 0 };
2070 (n, Some(n))
2071 }
2072}
2073
2074#[stable(feature = "rust1", since = "1.0.0")]
2075impl<T> DoubleEndedIterator for IntoIter<T> {
2076 #[inline]
2077 fn next_back(&mut self) -> Option<T> {
2078 self.inner.take()
2079 }
2080}
2081
2082#[stable(feature = "rust1", since = "1.0.0")]
2083impl<T> ExactSizeIterator for IntoIter<T> {}
2084
2085#[stable(feature = "fused", since = "1.26.0")]
2086impl<T> FusedIterator for IntoIter<T> {}
2087
2088#[unstable(feature = "trusted_len", issue = "37572")]
2089unsafe impl<A> TrustedLen for IntoIter<A> {}
2090
2091/////////////////////////////////////////////////////////////////////////////
2092// FromIterator
2093/////////////////////////////////////////////////////////////////////////////
2094
2095#[stable(feature = "rust1", since = "1.0.0")]
2096impl<A, E, V: FromIterator<A>> FromIterator<Result<A, E>> for Result<V, E> {
2097 /// Takes each element in the `Iterator`: if it is an `Err`, no further
2098 /// elements are taken, and the `Err` is returned. Should no `Err` occur, a
2099 /// container with the values of each `Result` is returned.
2100 ///
2101 /// Here is an example which increments every integer in a vector,
2102 /// checking for overflow:
2103 ///
2104 /// ```
2105 /// let v = vec![1, 2];
2106 /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32|
2107 /// x.checked_add(1).ok_or("Overflow!")
2108 /// ).collect();
2109 /// assert_eq!(res, Ok(vec![2, 3]));
2110 /// ```
2111 ///
2112 /// Here is another example that tries to subtract one from another list
2113 /// of integers, this time checking for underflow:
2114 ///
2115 /// ```
2116 /// let v = vec![1, 2, 0];
2117 /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32|
2118 /// x.checked_sub(1).ok_or("Underflow!")
2119 /// ).collect();
2120 /// assert_eq!(res, Err("Underflow!"));
2121 /// ```
2122 ///
2123 /// Here is a variation on the previous example, showing that no
2124 /// further elements are taken from `iter` after the first `Err`.
2125 ///
2126 /// ```
2127 /// let v = vec![3, 2, 1, 10];
2128 /// let mut shared = 0;
2129 /// let res: Result<Vec<u32>, &'static str> = v.iter().map(|x: &u32| {
2130 /// shared += x;
2131 /// x.checked_sub(2).ok_or("Underflow!")
2132 /// }).collect();
2133 /// assert_eq!(res, Err("Underflow!"));
2134 /// assert_eq!(shared, 6);
2135 /// ```
2136 ///
2137 /// Since the third element caused an underflow, no further elements were taken,
2138 /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2139 #[inline]
2140 fn from_iter<I: IntoIterator<Item = Result<A, E>>>(iter: I) -> Result<V, E> {
2141 iter::try_process(iter.into_iter(), |i| i.collect())
2142 }
2143}
2144
2145#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2146#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2147impl<T, E> const ops::Try for Result<T, E> {
2148 type Output = T;
2149 type Residual = Result<convert::Infallible, E>;
2150
2151 #[inline]
2152 fn from_output(output: Self::Output) -> Self {
2153 Ok(output)
2154 }
2155
2156 #[inline]
2157 fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2158 match self {
2159 Ok(v) => ControlFlow::Continue(v),
2160 Err(e) => ControlFlow::Break(Err(e)),
2161 }
2162 }
2163}
2164
2165#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2166#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2167impl<T, E, F: [const] From<E>> const ops::FromResidual<Result<convert::Infallible, E>>
2168 for Result<T, F>
2169{
2170 #[inline]
2171 #[track_caller]
2172 fn from_residual(residual: Result<convert::Infallible, E>) -> Self {
2173 match residual {
2174 Err(e) => Err(From::from(e)),
2175 }
2176 }
2177}
2178#[diagnostic::do_not_recommend]
2179#[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2180#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2181impl<T, E, F: [const] From<E>> const ops::FromResidual<ops::Yeet<E>> for Result<T, F> {
2182 #[inline]
2183 fn from_residual(ops::Yeet(e): ops::Yeet<E>) -> Self {
2184 Err(From::from(e))
2185 }
2186}
2187
2188#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2189#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2190impl<T, E> const ops::Residual<T> for Result<convert::Infallible, E> {
2191 type TryType = Result<T, E>;
2192}