core/
option.rs

1//! Optional values.
2//!
3//! Type [`Option`] represents an optional value: every [`Option`]
4//! is either [`Some`] and contains a value, or [`None`], and
5//! does not. [`Option`] types are very common in Rust code, as
6//! they have a number of uses:
7//!
8//! * Initial values
9//! * Return values for functions that are not defined
10//!   over their entire input range (partial functions)
11//! * Return value for otherwise reporting simple errors, where [`None`] is
12//!   returned on error
13//! * Optional struct fields
14//! * Struct fields that can be loaned or "taken"
15//! * Optional function arguments
16//! * Nullable pointers
17//! * Swapping things out of difficult situations
18//!
19//! [`Option`]s are commonly paired with pattern matching to query the presence
20//! of a value and take action, always accounting for the [`None`] case.
21//!
22//! ```
23//! fn divide(numerator: f64, denominator: f64) -> Option<f64> {
24//!     if denominator == 0.0 {
25//!         None
26//!     } else {
27//!         Some(numerator / denominator)
28//!     }
29//! }
30//!
31//! // The return value of the function is an option
32//! let result = divide(2.0, 3.0);
33//!
34//! // Pattern match to retrieve the value
35//! match result {
36//!     // The division was valid
37//!     Some(x) => println!("Result: {x}"),
38//!     // The division was invalid
39//!     None    => println!("Cannot divide by 0"),
40//! }
41//! ```
42//!
43//
44// FIXME: Show how `Option` is used in practice, with lots of methods
45//
46//! # Options and pointers ("nullable" pointers)
47//!
48//! Rust's pointer types must always point to a valid location; there are
49//! no "null" references. Instead, Rust has *optional* pointers, like
50//! the optional owned box, <code>[Option]<[Box\<T>]></code>.
51//!
52//! [Box\<T>]: ../../std/boxed/struct.Box.html
53//!
54//! The following example uses [`Option`] to create an optional box of
55//! [`i32`]. Notice that in order to use the inner [`i32`] value, the
56//! `check_optional` function first needs to use pattern matching to
57//! determine whether the box has a value (i.e., it is [`Some(...)`][`Some`]) or
58//! not ([`None`]).
59//!
60//! ```
61//! let optional = None;
62//! check_optional(optional);
63//!
64//! let optional = Some(Box::new(9000));
65//! check_optional(optional);
66//!
67//! fn check_optional(optional: Option<Box<i32>>) {
68//!     match optional {
69//!         Some(p) => println!("has value {p}"),
70//!         None => println!("has no value"),
71//!     }
72//! }
73//! ```
74//!
75//! # The question mark operator, `?`
76//!
77//! Similar to the [`Result`] type, when writing code that calls many functions that return the
78//! [`Option`] type, handling `Some`/`None` can be tedious. The question mark
79//! operator, [`?`], hides some of the boilerplate of propagating values
80//! up the call stack.
81//!
82//! It replaces this:
83//!
84//! ```
85//! # #![allow(dead_code)]
86//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
87//!     let a = stack.pop();
88//!     let b = stack.pop();
89//!
90//!     match (a, b) {
91//!         (Some(x), Some(y)) => Some(x + y),
92//!         _ => None,
93//!     }
94//! }
95//!
96//! ```
97//!
98//! With this:
99//!
100//! ```
101//! # #![allow(dead_code)]
102//! fn add_last_numbers(stack: &mut Vec<i32>) -> Option<i32> {
103//!     Some(stack.pop()? + stack.pop()?)
104//! }
105//! ```
106//!
107//! *It's much nicer!*
108//!
109//! Ending the expression with [`?`] will result in the [`Some`]'s unwrapped value, unless the
110//! result is [`None`], in which case [`None`] is returned early from the enclosing function.
111//!
112//! [`?`] can be used in functions that return [`Option`] because of the
113//! early return of [`None`] that it provides.
114//!
115//! [`?`]: crate::ops::Try
116//! [`Some`]: Some
117//! [`None`]: None
118//!
119//! # Representation
120//!
121//! Rust guarantees to optimize the following types `T` such that
122//! [`Option<T>`] has the same size, alignment, and [function call ABI] as `T`. In some
123//! of these cases, Rust further guarantees the following:
124//! - `transmute::<_, Option<T>>([0u8; size_of::<T>()])` is sound and produces
125//!   `Option::<T>::None`
126//! - `transmute::<_, [u8; size_of::<T>()]>(Option::<T>::None)` is sound and produces
127//!   `[0u8; size_of::<T>()]`
128//!
129//! These cases are identified by the second column:
130//!
131//! | `T`                                                                 | Transmuting between `[0u8; size_of::<T>()]` and `Option::<T>::None` sound? |
132//! |---------------------------------------------------------------------|----------------------------------------------------------------------------|
133//! | [`Box<U>`] (specifically, only `Box<U, Global>`)                    | when `U: Sized`                                                            |
134//! | `&U`                                                                | when `U: Sized`                                                            |
135//! | `&mut U`                                                            | when `U: Sized`                                                            |
136//! | `fn`, `extern "C" fn`[^extern_fn]                                   | always                                                                     |
137//! | [`num::NonZero*`]                                                   | always                                                                     |
138//! | [`ptr::NonNull<U>`]                                                 | when `U: Sized`                                                            |
139//! | `#[repr(transparent)]` struct around one of the types in this list. | when it holds for the inner type                                           |
140//!
141//! [^extern_fn]: this remains true for `unsafe` variants, any argument/return types, and any other ABI: `[unsafe] extern "abi" fn` (_e.g._, `extern "system" fn`)
142//!
143//! Under some conditions the above types `T` are also null pointer optimized when wrapped in a [`Result`][result_repr].
144//!
145//! [`Box<U>`]: ../../std/boxed/struct.Box.html
146//! [`num::NonZero*`]: crate::num
147//! [`ptr::NonNull<U>`]: crate::ptr::NonNull
148//! [function call ABI]: ../primitive.fn.html#abi-compatibility
149//! [result_repr]: crate::result#representation
150//!
151//! This is called the "null pointer optimization" or NPO.
152//!
153//! It is further guaranteed that, for the cases above, one can
154//! [`mem::transmute`] from all valid values of `T` to `Option<T>` and
155//! from `Some::<T>(_)` to `T` (but transmuting `None::<T>` to `T`
156//! is undefined behavior).
157//!
158//! # Method overview
159//!
160//! In addition to working with pattern matching, [`Option`] provides a wide
161//! variety of different methods.
162//!
163//! ## Querying the variant
164//!
165//! The [`is_some`] and [`is_none`] methods return [`true`] if the [`Option`]
166//! is [`Some`] or [`None`], respectively.
167//!
168//! The [`is_some_and`] and [`is_none_or`] methods apply the provided function
169//! to the contents of the [`Option`] to produce a boolean value.
170//! If this is [`None`] then a default result is returned instead without executing the function.
171//!
172//! [`is_none`]: Option::is_none
173//! [`is_some`]: Option::is_some
174//! [`is_some_and`]: Option::is_some_and
175//! [`is_none_or`]: Option::is_none_or
176//!
177//! ## Adapters for working with references
178//!
179//! * [`as_ref`] converts from <code>[&][][Option]\<T></code> to <code>[Option]<[&]T></code>
180//! * [`as_mut`] converts from <code>[&mut] [Option]\<T></code> to <code>[Option]<[&mut] T></code>
181//! * [`as_deref`] converts from <code>[&][][Option]\<T></code> to
182//!   <code>[Option]<[&]T::[Target]></code>
183//! * [`as_deref_mut`] converts from <code>[&mut] [Option]\<T></code> to
184//!   <code>[Option]<[&mut] T::[Target]></code>
185//! * [`as_pin_ref`] converts from <code>[Pin]<[&][][Option]\<T>></code> to
186//!   <code>[Option]<[Pin]<[&]T>></code>
187//! * [`as_pin_mut`] converts from <code>[Pin]<[&mut] [Option]\<T>></code> to
188//!   <code>[Option]<[Pin]<[&mut] T>></code>
189//! * [`as_slice`] returns a one-element slice of the contained value, if any.
190//!   If this is [`None`], an empty slice is returned.
191//! * [`as_mut_slice`] returns a mutable one-element slice of the contained value, if any.
192//!   If this is [`None`], an empty slice is returned.
193//!
194//! [&]: reference "shared reference"
195//! [&mut]: reference "mutable reference"
196//! [Target]: Deref::Target "ops::Deref::Target"
197//! [`as_deref`]: Option::as_deref
198//! [`as_deref_mut`]: Option::as_deref_mut
199//! [`as_mut`]: Option::as_mut
200//! [`as_pin_mut`]: Option::as_pin_mut
201//! [`as_pin_ref`]: Option::as_pin_ref
202//! [`as_ref`]: Option::as_ref
203//! [`as_slice`]: Option::as_slice
204//! [`as_mut_slice`]: Option::as_mut_slice
205//!
206//! ## Extracting the contained value
207//!
208//! These methods extract the contained value in an [`Option<T>`] when it
209//! is the [`Some`] variant. If the [`Option`] is [`None`]:
210//!
211//! * [`expect`] panics with a provided custom message
212//! * [`unwrap`] panics with a generic message
213//! * [`unwrap_or`] returns the provided default value
214//! * [`unwrap_or_default`] returns the default value of the type `T`
215//!   (which must implement the [`Default`] trait)
216//! * [`unwrap_or_else`] returns the result of evaluating the provided
217//!   function
218//! * [`unwrap_unchecked`] produces *[undefined behavior]*
219//!
220//! [`expect`]: Option::expect
221//! [`unwrap`]: Option::unwrap
222//! [`unwrap_or`]: Option::unwrap_or
223//! [`unwrap_or_default`]: Option::unwrap_or_default
224//! [`unwrap_or_else`]: Option::unwrap_or_else
225//! [`unwrap_unchecked`]: Option::unwrap_unchecked
226//! [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
227//!
228//! ## Transforming contained values
229//!
230//! These methods transform [`Option`] to [`Result`]:
231//!
232//! * [`ok_or`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
233//!   [`Err(err)`] using the provided default `err` value
234//! * [`ok_or_else`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
235//!   a value of [`Err`] using the provided function
236//! * [`transpose`] transposes an [`Option`] of a [`Result`] into a
237//!   [`Result`] of an [`Option`]
238//!
239//! [`Err(err)`]: Err
240//! [`Ok(v)`]: Ok
241//! [`Some(v)`]: Some
242//! [`ok_or`]: Option::ok_or
243//! [`ok_or_else`]: Option::ok_or_else
244//! [`transpose`]: Option::transpose
245//!
246//! These methods transform the [`Some`] variant:
247//!
248//! * [`filter`] calls the provided predicate function on the contained
249//!   value `t` if the [`Option`] is [`Some(t)`], and returns [`Some(t)`]
250//!   if the function returns `true`; otherwise, returns [`None`]
251//! * [`flatten`] removes one level of nesting from an [`Option<Option<T>>`]
252//! * [`inspect`] method takes ownership of the [`Option`] and applies
253//!   the provided function to the contained value by reference if [`Some`]
254//! * [`map`] transforms [`Option<T>`] to [`Option<U>`] by applying the
255//!   provided function to the contained value of [`Some`] and leaving
256//!   [`None`] values unchanged
257//!
258//! [`Some(t)`]: Some
259//! [`filter`]: Option::filter
260//! [`flatten`]: Option::flatten
261//! [`inspect`]: Option::inspect
262//! [`map`]: Option::map
263//!
264//! These methods transform [`Option<T>`] to a value of a possibly
265//! different type `U`:
266//!
267//! * [`map_or`] applies the provided function to the contained value of
268//!   [`Some`], or returns the provided default value if the [`Option`] is
269//!   [`None`]
270//! * [`map_or_else`] applies the provided function to the contained value
271//!   of [`Some`], or returns the result of evaluating the provided
272//!   fallback function if the [`Option`] is [`None`]
273//!
274//! [`map_or`]: Option::map_or
275//! [`map_or_else`]: Option::map_or_else
276//!
277//! These methods combine the [`Some`] variants of two [`Option`] values:
278//!
279//! * [`zip`] returns [`Some((s, o))`] if `self` is [`Some(s)`] and the
280//!   provided [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
281//! * [`zip_with`] calls the provided function `f` and returns
282//!   [`Some(f(s, o))`] if `self` is [`Some(s)`] and the provided
283//!   [`Option`] value is [`Some(o)`]; otherwise, returns [`None`]
284//!
285//! [`Some(f(s, o))`]: Some
286//! [`Some(o)`]: Some
287//! [`Some(s)`]: Some
288//! [`Some((s, o))`]: Some
289//! [`zip`]: Option::zip
290//! [`zip_with`]: Option::zip_with
291//!
292//! ## Boolean operators
293//!
294//! These methods treat the [`Option`] as a boolean value, where [`Some`]
295//! acts like [`true`] and [`None`] acts like [`false`]. There are two
296//! categories of these methods: ones that take an [`Option`] as input, and
297//! ones that take a function as input (to be lazily evaluated).
298//!
299//! The [`and`], [`or`], and [`xor`] methods take another [`Option`] as
300//! input, and produce an [`Option`] as output. Only the [`and`] method can
301//! produce an [`Option<U>`] value having a different inner type `U` than
302//! [`Option<T>`].
303//!
304//! | method  | self      | input     | output    |
305//! |---------|-----------|-----------|-----------|
306//! | [`and`] | `None`    | (ignored) | `None`    |
307//! | [`and`] | `Some(x)` | `None`    | `None`    |
308//! | [`and`] | `Some(x)` | `Some(y)` | `Some(y)` |
309//! | [`or`]  | `None`    | `None`    | `None`    |
310//! | [`or`]  | `None`    | `Some(y)` | `Some(y)` |
311//! | [`or`]  | `Some(x)` | (ignored) | `Some(x)` |
312//! | [`xor`] | `None`    | `None`    | `None`    |
313//! | [`xor`] | `None`    | `Some(y)` | `Some(y)` |
314//! | [`xor`] | `Some(x)` | `None`    | `Some(x)` |
315//! | [`xor`] | `Some(x)` | `Some(y)` | `None`    |
316//!
317//! [`and`]: Option::and
318//! [`or`]: Option::or
319//! [`xor`]: Option::xor
320//!
321//! The [`and_then`] and [`or_else`] methods take a function as input, and
322//! only evaluate the function when they need to produce a new value. Only
323//! the [`and_then`] method can produce an [`Option<U>`] value having a
324//! different inner type `U` than [`Option<T>`].
325//!
326//! | method       | self      | function input | function result | output    |
327//! |--------------|-----------|----------------|-----------------|-----------|
328//! | [`and_then`] | `None`    | (not provided) | (not evaluated) | `None`    |
329//! | [`and_then`] | `Some(x)` | `x`            | `None`          | `None`    |
330//! | [`and_then`] | `Some(x)` | `x`            | `Some(y)`       | `Some(y)` |
331//! | [`or_else`]  | `None`    | (not provided) | `None`          | `None`    |
332//! | [`or_else`]  | `None`    | (not provided) | `Some(y)`       | `Some(y)` |
333//! | [`or_else`]  | `Some(x)` | (not provided) | (not evaluated) | `Some(x)` |
334//!
335//! [`and_then`]: Option::and_then
336//! [`or_else`]: Option::or_else
337//!
338//! This is an example of using methods like [`and_then`] and [`or`] in a
339//! pipeline of method calls. Early stages of the pipeline pass failure
340//! values ([`None`]) through unchanged, and continue processing on
341//! success values ([`Some`]). Toward the end, [`or`] substitutes an error
342//! message if it receives [`None`].
343//!
344//! ```
345//! # use std::collections::BTreeMap;
346//! let mut bt = BTreeMap::new();
347//! bt.insert(20u8, "foo");
348//! bt.insert(42u8, "bar");
349//! let res = [0u8, 1, 11, 200, 22]
350//!     .into_iter()
351//!     .map(|x| {
352//!         // `checked_sub()` returns `None` on error
353//!         x.checked_sub(1)
354//!             // same with `checked_mul()`
355//!             .and_then(|x| x.checked_mul(2))
356//!             // `BTreeMap::get` returns `None` on error
357//!             .and_then(|x| bt.get(&x))
358//!             // Substitute an error message if we have `None` so far
359//!             .or(Some(&"error!"))
360//!             .copied()
361//!             // Won't panic because we unconditionally used `Some` above
362//!             .unwrap()
363//!     })
364//!     .collect::<Vec<_>>();
365//! assert_eq!(res, ["error!", "error!", "foo", "error!", "bar"]);
366//! ```
367//!
368//! ## Comparison operators
369//!
370//! If `T` implements [`PartialOrd`] then [`Option<T>`] will derive its
371//! [`PartialOrd`] implementation.  With this order, [`None`] compares as
372//! less than any [`Some`], and two [`Some`] compare the same way as their
373//! contained values would in `T`.  If `T` also implements
374//! [`Ord`], then so does [`Option<T>`].
375//!
376//! ```
377//! assert!(None < Some(0));
378//! assert!(Some(0) < Some(1));
379//! ```
380//!
381//! ## Iterating over `Option`
382//!
383//! An [`Option`] can be iterated over. This can be helpful if you need an
384//! iterator that is conditionally empty. The iterator will either produce
385//! a single value (when the [`Option`] is [`Some`]), or produce no values
386//! (when the [`Option`] is [`None`]). For example, [`into_iter`] acts like
387//! [`once(v)`] if the [`Option`] is [`Some(v)`], and like [`empty()`] if
388//! the [`Option`] is [`None`].
389//!
390//! [`Some(v)`]: Some
391//! [`empty()`]: crate::iter::empty
392//! [`once(v)`]: crate::iter::once
393//!
394//! Iterators over [`Option<T>`] come in three types:
395//!
396//! * [`into_iter`] consumes the [`Option`] and produces the contained
397//!   value
398//! * [`iter`] produces an immutable reference of type `&T` to the
399//!   contained value
400//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
401//!   contained value
402//!
403//! [`into_iter`]: Option::into_iter
404//! [`iter`]: Option::iter
405//! [`iter_mut`]: Option::iter_mut
406//!
407//! An iterator over [`Option`] can be useful when chaining iterators, for
408//! example, to conditionally insert items. (It's not always necessary to
409//! explicitly call an iterator constructor: many [`Iterator`] methods that
410//! accept other iterators will also accept iterable types that implement
411//! [`IntoIterator`], which includes [`Option`].)
412//!
413//! ```
414//! let yep = Some(42);
415//! let nope = None;
416//! // chain() already calls into_iter(), so we don't have to do so
417//! let nums: Vec<i32> = (0..4).chain(yep).chain(4..8).collect();
418//! assert_eq!(nums, [0, 1, 2, 3, 42, 4, 5, 6, 7]);
419//! let nums: Vec<i32> = (0..4).chain(nope).chain(4..8).collect();
420//! assert_eq!(nums, [0, 1, 2, 3, 4, 5, 6, 7]);
421//! ```
422//!
423//! One reason to chain iterators in this way is that a function returning
424//! `impl Iterator` must have all possible return values be of the same
425//! concrete type. Chaining an iterated [`Option`] can help with that.
426//!
427//! ```
428//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
429//!     // Explicit returns to illustrate return types matching
430//!     match do_insert {
431//!         true => return (0..4).chain(Some(42)).chain(4..8),
432//!         false => return (0..4).chain(None).chain(4..8),
433//!     }
434//! }
435//! println!("{:?}", make_iter(true).collect::<Vec<_>>());
436//! println!("{:?}", make_iter(false).collect::<Vec<_>>());
437//! ```
438//!
439//! If we try to do the same thing, but using [`once()`] and [`empty()`],
440//! we can't return `impl Iterator` anymore because the concrete types of
441//! the return values differ.
442//!
443//! [`empty()`]: crate::iter::empty
444//! [`once()`]: crate::iter::once
445//!
446//! ```compile_fail,E0308
447//! # use std::iter::{empty, once};
448//! // This won't compile because all possible returns from the function
449//! // must have the same concrete type.
450//! fn make_iter(do_insert: bool) -> impl Iterator<Item = i32> {
451//!     // Explicit returns to illustrate return types not matching
452//!     match do_insert {
453//!         true => return (0..4).chain(once(42)).chain(4..8),
454//!         false => return (0..4).chain(empty()).chain(4..8),
455//!     }
456//! }
457//! ```
458//!
459//! ## Collecting into `Option`
460//!
461//! [`Option`] implements the [`FromIterator`][impl-FromIterator] trait,
462//! which allows an iterator over [`Option`] values to be collected into an
463//! [`Option`] of a collection of each contained value of the original
464//! [`Option`] values, or [`None`] if any of the elements was [`None`].
465//!
466//! [impl-FromIterator]: Option#impl-FromIterator%3COption%3CA%3E%3E-for-Option%3CV%3E
467//!
468//! ```
469//! let v = [Some(2), Some(4), None, Some(8)];
470//! let res: Option<Vec<_>> = v.into_iter().collect();
471//! assert_eq!(res, None);
472//! let v = [Some(2), Some(4), Some(8)];
473//! let res: Option<Vec<_>> = v.into_iter().collect();
474//! assert_eq!(res, Some(vec![2, 4, 8]));
475//! ```
476//!
477//! [`Option`] also implements the [`Product`][impl-Product] and
478//! [`Sum`][impl-Sum] traits, allowing an iterator over [`Option`] values
479//! to provide the [`product`][Iterator::product] and
480//! [`sum`][Iterator::sum] methods.
481//!
482//! [impl-Product]: Option#impl-Product%3COption%3CU%3E%3E-for-Option%3CT%3E
483//! [impl-Sum]: Option#impl-Sum%3COption%3CU%3E%3E-for-Option%3CT%3E
484//!
485//! ```
486//! let v = [None, Some(1), Some(2), Some(3)];
487//! let res: Option<i32> = v.into_iter().sum();
488//! assert_eq!(res, None);
489//! let v = [Some(1), Some(2), Some(21)];
490//! let res: Option<i32> = v.into_iter().product();
491//! assert_eq!(res, Some(42));
492//! ```
493//!
494//! ## Modifying an [`Option`] in-place
495//!
496//! These methods return a mutable reference to the contained value of an
497//! [`Option<T>`]:
498//!
499//! * [`insert`] inserts a value, dropping any old contents
500//! * [`get_or_insert`] gets the current value, inserting a provided
501//!   default value if it is [`None`]
502//! * [`get_or_insert_default`] gets the current value, inserting the
503//!   default value of type `T` (which must implement [`Default`]) if it is
504//!   [`None`]
505//! * [`get_or_insert_with`] gets the current value, inserting a default
506//!   computed by the provided function if it is [`None`]
507//!
508//! [`get_or_insert`]: Option::get_or_insert
509//! [`get_or_insert_default`]: Option::get_or_insert_default
510//! [`get_or_insert_with`]: Option::get_or_insert_with
511//! [`insert`]: Option::insert
512//!
513//! These methods transfer ownership of the contained value of an
514//! [`Option`]:
515//!
516//! * [`take`] takes ownership of the contained value of an [`Option`], if
517//!   any, replacing the [`Option`] with [`None`]
518//! * [`replace`] takes ownership of the contained value of an [`Option`],
519//!   if any, replacing the [`Option`] with a [`Some`] containing the
520//!   provided value
521//!
522//! [`replace`]: Option::replace
523//! [`take`]: Option::take
524//!
525//! # Examples
526//!
527//! Basic pattern matching on [`Option`]:
528//!
529//! ```
530//! let msg = Some("howdy");
531//!
532//! // Take a reference to the contained string
533//! if let Some(m) = &msg {
534//!     println!("{}", *m);
535//! }
536//!
537//! // Remove the contained string, destroying the Option
538//! let unwrapped_msg = msg.unwrap_or("default message");
539//! ```
540//!
541//! Initialize a result to [`None`] before a loop:
542//!
543//! ```
544//! enum Kingdom { Plant(u32, &'static str), Animal(u32, &'static str) }
545//!
546//! // A list of data to search through.
547//! let all_the_big_things = [
548//!     Kingdom::Plant(250, "redwood"),
549//!     Kingdom::Plant(230, "noble fir"),
550//!     Kingdom::Plant(229, "sugar pine"),
551//!     Kingdom::Animal(25, "blue whale"),
552//!     Kingdom::Animal(19, "fin whale"),
553//!     Kingdom::Animal(15, "north pacific right whale"),
554//! ];
555//!
556//! // We're going to search for the name of the biggest animal,
557//! // but to start with we've just got `None`.
558//! let mut name_of_biggest_animal = None;
559//! let mut size_of_biggest_animal = 0;
560//! for big_thing in &all_the_big_things {
561//!     match *big_thing {
562//!         Kingdom::Animal(size, name) if size > size_of_biggest_animal => {
563//!             // Now we've found the name of some big animal
564//!             size_of_biggest_animal = size;
565//!             name_of_biggest_animal = Some(name);
566//!         }
567//!         Kingdom::Animal(..) | Kingdom::Plant(..) => ()
568//!     }
569//! }
570//!
571//! match name_of_biggest_animal {
572//!     Some(name) => println!("the biggest animal is {name}"),
573//!     None => println!("there are no animals :("),
574//! }
575//! ```
576
577#![stable(feature = "rust1", since = "1.0.0")]
578
579use crate::iter::{self, FusedIterator, TrustedLen};
580use crate::marker::Destruct;
581use crate::ops::{self, ControlFlow, Deref, DerefMut};
582use crate::panicking::{panic, panic_display};
583use crate::pin::Pin;
584use crate::{cmp, convert, hint, mem, slice};
585
586/// The `Option` type. See [the module level documentation](self) for more.
587#[doc(search_unbox)]
588#[derive(Copy, Eq, Debug, Hash)]
589#[rustc_diagnostic_item = "Option"]
590#[lang = "Option"]
591#[stable(feature = "rust1", since = "1.0.0")]
592#[allow(clippy::derived_hash_with_manual_eq)] // PartialEq is manually implemented equivalently
593pub enum Option<T> {
594    /// No value.
595    #[lang = "None"]
596    #[stable(feature = "rust1", since = "1.0.0")]
597    None,
598    /// Some value of type `T`.
599    #[lang = "Some"]
600    #[stable(feature = "rust1", since = "1.0.0")]
601    Some(#[stable(feature = "rust1", since = "1.0.0")] T),
602}
603
604/////////////////////////////////////////////////////////////////////////////
605// Type implementation
606/////////////////////////////////////////////////////////////////////////////
607
608impl<T> Option<T> {
609    /////////////////////////////////////////////////////////////////////////
610    // Querying the contained values
611    /////////////////////////////////////////////////////////////////////////
612
613    /// Returns `true` if the option is a [`Some`] value.
614    ///
615    /// # Examples
616    ///
617    /// ```
618    /// let x: Option<u32> = Some(2);
619    /// assert_eq!(x.is_some(), true);
620    ///
621    /// let x: Option<u32> = None;
622    /// assert_eq!(x.is_some(), false);
623    /// ```
624    #[must_use = "if you intended to assert that this has a value, consider `.unwrap()` instead"]
625    #[inline]
626    #[stable(feature = "rust1", since = "1.0.0")]
627    #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
628    pub const fn is_some(&self) -> bool {
629        matches!(*self, Some(_))
630    }
631
632    /// Returns `true` if the option is a [`Some`] and the value inside of it matches a predicate.
633    ///
634    /// # Examples
635    ///
636    /// ```
637    /// let x: Option<u32> = Some(2);
638    /// assert_eq!(x.is_some_and(|x| x > 1), true);
639    ///
640    /// let x: Option<u32> = Some(0);
641    /// assert_eq!(x.is_some_and(|x| x > 1), false);
642    ///
643    /// let x: Option<u32> = None;
644    /// assert_eq!(x.is_some_and(|x| x > 1), false);
645    ///
646    /// let x: Option<String> = Some("ownership".to_string());
647    /// assert_eq!(x.as_ref().is_some_and(|x| x.len() > 1), true);
648    /// println!("still alive {:?}", x);
649    /// ```
650    #[must_use]
651    #[inline]
652    #[stable(feature = "is_some_and", since = "1.70.0")]
653    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
654    pub const fn is_some_and(self, f: impl [const] FnOnce(T) -> bool + [const] Destruct) -> bool {
655        match self {
656            None => false,
657            Some(x) => f(x),
658        }
659    }
660
661    /// Returns `true` if the option is a [`None`] value.
662    ///
663    /// # Examples
664    ///
665    /// ```
666    /// let x: Option<u32> = Some(2);
667    /// assert_eq!(x.is_none(), false);
668    ///
669    /// let x: Option<u32> = None;
670    /// assert_eq!(x.is_none(), true);
671    /// ```
672    #[must_use = "if you intended to assert that this doesn't have a value, consider \
673                  wrapping this in an `assert!()` instead"]
674    #[inline]
675    #[stable(feature = "rust1", since = "1.0.0")]
676    #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
677    pub const fn is_none(&self) -> bool {
678        !self.is_some()
679    }
680
681    /// Returns `true` if the option is a [`None`] or the value inside of it matches a predicate.
682    ///
683    /// # Examples
684    ///
685    /// ```
686    /// let x: Option<u32> = Some(2);
687    /// assert_eq!(x.is_none_or(|x| x > 1), true);
688    ///
689    /// let x: Option<u32> = Some(0);
690    /// assert_eq!(x.is_none_or(|x| x > 1), false);
691    ///
692    /// let x: Option<u32> = None;
693    /// assert_eq!(x.is_none_or(|x| x > 1), true);
694    ///
695    /// let x: Option<String> = Some("ownership".to_string());
696    /// assert_eq!(x.as_ref().is_none_or(|x| x.len() > 1), true);
697    /// println!("still alive {:?}", x);
698    /// ```
699    #[must_use]
700    #[inline]
701    #[stable(feature = "is_none_or", since = "1.82.0")]
702    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
703    pub const fn is_none_or(self, f: impl [const] FnOnce(T) -> bool + [const] Destruct) -> bool {
704        match self {
705            None => true,
706            Some(x) => f(x),
707        }
708    }
709
710    /////////////////////////////////////////////////////////////////////////
711    // Adapter for working with references
712    /////////////////////////////////////////////////////////////////////////
713
714    /// Converts from `&Option<T>` to `Option<&T>`.
715    ///
716    /// # Examples
717    ///
718    /// Calculates the length of an <code>Option<[String]></code> as an <code>Option<[usize]></code>
719    /// without moving the [`String`]. The [`map`] method takes the `self` argument by value,
720    /// consuming the original, so this technique uses `as_ref` to first take an `Option` to a
721    /// reference to the value inside the original.
722    ///
723    /// [`map`]: Option::map
724    /// [String]: ../../std/string/struct.String.html "String"
725    /// [`String`]: ../../std/string/struct.String.html "String"
726    ///
727    /// ```
728    /// let text: Option<String> = Some("Hello, world!".to_string());
729    /// // First, cast `Option<String>` to `Option<&String>` with `as_ref`,
730    /// // then consume *that* with `map`, leaving `text` on the stack.
731    /// let text_length: Option<usize> = text.as_ref().map(|s| s.len());
732    /// println!("still can print text: {text:?}");
733    /// ```
734    #[inline]
735    #[rustc_const_stable(feature = "const_option_basics", since = "1.48.0")]
736    #[stable(feature = "rust1", since = "1.0.0")]
737    pub const fn as_ref(&self) -> Option<&T> {
738        match *self {
739            Some(ref x) => Some(x),
740            None => None,
741        }
742    }
743
744    /// Converts from `&mut Option<T>` to `Option<&mut T>`.
745    ///
746    /// # Examples
747    ///
748    /// ```
749    /// let mut x = Some(2);
750    /// match x.as_mut() {
751    ///     Some(v) => *v = 42,
752    ///     None => {},
753    /// }
754    /// assert_eq!(x, Some(42));
755    /// ```
756    #[inline]
757    #[stable(feature = "rust1", since = "1.0.0")]
758    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
759    pub const fn as_mut(&mut self) -> Option<&mut T> {
760        match *self {
761            Some(ref mut x) => Some(x),
762            None => None,
763        }
764    }
765
766    /// Converts from <code>[Pin]<[&]Option\<T>></code> to <code>Option<[Pin]<[&]T>></code>.
767    ///
768    /// [&]: reference "shared reference"
769    #[inline]
770    #[must_use]
771    #[stable(feature = "pin", since = "1.33.0")]
772    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
773    pub const fn as_pin_ref(self: Pin<&Self>) -> Option<Pin<&T>> {
774        // FIXME(const-hack): use `map` once that is possible
775        match Pin::get_ref(self).as_ref() {
776            // SAFETY: `x` is guaranteed to be pinned because it comes from `self`
777            // which is pinned.
778            Some(x) => unsafe { Some(Pin::new_unchecked(x)) },
779            None => None,
780        }
781    }
782
783    /// Converts from <code>[Pin]<[&mut] Option\<T>></code> to <code>Option<[Pin]<[&mut] T>></code>.
784    ///
785    /// [&mut]: reference "mutable reference"
786    #[inline]
787    #[must_use]
788    #[stable(feature = "pin", since = "1.33.0")]
789    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
790    pub const fn as_pin_mut(self: Pin<&mut Self>) -> Option<Pin<&mut T>> {
791        // SAFETY: `get_unchecked_mut` is never used to move the `Option` inside `self`.
792        // `x` is guaranteed to be pinned because it comes from `self` which is pinned.
793        unsafe {
794            // FIXME(const-hack): use `map` once that is possible
795            match Pin::get_unchecked_mut(self).as_mut() {
796                Some(x) => Some(Pin::new_unchecked(x)),
797                None => None,
798            }
799        }
800    }
801
802    #[inline]
803    const fn len(&self) -> usize {
804        // Using the intrinsic avoids emitting a branch to get the 0 or 1.
805        let discriminant: isize = crate::intrinsics::discriminant_value(self);
806        discriminant as usize
807    }
808
809    /// Returns a slice of the contained value, if any. If this is `None`, an
810    /// empty slice is returned. This can be useful to have a single type of
811    /// iterator over an `Option` or slice.
812    ///
813    /// Note: Should you have an `Option<&T>` and wish to get a slice of `T`,
814    /// you can unpack it via `opt.map_or(&[], std::slice::from_ref)`.
815    ///
816    /// # Examples
817    ///
818    /// ```rust
819    /// assert_eq!(
820    ///     [Some(1234).as_slice(), None.as_slice()],
821    ///     [&[1234][..], &[][..]],
822    /// );
823    /// ```
824    ///
825    /// The inverse of this function is (discounting
826    /// borrowing) [`[_]::first`](slice::first):
827    ///
828    /// ```rust
829    /// for i in [Some(1234_u16), None] {
830    ///     assert_eq!(i.as_ref(), i.as_slice().first());
831    /// }
832    /// ```
833    #[inline]
834    #[must_use]
835    #[stable(feature = "option_as_slice", since = "1.75.0")]
836    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
837    pub const fn as_slice(&self) -> &[T] {
838        // SAFETY: When the `Option` is `Some`, we're using the actual pointer
839        // to the payload, with a length of 1, so this is equivalent to
840        // `slice::from_ref`, and thus is safe.
841        // When the `Option` is `None`, the length used is 0, so to be safe it
842        // just needs to be aligned, which it is because `&self` is aligned and
843        // the offset used is a multiple of alignment.
844        //
845        // Here we assume that `offset_of!` always returns an offset to an
846        // in-bounds and correctly aligned position for a `T` (even if in the
847        // `None` case it's just padding).
848        unsafe {
849            slice::from_raw_parts(
850                (self as *const Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
851                self.len(),
852            )
853        }
854    }
855
856    /// Returns a mutable slice of the contained value, if any. If this is
857    /// `None`, an empty slice is returned. This can be useful to have a
858    /// single type of iterator over an `Option` or slice.
859    ///
860    /// Note: Should you have an `Option<&mut T>` instead of a
861    /// `&mut Option<T>`, which this method takes, you can obtain a mutable
862    /// slice via `opt.map_or(&mut [], std::slice::from_mut)`.
863    ///
864    /// # Examples
865    ///
866    /// ```rust
867    /// assert_eq!(
868    ///     [Some(1234).as_mut_slice(), None.as_mut_slice()],
869    ///     [&mut [1234][..], &mut [][..]],
870    /// );
871    /// ```
872    ///
873    /// The result is a mutable slice of zero or one items that points into
874    /// our original `Option`:
875    ///
876    /// ```rust
877    /// let mut x = Some(1234);
878    /// x.as_mut_slice()[0] += 1;
879    /// assert_eq!(x, Some(1235));
880    /// ```
881    ///
882    /// The inverse of this method (discounting borrowing)
883    /// is [`[_]::first_mut`](slice::first_mut):
884    ///
885    /// ```rust
886    /// assert_eq!(Some(123).as_mut_slice().first_mut(), Some(&mut 123))
887    /// ```
888    #[inline]
889    #[must_use]
890    #[stable(feature = "option_as_slice", since = "1.75.0")]
891    #[rustc_const_stable(feature = "const_option_ext", since = "1.84.0")]
892    pub const fn as_mut_slice(&mut self) -> &mut [T] {
893        // SAFETY: When the `Option` is `Some`, we're using the actual pointer
894        // to the payload, with a length of 1, so this is equivalent to
895        // `slice::from_mut`, and thus is safe.
896        // When the `Option` is `None`, the length used is 0, so to be safe it
897        // just needs to be aligned, which it is because `&self` is aligned and
898        // the offset used is a multiple of alignment.
899        //
900        // In the new version, the intrinsic creates a `*const T` from a
901        // mutable reference  so it is safe to cast back to a mutable pointer
902        // here. As with `as_slice`, the intrinsic always returns a pointer to
903        // an in-bounds and correctly aligned position for a `T` (even if in
904        // the `None` case it's just padding).
905        unsafe {
906            slice::from_raw_parts_mut(
907                (self as *mut Self).byte_add(core::mem::offset_of!(Self, Some.0)).cast(),
908                self.len(),
909            )
910        }
911    }
912
913    /////////////////////////////////////////////////////////////////////////
914    // Getting to contained values
915    /////////////////////////////////////////////////////////////////////////
916
917    /// Returns the contained [`Some`] value, consuming the `self` value.
918    ///
919    /// # Panics
920    ///
921    /// Panics if the value is a [`None`] with a custom panic message provided by
922    /// `msg`.
923    ///
924    /// # Examples
925    ///
926    /// ```
927    /// let x = Some("value");
928    /// assert_eq!(x.expect("fruits are healthy"), "value");
929    /// ```
930    ///
931    /// ```should_panic
932    /// let x: Option<&str> = None;
933    /// x.expect("fruits are healthy"); // panics with `fruits are healthy`
934    /// ```
935    ///
936    /// # Recommended Message Style
937    ///
938    /// We recommend that `expect` messages are used to describe the reason you
939    /// _expect_ the `Option` should be `Some`.
940    ///
941    /// ```should_panic
942    /// # let slice: &[u8] = &[];
943    /// let item = slice.get(0)
944    ///     .expect("slice should not be empty");
945    /// ```
946    ///
947    /// **Hint**: If you're having trouble remembering how to phrase expect
948    /// error messages remember to focus on the word "should" as in "env
949    /// variable should be set by blah" or "the given binary should be available
950    /// and executable by the current user".
951    ///
952    /// For more detail on expect message styles and the reasoning behind our
953    /// recommendation please refer to the section on ["Common Message
954    /// Styles"](../../std/error/index.html#common-message-styles) in the [`std::error`](../../std/error/index.html) module docs.
955    #[inline]
956    #[track_caller]
957    #[stable(feature = "rust1", since = "1.0.0")]
958    #[rustc_diagnostic_item = "option_expect"]
959    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
960    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
961    pub const fn expect(self, msg: &str) -> T {
962        match self {
963            Some(val) => val,
964            None => expect_failed(msg),
965        }
966    }
967
968    /// Returns the contained [`Some`] value, consuming the `self` value.
969    ///
970    /// Because this function may panic, its use is generally discouraged.
971    /// Panics are meant for unrecoverable errors, and
972    /// [may abort the entire program][panic-abort].
973    ///
974    /// Instead, prefer to use pattern matching and handle the [`None`]
975    /// case explicitly, or call [`unwrap_or`], [`unwrap_or_else`], or
976    /// [`unwrap_or_default`]. In functions returning `Option`, you can use
977    /// [the `?` (try) operator][try-option].
978    ///
979    /// [panic-abort]: https://doc.rust-lang.org/book/ch09-01-unrecoverable-errors-with-panic.html
980    /// [try-option]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#where-the--operator-can-be-used
981    /// [`unwrap_or`]: Option::unwrap_or
982    /// [`unwrap_or_else`]: Option::unwrap_or_else
983    /// [`unwrap_or_default`]: Option::unwrap_or_default
984    ///
985    /// # Panics
986    ///
987    /// Panics if the self value equals [`None`].
988    ///
989    /// # Examples
990    ///
991    /// ```
992    /// let x = Some("air");
993    /// assert_eq!(x.unwrap(), "air");
994    /// ```
995    ///
996    /// ```should_panic
997    /// let x: Option<&str> = None;
998    /// assert_eq!(x.unwrap(), "air"); // fails
999    /// ```
1000    #[inline(always)]
1001    #[track_caller]
1002    #[stable(feature = "rust1", since = "1.0.0")]
1003    #[rustc_diagnostic_item = "option_unwrap"]
1004    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1005    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1006    pub const fn unwrap(self) -> T {
1007        match self {
1008            Some(val) => val,
1009            None => unwrap_failed(),
1010        }
1011    }
1012
1013    /// Returns the contained [`Some`] value or a provided default.
1014    ///
1015    /// Arguments passed to `unwrap_or` are eagerly evaluated; if you are passing
1016    /// the result of a function call, it is recommended to use [`unwrap_or_else`],
1017    /// which is lazily evaluated.
1018    ///
1019    /// [`unwrap_or_else`]: Option::unwrap_or_else
1020    ///
1021    /// # Examples
1022    ///
1023    /// ```
1024    /// assert_eq!(Some("car").unwrap_or("bike"), "car");
1025    /// assert_eq!(None.unwrap_or("bike"), "bike");
1026    /// ```
1027    #[inline]
1028    #[stable(feature = "rust1", since = "1.0.0")]
1029    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1030    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1031    pub const fn unwrap_or(self, default: T) -> T
1032    where
1033        T: [const] Destruct,
1034    {
1035        match self {
1036            Some(x) => x,
1037            None => default,
1038        }
1039    }
1040
1041    /// Returns the contained [`Some`] value or computes it from a closure.
1042    ///
1043    /// # Examples
1044    ///
1045    /// ```
1046    /// let k = 10;
1047    /// assert_eq!(Some(4).unwrap_or_else(|| 2 * k), 4);
1048    /// assert_eq!(None.unwrap_or_else(|| 2 * k), 20);
1049    /// ```
1050    #[inline]
1051    #[track_caller]
1052    #[stable(feature = "rust1", since = "1.0.0")]
1053    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1054    pub const fn unwrap_or_else<F>(self, f: F) -> T
1055    where
1056        F: [const] FnOnce() -> T + [const] Destruct,
1057    {
1058        match self {
1059            Some(x) => x,
1060            None => f(),
1061        }
1062    }
1063
1064    /// Returns the contained [`Some`] value or a default.
1065    ///
1066    /// Consumes the `self` argument then, if [`Some`], returns the contained
1067    /// value, otherwise if [`None`], returns the [default value] for that
1068    /// type.
1069    ///
1070    /// # Examples
1071    ///
1072    /// ```
1073    /// let x: Option<u32> = None;
1074    /// let y: Option<u32> = Some(12);
1075    ///
1076    /// assert_eq!(x.unwrap_or_default(), 0);
1077    /// assert_eq!(y.unwrap_or_default(), 12);
1078    /// ```
1079    ///
1080    /// [default value]: Default::default
1081    /// [`parse`]: str::parse
1082    /// [`FromStr`]: crate::str::FromStr
1083    #[inline]
1084    #[stable(feature = "rust1", since = "1.0.0")]
1085    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1086    pub const fn unwrap_or_default(self) -> T
1087    where
1088        T: [const] Default,
1089    {
1090        match self {
1091            Some(x) => x,
1092            None => T::default(),
1093        }
1094    }
1095
1096    /// Returns the contained [`Some`] value, consuming the `self` value,
1097    /// without checking that the value is not [`None`].
1098    ///
1099    /// # Safety
1100    ///
1101    /// Calling this method on [`None`] is *[undefined behavior]*.
1102    ///
1103    /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1104    ///
1105    /// # Examples
1106    ///
1107    /// ```
1108    /// let x = Some("air");
1109    /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air");
1110    /// ```
1111    ///
1112    /// ```no_run
1113    /// let x: Option<&str> = None;
1114    /// assert_eq!(unsafe { x.unwrap_unchecked() }, "air"); // Undefined behavior!
1115    /// ```
1116    #[inline]
1117    #[track_caller]
1118    #[stable(feature = "option_result_unwrap_unchecked", since = "1.58.0")]
1119    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
1120    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1121    pub const unsafe fn unwrap_unchecked(self) -> T {
1122        match self {
1123            Some(val) => val,
1124            // SAFETY: the safety contract must be upheld by the caller.
1125            None => unsafe { hint::unreachable_unchecked() },
1126        }
1127    }
1128
1129    /////////////////////////////////////////////////////////////////////////
1130    // Transforming contained values
1131    /////////////////////////////////////////////////////////////////////////
1132
1133    /// Maps an `Option<T>` to `Option<U>` by applying a function to a contained value (if `Some`) or returns `None` (if `None`).
1134    ///
1135    /// # Examples
1136    ///
1137    /// Calculates the length of an <code>Option<[String]></code> as an
1138    /// <code>Option<[usize]></code>, consuming the original:
1139    ///
1140    /// [String]: ../../std/string/struct.String.html "String"
1141    /// ```
1142    /// let maybe_some_string = Some(String::from("Hello, World!"));
1143    /// // `Option::map` takes self *by value*, consuming `maybe_some_string`
1144    /// let maybe_some_len = maybe_some_string.map(|s| s.len());
1145    /// assert_eq!(maybe_some_len, Some(13));
1146    ///
1147    /// let x: Option<&str> = None;
1148    /// assert_eq!(x.map(|s| s.len()), None);
1149    /// ```
1150    #[inline]
1151    #[stable(feature = "rust1", since = "1.0.0")]
1152    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1153    pub const fn map<U, F>(self, f: F) -> Option<U>
1154    where
1155        F: [const] FnOnce(T) -> U + [const] Destruct,
1156    {
1157        match self {
1158            Some(x) => Some(f(x)),
1159            None => None,
1160        }
1161    }
1162
1163    /// Calls a function with a reference to the contained value if [`Some`].
1164    ///
1165    /// Returns the original option.
1166    ///
1167    /// # Examples
1168    ///
1169    /// ```
1170    /// let list = vec![1, 2, 3];
1171    ///
1172    /// // prints "got: 2"
1173    /// let x = list
1174    ///     .get(1)
1175    ///     .inspect(|x| println!("got: {x}"))
1176    ///     .expect("list should be long enough");
1177    ///
1178    /// // prints nothing
1179    /// list.get(5).inspect(|x| println!("got: {x}"));
1180    /// ```
1181    #[inline]
1182    #[stable(feature = "result_option_inspect", since = "1.76.0")]
1183    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1184    pub const fn inspect<F>(self, f: F) -> Self
1185    where
1186        F: [const] FnOnce(&T) + [const] Destruct,
1187    {
1188        if let Some(ref x) = self {
1189            f(x);
1190        }
1191
1192        self
1193    }
1194
1195    /// Returns the provided default result (if none),
1196    /// or applies a function to the contained value (if any).
1197    ///
1198    /// Arguments passed to `map_or` are eagerly evaluated; if you are passing
1199    /// the result of a function call, it is recommended to use [`map_or_else`],
1200    /// which is lazily evaluated.
1201    ///
1202    /// [`map_or_else`]: Option::map_or_else
1203    ///
1204    /// # Examples
1205    ///
1206    /// ```
1207    /// let x = Some("foo");
1208    /// assert_eq!(x.map_or(42, |v| v.len()), 3);
1209    ///
1210    /// let x: Option<&str> = None;
1211    /// assert_eq!(x.map_or(42, |v| v.len()), 42);
1212    /// ```
1213    #[inline]
1214    #[stable(feature = "rust1", since = "1.0.0")]
1215    #[must_use = "if you don't need the returned value, use `if let` instead"]
1216    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1217    pub const fn map_or<U, F>(self, default: U, f: F) -> U
1218    where
1219        F: [const] FnOnce(T) -> U + [const] Destruct,
1220        U: [const] Destruct,
1221    {
1222        match self {
1223            Some(t) => f(t),
1224            None => default,
1225        }
1226    }
1227
1228    /// Computes a default function result (if none), or
1229    /// applies a different function to the contained value (if any).
1230    ///
1231    /// # Basic examples
1232    ///
1233    /// ```
1234    /// let k = 21;
1235    ///
1236    /// let x = Some("foo");
1237    /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 3);
1238    ///
1239    /// let x: Option<&str> = None;
1240    /// assert_eq!(x.map_or_else(|| 2 * k, |v| v.len()), 42);
1241    /// ```
1242    ///
1243    /// # Handling a Result-based fallback
1244    ///
1245    /// A somewhat common occurrence when dealing with optional values
1246    /// in combination with [`Result<T, E>`] is the case where one wants to invoke
1247    /// a fallible fallback if the option is not present.  This example
1248    /// parses a command line argument (if present), or the contents of a file to
1249    /// an integer.  However, unlike accessing the command line argument, reading
1250    /// the file is fallible, so it must be wrapped with `Ok`.
1251    ///
1252    /// ```no_run
1253    /// # fn main() -> Result<(), Box<dyn std::error::Error>> {
1254    /// let v: u64 = std::env::args()
1255    ///    .nth(1)
1256    ///    .map_or_else(|| std::fs::read_to_string("/etc/someconfig.conf"), Ok)?
1257    ///    .parse()?;
1258    /// #   Ok(())
1259    /// # }
1260    /// ```
1261    #[inline]
1262    #[stable(feature = "rust1", since = "1.0.0")]
1263    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1264    pub const fn map_or_else<U, D, F>(self, default: D, f: F) -> U
1265    where
1266        D: [const] FnOnce() -> U + [const] Destruct,
1267        F: [const] FnOnce(T) -> U + [const] Destruct,
1268    {
1269        match self {
1270            Some(t) => f(t),
1271            None => default(),
1272        }
1273    }
1274
1275    /// Maps an `Option<T>` to a `U` by applying function `f` to the contained
1276    /// value if the option is [`Some`], otherwise if [`None`], returns the
1277    /// [default value] for the type `U`.
1278    ///
1279    /// # Examples
1280    ///
1281    /// ```
1282    /// #![feature(result_option_map_or_default)]
1283    ///
1284    /// let x: Option<&str> = Some("hi");
1285    /// let y: Option<&str> = None;
1286    ///
1287    /// assert_eq!(x.map_or_default(|x| x.len()), 2);
1288    /// assert_eq!(y.map_or_default(|y| y.len()), 0);
1289    /// ```
1290    ///
1291    /// [default value]: Default::default
1292    #[inline]
1293    #[unstable(feature = "result_option_map_or_default", issue = "138099")]
1294    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1295    pub const fn map_or_default<U, F>(self, f: F) -> U
1296    where
1297        U: [const] Default,
1298        F: [const] FnOnce(T) -> U + [const] Destruct,
1299    {
1300        match self {
1301            Some(t) => f(t),
1302            None => U::default(),
1303        }
1304    }
1305
1306    /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1307    /// [`Ok(v)`] and [`None`] to [`Err(err)`].
1308    ///
1309    /// Arguments passed to `ok_or` are eagerly evaluated; if you are passing the
1310    /// result of a function call, it is recommended to use [`ok_or_else`], which is
1311    /// lazily evaluated.
1312    ///
1313    /// [`Ok(v)`]: Ok
1314    /// [`Err(err)`]: Err
1315    /// [`Some(v)`]: Some
1316    /// [`ok_or_else`]: Option::ok_or_else
1317    ///
1318    /// # Examples
1319    ///
1320    /// ```
1321    /// let x = Some("foo");
1322    /// assert_eq!(x.ok_or(0), Ok("foo"));
1323    ///
1324    /// let x: Option<&str> = None;
1325    /// assert_eq!(x.ok_or(0), Err(0));
1326    /// ```
1327    #[inline]
1328    #[stable(feature = "rust1", since = "1.0.0")]
1329    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1330    pub const fn ok_or<E: [const] Destruct>(self, err: E) -> Result<T, E> {
1331        match self {
1332            Some(v) => Ok(v),
1333            None => Err(err),
1334        }
1335    }
1336
1337    /// Transforms the `Option<T>` into a [`Result<T, E>`], mapping [`Some(v)`] to
1338    /// [`Ok(v)`] and [`None`] to [`Err(err())`].
1339    ///
1340    /// [`Ok(v)`]: Ok
1341    /// [`Err(err())`]: Err
1342    /// [`Some(v)`]: Some
1343    ///
1344    /// # Examples
1345    ///
1346    /// ```
1347    /// let x = Some("foo");
1348    /// assert_eq!(x.ok_or_else(|| 0), Ok("foo"));
1349    ///
1350    /// let x: Option<&str> = None;
1351    /// assert_eq!(x.ok_or_else(|| 0), Err(0));
1352    /// ```
1353    #[inline]
1354    #[stable(feature = "rust1", since = "1.0.0")]
1355    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1356    pub const fn ok_or_else<E, F>(self, err: F) -> Result<T, E>
1357    where
1358        F: [const] FnOnce() -> E + [const] Destruct,
1359    {
1360        match self {
1361            Some(v) => Ok(v),
1362            None => Err(err()),
1363        }
1364    }
1365
1366    /// Converts from `Option<T>` (or `&Option<T>`) to `Option<&T::Target>`.
1367    ///
1368    /// Leaves the original Option in-place, creating a new one with a reference
1369    /// to the original one, additionally coercing the contents via [`Deref`].
1370    ///
1371    /// # Examples
1372    ///
1373    /// ```
1374    /// let x: Option<String> = Some("hey".to_owned());
1375    /// assert_eq!(x.as_deref(), Some("hey"));
1376    ///
1377    /// let x: Option<String> = None;
1378    /// assert_eq!(x.as_deref(), None);
1379    /// ```
1380    #[inline]
1381    #[stable(feature = "option_deref", since = "1.40.0")]
1382    pub fn as_deref(&self) -> Option<&T::Target>
1383    where
1384        T: Deref,
1385    {
1386        self.as_ref().map(|t| t.deref())
1387    }
1388
1389    /// Converts from `Option<T>` (or `&mut Option<T>`) to `Option<&mut T::Target>`.
1390    ///
1391    /// Leaves the original `Option` in-place, creating a new one containing a mutable reference to
1392    /// the inner type's [`Deref::Target`] type.
1393    ///
1394    /// # Examples
1395    ///
1396    /// ```
1397    /// let mut x: Option<String> = Some("hey".to_owned());
1398    /// assert_eq!(x.as_deref_mut().map(|x| {
1399    ///     x.make_ascii_uppercase();
1400    ///     x
1401    /// }), Some("HEY".to_owned().as_mut_str()));
1402    /// ```
1403    #[inline]
1404    #[stable(feature = "option_deref", since = "1.40.0")]
1405    pub fn as_deref_mut(&mut self) -> Option<&mut T::Target>
1406    where
1407        T: DerefMut,
1408    {
1409        self.as_mut().map(|t| t.deref_mut())
1410    }
1411
1412    /////////////////////////////////////////////////////////////////////////
1413    // Iterator constructors
1414    /////////////////////////////////////////////////////////////////////////
1415
1416    /// Returns an iterator over the possibly contained value.
1417    ///
1418    /// # Examples
1419    ///
1420    /// ```
1421    /// let x = Some(4);
1422    /// assert_eq!(x.iter().next(), Some(&4));
1423    ///
1424    /// let x: Option<u32> = None;
1425    /// assert_eq!(x.iter().next(), None);
1426    /// ```
1427    #[inline]
1428    #[stable(feature = "rust1", since = "1.0.0")]
1429    pub fn iter(&self) -> Iter<'_, T> {
1430        Iter { inner: Item { opt: self.as_ref() } }
1431    }
1432
1433    /// Returns a mutable iterator over the possibly contained value.
1434    ///
1435    /// # Examples
1436    ///
1437    /// ```
1438    /// let mut x = Some(4);
1439    /// match x.iter_mut().next() {
1440    ///     Some(v) => *v = 42,
1441    ///     None => {},
1442    /// }
1443    /// assert_eq!(x, Some(42));
1444    ///
1445    /// let mut x: Option<u32> = None;
1446    /// assert_eq!(x.iter_mut().next(), None);
1447    /// ```
1448    #[inline]
1449    #[stable(feature = "rust1", since = "1.0.0")]
1450    pub fn iter_mut(&mut self) -> IterMut<'_, T> {
1451        IterMut { inner: Item { opt: self.as_mut() } }
1452    }
1453
1454    /////////////////////////////////////////////////////////////////////////
1455    // Boolean operations on the values, eager and lazy
1456    /////////////////////////////////////////////////////////////////////////
1457
1458    /// Returns [`None`] if the option is [`None`], otherwise returns `optb`.
1459    ///
1460    /// Arguments passed to `and` are eagerly evaluated; if you are passing the
1461    /// result of a function call, it is recommended to use [`and_then`], which is
1462    /// lazily evaluated.
1463    ///
1464    /// [`and_then`]: Option::and_then
1465    ///
1466    /// # Examples
1467    ///
1468    /// ```
1469    /// let x = Some(2);
1470    /// let y: Option<&str> = None;
1471    /// assert_eq!(x.and(y), None);
1472    ///
1473    /// let x: Option<u32> = None;
1474    /// let y = Some("foo");
1475    /// assert_eq!(x.and(y), None);
1476    ///
1477    /// let x = Some(2);
1478    /// let y = Some("foo");
1479    /// assert_eq!(x.and(y), Some("foo"));
1480    ///
1481    /// let x: Option<u32> = None;
1482    /// let y: Option<&str> = None;
1483    /// assert_eq!(x.and(y), None);
1484    /// ```
1485    #[inline]
1486    #[stable(feature = "rust1", since = "1.0.0")]
1487    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1488    pub const fn and<U>(self, optb: Option<U>) -> Option<U>
1489    where
1490        T: [const] Destruct,
1491        U: [const] Destruct,
1492    {
1493        match self {
1494            Some(_) => optb,
1495            None => None,
1496        }
1497    }
1498
1499    /// Returns [`None`] if the option is [`None`], otherwise calls `f` with the
1500    /// wrapped value and returns the result.
1501    ///
1502    /// Some languages call this operation flatmap.
1503    ///
1504    /// # Examples
1505    ///
1506    /// ```
1507    /// fn sq_then_to_string(x: u32) -> Option<String> {
1508    ///     x.checked_mul(x).map(|sq| sq.to_string())
1509    /// }
1510    ///
1511    /// assert_eq!(Some(2).and_then(sq_then_to_string), Some(4.to_string()));
1512    /// assert_eq!(Some(1_000_000).and_then(sq_then_to_string), None); // overflowed!
1513    /// assert_eq!(None.and_then(sq_then_to_string), None);
1514    /// ```
1515    ///
1516    /// Often used to chain fallible operations that may return [`None`].
1517    ///
1518    /// ```
1519    /// let arr_2d = [["A0", "A1"], ["B0", "B1"]];
1520    ///
1521    /// let item_0_1 = arr_2d.get(0).and_then(|row| row.get(1));
1522    /// assert_eq!(item_0_1, Some(&"A1"));
1523    ///
1524    /// let item_2_0 = arr_2d.get(2).and_then(|row| row.get(0));
1525    /// assert_eq!(item_2_0, None);
1526    /// ```
1527    #[doc(alias = "flatmap")]
1528    #[inline]
1529    #[stable(feature = "rust1", since = "1.0.0")]
1530    #[rustc_confusables("flat_map", "flatmap")]
1531    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1532    pub const fn and_then<U, F>(self, f: F) -> Option<U>
1533    where
1534        F: [const] FnOnce(T) -> Option<U> + [const] Destruct,
1535    {
1536        match self {
1537            Some(x) => f(x),
1538            None => None,
1539        }
1540    }
1541
1542    /// Returns [`None`] if the option is [`None`], otherwise calls `predicate`
1543    /// with the wrapped value and returns:
1544    ///
1545    /// - [`Some(t)`] if `predicate` returns `true` (where `t` is the wrapped
1546    ///   value), and
1547    /// - [`None`] if `predicate` returns `false`.
1548    ///
1549    /// This function works similar to [`Iterator::filter()`]. You can imagine
1550    /// the `Option<T>` being an iterator over one or zero elements. `filter()`
1551    /// lets you decide which elements to keep.
1552    ///
1553    /// # Examples
1554    ///
1555    /// ```rust
1556    /// fn is_even(n: &i32) -> bool {
1557    ///     n % 2 == 0
1558    /// }
1559    ///
1560    /// assert_eq!(None.filter(is_even), None);
1561    /// assert_eq!(Some(3).filter(is_even), None);
1562    /// assert_eq!(Some(4).filter(is_even), Some(4));
1563    /// ```
1564    ///
1565    /// [`Some(t)`]: Some
1566    #[inline]
1567    #[stable(feature = "option_filter", since = "1.27.0")]
1568    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1569    pub const fn filter<P>(self, predicate: P) -> Self
1570    where
1571        P: [const] FnOnce(&T) -> bool + [const] Destruct,
1572        T: [const] Destruct,
1573    {
1574        if let Some(x) = self {
1575            if predicate(&x) {
1576                return Some(x);
1577            }
1578        }
1579        None
1580    }
1581
1582    /// Returns the option if it contains a value, otherwise returns `optb`.
1583    ///
1584    /// Arguments passed to `or` are eagerly evaluated; if you are passing the
1585    /// result of a function call, it is recommended to use [`or_else`], which is
1586    /// lazily evaluated.
1587    ///
1588    /// [`or_else`]: Option::or_else
1589    ///
1590    /// # Examples
1591    ///
1592    /// ```
1593    /// let x = Some(2);
1594    /// let y = None;
1595    /// assert_eq!(x.or(y), Some(2));
1596    ///
1597    /// let x = None;
1598    /// let y = Some(100);
1599    /// assert_eq!(x.or(y), Some(100));
1600    ///
1601    /// let x = Some(2);
1602    /// let y = Some(100);
1603    /// assert_eq!(x.or(y), Some(2));
1604    ///
1605    /// let x: Option<u32> = None;
1606    /// let y = None;
1607    /// assert_eq!(x.or(y), None);
1608    /// ```
1609    #[inline]
1610    #[stable(feature = "rust1", since = "1.0.0")]
1611    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1612    pub const fn or(self, optb: Option<T>) -> Option<T>
1613    where
1614        T: [const] Destruct,
1615    {
1616        match self {
1617            x @ Some(_) => x,
1618            None => optb,
1619        }
1620    }
1621
1622    /// Returns the option if it contains a value, otherwise calls `f` and
1623    /// returns the result.
1624    ///
1625    /// # Examples
1626    ///
1627    /// ```
1628    /// fn nobody() -> Option<&'static str> { None }
1629    /// fn vikings() -> Option<&'static str> { Some("vikings") }
1630    ///
1631    /// assert_eq!(Some("barbarians").or_else(vikings), Some("barbarians"));
1632    /// assert_eq!(None.or_else(vikings), Some("vikings"));
1633    /// assert_eq!(None.or_else(nobody), None);
1634    /// ```
1635    #[inline]
1636    #[stable(feature = "rust1", since = "1.0.0")]
1637    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1638    pub const fn or_else<F>(self, f: F) -> Option<T>
1639    where
1640        F: [const] FnOnce() -> Option<T> + [const] Destruct,
1641        //FIXME(const_hack): this `T: ~const Destruct` is unnecessary, but even precise live drops can't tell
1642        // no value of type `T` gets dropped here
1643        T: [const] Destruct,
1644    {
1645        match self {
1646            x @ Some(_) => x,
1647            None => f(),
1648        }
1649    }
1650
1651    /// Returns [`Some`] if exactly one of `self`, `optb` is [`Some`], otherwise returns [`None`].
1652    ///
1653    /// # Examples
1654    ///
1655    /// ```
1656    /// let x = Some(2);
1657    /// let y: Option<u32> = None;
1658    /// assert_eq!(x.xor(y), Some(2));
1659    ///
1660    /// let x: Option<u32> = None;
1661    /// let y = Some(2);
1662    /// assert_eq!(x.xor(y), Some(2));
1663    ///
1664    /// let x = Some(2);
1665    /// let y = Some(2);
1666    /// assert_eq!(x.xor(y), None);
1667    ///
1668    /// let x: Option<u32> = None;
1669    /// let y: Option<u32> = None;
1670    /// assert_eq!(x.xor(y), None);
1671    /// ```
1672    #[inline]
1673    #[stable(feature = "option_xor", since = "1.37.0")]
1674    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1675    pub const fn xor(self, optb: Option<T>) -> Option<T>
1676    where
1677        T: [const] Destruct,
1678    {
1679        match (self, optb) {
1680            (a @ Some(_), None) => a,
1681            (None, b @ Some(_)) => b,
1682            _ => None,
1683        }
1684    }
1685
1686    /////////////////////////////////////////////////////////////////////////
1687    // Entry-like operations to insert a value and return a reference
1688    /////////////////////////////////////////////////////////////////////////
1689
1690    /// Inserts `value` into the option, then returns a mutable reference to it.
1691    ///
1692    /// If the option already contains a value, the old value is dropped.
1693    ///
1694    /// See also [`Option::get_or_insert`], which doesn't update the value if
1695    /// the option already contains [`Some`].
1696    ///
1697    /// # Example
1698    ///
1699    /// ```
1700    /// let mut opt = None;
1701    /// let val = opt.insert(1);
1702    /// assert_eq!(*val, 1);
1703    /// assert_eq!(opt.unwrap(), 1);
1704    /// let val = opt.insert(2);
1705    /// assert_eq!(*val, 2);
1706    /// *val = 3;
1707    /// assert_eq!(opt.unwrap(), 3);
1708    /// ```
1709    #[must_use = "if you intended to set a value, consider assignment instead"]
1710    #[inline]
1711    #[stable(feature = "option_insert", since = "1.53.0")]
1712    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1713    pub const fn insert(&mut self, value: T) -> &mut T
1714    where
1715        T: [const] Destruct,
1716    {
1717        *self = Some(value);
1718
1719        // SAFETY: the code above just filled the option
1720        unsafe { self.as_mut().unwrap_unchecked() }
1721    }
1722
1723    /// Inserts `value` into the option if it is [`None`], then
1724    /// returns a mutable reference to the contained value.
1725    ///
1726    /// See also [`Option::insert`], which updates the value even if
1727    /// the option already contains [`Some`].
1728    ///
1729    /// # Examples
1730    ///
1731    /// ```
1732    /// let mut x = None;
1733    ///
1734    /// {
1735    ///     let y: &mut u32 = x.get_or_insert(5);
1736    ///     assert_eq!(y, &5);
1737    ///
1738    ///     *y = 7;
1739    /// }
1740    ///
1741    /// assert_eq!(x, Some(7));
1742    /// ```
1743    #[inline]
1744    #[stable(feature = "option_entry", since = "1.20.0")]
1745    pub fn get_or_insert(&mut self, value: T) -> &mut T {
1746        self.get_or_insert_with(|| value)
1747    }
1748
1749    /// Inserts the default value into the option if it is [`None`], then
1750    /// returns a mutable reference to the contained value.
1751    ///
1752    /// # Examples
1753    ///
1754    /// ```
1755    /// let mut x = None;
1756    ///
1757    /// {
1758    ///     let y: &mut u32 = x.get_or_insert_default();
1759    ///     assert_eq!(y, &0);
1760    ///
1761    ///     *y = 7;
1762    /// }
1763    ///
1764    /// assert_eq!(x, Some(7));
1765    /// ```
1766    #[inline]
1767    #[stable(feature = "option_get_or_insert_default", since = "1.83.0")]
1768    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1769    pub const fn get_or_insert_default(&mut self) -> &mut T
1770    where
1771        T: [const] Default + [const] Destruct,
1772    {
1773        self.get_or_insert_with(T::default)
1774    }
1775
1776    /// Inserts a value computed from `f` into the option if it is [`None`],
1777    /// then returns a mutable reference to the contained value.
1778    ///
1779    /// # Examples
1780    ///
1781    /// ```
1782    /// let mut x = None;
1783    ///
1784    /// {
1785    ///     let y: &mut u32 = x.get_or_insert_with(|| 5);
1786    ///     assert_eq!(y, &5);
1787    ///
1788    ///     *y = 7;
1789    /// }
1790    ///
1791    /// assert_eq!(x, Some(7));
1792    /// ```
1793    #[inline]
1794    #[stable(feature = "option_entry", since = "1.20.0")]
1795    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1796    pub const fn get_or_insert_with<F>(&mut self, f: F) -> &mut T
1797    where
1798        F: [const] FnOnce() -> T + [const] Destruct,
1799        T: [const] Destruct,
1800    {
1801        if let None = self {
1802            *self = Some(f());
1803        }
1804
1805        // SAFETY: a `None` variant for `self` would have been replaced by a `Some`
1806        // variant in the code above.
1807        unsafe { self.as_mut().unwrap_unchecked() }
1808    }
1809
1810    /////////////////////////////////////////////////////////////////////////
1811    // Misc
1812    /////////////////////////////////////////////////////////////////////////
1813
1814    /// Takes the value out of the option, leaving a [`None`] in its place.
1815    ///
1816    /// # Examples
1817    ///
1818    /// ```
1819    /// let mut x = Some(2);
1820    /// let y = x.take();
1821    /// assert_eq!(x, None);
1822    /// assert_eq!(y, Some(2));
1823    ///
1824    /// let mut x: Option<u32> = None;
1825    /// let y = x.take();
1826    /// assert_eq!(x, None);
1827    /// assert_eq!(y, None);
1828    /// ```
1829    #[inline]
1830    #[stable(feature = "rust1", since = "1.0.0")]
1831    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1832    pub const fn take(&mut self) -> Option<T> {
1833        // FIXME(const-hack) replace `mem::replace` by `mem::take` when the latter is const ready
1834        mem::replace(self, None)
1835    }
1836
1837    /// Takes the value out of the option, but only if the predicate evaluates to
1838    /// `true` on a mutable reference to the value.
1839    ///
1840    /// In other words, replaces `self` with `None` if the predicate returns `true`.
1841    /// This method operates similar to [`Option::take`] but conditional.
1842    ///
1843    /// # Examples
1844    ///
1845    /// ```
1846    /// let mut x = Some(42);
1847    ///
1848    /// let prev = x.take_if(|v| if *v == 42 {
1849    ///     *v += 1;
1850    ///     false
1851    /// } else {
1852    ///     false
1853    /// });
1854    /// assert_eq!(x, Some(43));
1855    /// assert_eq!(prev, None);
1856    ///
1857    /// let prev = x.take_if(|v| *v == 43);
1858    /// assert_eq!(x, None);
1859    /// assert_eq!(prev, Some(43));
1860    /// ```
1861    #[inline]
1862    #[stable(feature = "option_take_if", since = "1.80.0")]
1863    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1864    pub const fn take_if<P>(&mut self, predicate: P) -> Option<T>
1865    where
1866        P: [const] FnOnce(&mut T) -> bool + [const] Destruct,
1867    {
1868        if self.as_mut().map_or(false, predicate) { self.take() } else { None }
1869    }
1870
1871    /// Replaces the actual value in the option by the value given in parameter,
1872    /// returning the old value if present,
1873    /// leaving a [`Some`] in its place without deinitializing either one.
1874    ///
1875    /// # Examples
1876    ///
1877    /// ```
1878    /// let mut x = Some(2);
1879    /// let old = x.replace(5);
1880    /// assert_eq!(x, Some(5));
1881    /// assert_eq!(old, Some(2));
1882    ///
1883    /// let mut x = None;
1884    /// let old = x.replace(3);
1885    /// assert_eq!(x, Some(3));
1886    /// assert_eq!(old, None);
1887    /// ```
1888    #[inline]
1889    #[stable(feature = "option_replace", since = "1.31.0")]
1890    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
1891    pub const fn replace(&mut self, value: T) -> Option<T> {
1892        mem::replace(self, Some(value))
1893    }
1894
1895    /// Zips `self` with another `Option`.
1896    ///
1897    /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some((s, o))`.
1898    /// Otherwise, `None` is returned.
1899    ///
1900    /// # Examples
1901    ///
1902    /// ```
1903    /// let x = Some(1);
1904    /// let y = Some("hi");
1905    /// let z = None::<u8>;
1906    ///
1907    /// assert_eq!(x.zip(y), Some((1, "hi")));
1908    /// assert_eq!(x.zip(z), None);
1909    /// ```
1910    #[stable(feature = "option_zip_option", since = "1.46.0")]
1911    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1912    pub const fn zip<U>(self, other: Option<U>) -> Option<(T, U)>
1913    where
1914        T: [const] Destruct,
1915        U: [const] Destruct,
1916    {
1917        match (self, other) {
1918            (Some(a), Some(b)) => Some((a, b)),
1919            _ => None,
1920        }
1921    }
1922
1923    /// Zips `self` and another `Option` with function `f`.
1924    ///
1925    /// If `self` is `Some(s)` and `other` is `Some(o)`, this method returns `Some(f(s, o))`.
1926    /// Otherwise, `None` is returned.
1927    ///
1928    /// # Examples
1929    ///
1930    /// ```
1931    /// #![feature(option_zip)]
1932    ///
1933    /// #[derive(Debug, PartialEq)]
1934    /// struct Point {
1935    ///     x: f64,
1936    ///     y: f64,
1937    /// }
1938    ///
1939    /// impl Point {
1940    ///     fn new(x: f64, y: f64) -> Self {
1941    ///         Self { x, y }
1942    ///     }
1943    /// }
1944    ///
1945    /// let x = Some(17.5);
1946    /// let y = Some(42.7);
1947    ///
1948    /// assert_eq!(x.zip_with(y, Point::new), Some(Point { x: 17.5, y: 42.7 }));
1949    /// assert_eq!(x.zip_with(None, Point::new), None);
1950    /// ```
1951    #[unstable(feature = "option_zip", issue = "70086")]
1952    #[rustc_const_unstable(feature = "const_option_ops", issue = "143956")]
1953    pub const fn zip_with<U, F, R>(self, other: Option<U>, f: F) -> Option<R>
1954    where
1955        F: [const] FnOnce(T, U) -> R + [const] Destruct,
1956        T: [const] Destruct,
1957        U: [const] Destruct,
1958    {
1959        match (self, other) {
1960            (Some(a), Some(b)) => Some(f(a, b)),
1961            _ => None,
1962        }
1963    }
1964}
1965
1966impl<T, U> Option<(T, U)> {
1967    /// Unzips an option containing a tuple of two options.
1968    ///
1969    /// If `self` is `Some((a, b))` this method returns `(Some(a), Some(b))`.
1970    /// Otherwise, `(None, None)` is returned.
1971    ///
1972    /// # Examples
1973    ///
1974    /// ```
1975    /// let x = Some((1, "hi"));
1976    /// let y = None::<(u8, u32)>;
1977    ///
1978    /// assert_eq!(x.unzip(), (Some(1), Some("hi")));
1979    /// assert_eq!(y.unzip(), (None, None));
1980    /// ```
1981    #[inline]
1982    #[stable(feature = "unzip_option", since = "1.66.0")]
1983    pub fn unzip(self) -> (Option<T>, Option<U>) {
1984        match self {
1985            Some((a, b)) => (Some(a), Some(b)),
1986            None => (None, None),
1987        }
1988    }
1989}
1990
1991impl<T> Option<&T> {
1992    /// Maps an `Option<&T>` to an `Option<T>` by copying the contents of the
1993    /// option.
1994    ///
1995    /// # Examples
1996    ///
1997    /// ```
1998    /// let x = 12;
1999    /// let opt_x = Some(&x);
2000    /// assert_eq!(opt_x, Some(&12));
2001    /// let copied = opt_x.copied();
2002    /// assert_eq!(copied, Some(12));
2003    /// ```
2004    #[must_use = "`self` will be dropped if the result is not used"]
2005    #[stable(feature = "copied", since = "1.35.0")]
2006    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2007    pub const fn copied(self) -> Option<T>
2008    where
2009        T: Copy,
2010    {
2011        // FIXME(const-hack): this implementation, which sidesteps using `Option::map` since it's not const
2012        // ready yet, should be reverted when possible to avoid code repetition
2013        match self {
2014            Some(&v) => Some(v),
2015            None => None,
2016        }
2017    }
2018
2019    /// Maps an `Option<&T>` to an `Option<T>` by cloning the contents of the
2020    /// option.
2021    ///
2022    /// # Examples
2023    ///
2024    /// ```
2025    /// let x = 12;
2026    /// let opt_x = Some(&x);
2027    /// assert_eq!(opt_x, Some(&12));
2028    /// let cloned = opt_x.cloned();
2029    /// assert_eq!(cloned, Some(12));
2030    /// ```
2031    #[must_use = "`self` will be dropped if the result is not used"]
2032    #[stable(feature = "rust1", since = "1.0.0")]
2033    pub fn cloned(self) -> Option<T>
2034    where
2035        T: Clone,
2036    {
2037        match self {
2038            Some(t) => Some(t.clone()),
2039            None => None,
2040        }
2041    }
2042}
2043
2044impl<T> Option<&mut T> {
2045    /// Maps an `Option<&mut T>` to an `Option<T>` by copying the contents of the
2046    /// option.
2047    ///
2048    /// # Examples
2049    ///
2050    /// ```
2051    /// let mut x = 12;
2052    /// let opt_x = Some(&mut x);
2053    /// assert_eq!(opt_x, Some(&mut 12));
2054    /// let copied = opt_x.copied();
2055    /// assert_eq!(copied, Some(12));
2056    /// ```
2057    #[must_use = "`self` will be dropped if the result is not used"]
2058    #[stable(feature = "copied", since = "1.35.0")]
2059    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2060    pub const fn copied(self) -> Option<T>
2061    where
2062        T: Copy,
2063    {
2064        match self {
2065            Some(&mut t) => Some(t),
2066            None => None,
2067        }
2068    }
2069
2070    /// Maps an `Option<&mut T>` to an `Option<T>` by cloning the contents of the
2071    /// option.
2072    ///
2073    /// # Examples
2074    ///
2075    /// ```
2076    /// let mut x = 12;
2077    /// let opt_x = Some(&mut x);
2078    /// assert_eq!(opt_x, Some(&mut 12));
2079    /// let cloned = opt_x.cloned();
2080    /// assert_eq!(cloned, Some(12));
2081    /// ```
2082    #[must_use = "`self` will be dropped if the result is not used"]
2083    #[stable(since = "1.26.0", feature = "option_ref_mut_cloned")]
2084    pub fn cloned(self) -> Option<T>
2085    where
2086        T: Clone,
2087    {
2088        match self {
2089            Some(t) => Some(t.clone()),
2090            None => None,
2091        }
2092    }
2093}
2094
2095impl<T, E> Option<Result<T, E>> {
2096    /// Transposes an `Option` of a [`Result`] into a [`Result`] of an `Option`.
2097    ///
2098    /// [`None`] will be mapped to <code>[Ok]\([None])</code>.
2099    /// <code>[Some]\([Ok]\(\_))</code> and <code>[Some]\([Err]\(\_))</code> will be mapped to
2100    /// <code>[Ok]\([Some]\(\_))</code> and <code>[Err]\(\_)</code>.
2101    ///
2102    /// # Examples
2103    ///
2104    /// ```
2105    /// #[derive(Debug, Eq, PartialEq)]
2106    /// struct SomeErr;
2107    ///
2108    /// let x: Result<Option<i32>, SomeErr> = Ok(Some(5));
2109    /// let y: Option<Result<i32, SomeErr>> = Some(Ok(5));
2110    /// assert_eq!(x, y.transpose());
2111    /// ```
2112    #[inline]
2113    #[stable(feature = "transpose_result", since = "1.33.0")]
2114    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2115    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2116    pub const fn transpose(self) -> Result<Option<T>, E> {
2117        match self {
2118            Some(Ok(x)) => Ok(Some(x)),
2119            Some(Err(e)) => Err(e),
2120            None => Ok(None),
2121        }
2122    }
2123}
2124
2125#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
2126#[cfg_attr(feature = "panic_immediate_abort", inline)]
2127#[cold]
2128#[track_caller]
2129const fn unwrap_failed() -> ! {
2130    panic("called `Option::unwrap()` on a `None` value")
2131}
2132
2133// This is a separate function to reduce the code size of .expect() itself.
2134#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
2135#[cfg_attr(feature = "panic_immediate_abort", inline)]
2136#[cold]
2137#[track_caller]
2138const fn expect_failed(msg: &str) -> ! {
2139    panic_display(&msg)
2140}
2141
2142/////////////////////////////////////////////////////////////////////////////
2143// Trait implementations
2144/////////////////////////////////////////////////////////////////////////////
2145
2146#[stable(feature = "rust1", since = "1.0.0")]
2147#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2148impl<T> const Clone for Option<T>
2149where
2150    // FIXME(const_hack): the T: ~const Destruct should be inferred from the Self: ~const Destruct in clone_from.
2151    // See https://github.com/rust-lang/rust/issues/144207
2152    T: [const] Clone + [const] Destruct,
2153{
2154    #[inline]
2155    fn clone(&self) -> Self {
2156        match self {
2157            Some(x) => Some(x.clone()),
2158            None => None,
2159        }
2160    }
2161
2162    #[inline]
2163    fn clone_from(&mut self, source: &Self) {
2164        match (self, source) {
2165            (Some(to), Some(from)) => to.clone_from(from),
2166            (to, from) => *to = from.clone(),
2167        }
2168    }
2169}
2170
2171#[unstable(feature = "ergonomic_clones", issue = "132290")]
2172impl<T> crate::clone::UseCloned for Option<T> where T: crate::clone::UseCloned {}
2173
2174#[stable(feature = "rust1", since = "1.0.0")]
2175#[rustc_const_unstable(feature = "const_default", issue = "143894")]
2176impl<T> const Default for Option<T> {
2177    /// Returns [`None`][Option::None].
2178    ///
2179    /// # Examples
2180    ///
2181    /// ```
2182    /// let opt: Option<u32> = Option::default();
2183    /// assert!(opt.is_none());
2184    /// ```
2185    #[inline]
2186    fn default() -> Option<T> {
2187        None
2188    }
2189}
2190
2191#[stable(feature = "rust1", since = "1.0.0")]
2192impl<T> IntoIterator for Option<T> {
2193    type Item = T;
2194    type IntoIter = IntoIter<T>;
2195
2196    /// Returns a consuming iterator over the possibly contained value.
2197    ///
2198    /// # Examples
2199    ///
2200    /// ```
2201    /// let x = Some("string");
2202    /// let v: Vec<&str> = x.into_iter().collect();
2203    /// assert_eq!(v, ["string"]);
2204    ///
2205    /// let x = None;
2206    /// let v: Vec<&str> = x.into_iter().collect();
2207    /// assert!(v.is_empty());
2208    /// ```
2209    #[inline]
2210    fn into_iter(self) -> IntoIter<T> {
2211        IntoIter { inner: Item { opt: self } }
2212    }
2213}
2214
2215#[stable(since = "1.4.0", feature = "option_iter")]
2216impl<'a, T> IntoIterator for &'a Option<T> {
2217    type Item = &'a T;
2218    type IntoIter = Iter<'a, T>;
2219
2220    fn into_iter(self) -> Iter<'a, T> {
2221        self.iter()
2222    }
2223}
2224
2225#[stable(since = "1.4.0", feature = "option_iter")]
2226impl<'a, T> IntoIterator for &'a mut Option<T> {
2227    type Item = &'a mut T;
2228    type IntoIter = IterMut<'a, T>;
2229
2230    fn into_iter(self) -> IterMut<'a, T> {
2231        self.iter_mut()
2232    }
2233}
2234
2235#[stable(since = "1.12.0", feature = "option_from")]
2236#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2237impl<T> const From<T> for Option<T> {
2238    /// Moves `val` into a new [`Some`].
2239    ///
2240    /// # Examples
2241    ///
2242    /// ```
2243    /// let o: Option<u8> = Option::from(67);
2244    ///
2245    /// assert_eq!(Some(67), o);
2246    /// ```
2247    fn from(val: T) -> Option<T> {
2248        Some(val)
2249    }
2250}
2251
2252#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2253#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2254impl<'a, T> const From<&'a Option<T>> for Option<&'a T> {
2255    /// Converts from `&Option<T>` to `Option<&T>`.
2256    ///
2257    /// # Examples
2258    ///
2259    /// Converts an <code>[Option]<[String]></code> into an <code>[Option]<[usize]></code>, preserving
2260    /// the original. The [`map`] method takes the `self` argument by value, consuming the original,
2261    /// so this technique uses `from` to first take an [`Option`] to a reference
2262    /// to the value inside the original.
2263    ///
2264    /// [`map`]: Option::map
2265    /// [String]: ../../std/string/struct.String.html "String"
2266    ///
2267    /// ```
2268    /// let s: Option<String> = Some(String::from("Hello, Rustaceans!"));
2269    /// let o: Option<usize> = Option::from(&s).map(|ss: &String| ss.len());
2270    ///
2271    /// println!("Can still print s: {s:?}");
2272    ///
2273    /// assert_eq!(o, Some(18));
2274    /// ```
2275    fn from(o: &'a Option<T>) -> Option<&'a T> {
2276        o.as_ref()
2277    }
2278}
2279
2280#[stable(feature = "option_ref_from_ref_option", since = "1.30.0")]
2281#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2282impl<'a, T> const From<&'a mut Option<T>> for Option<&'a mut T> {
2283    /// Converts from `&mut Option<T>` to `Option<&mut T>`
2284    ///
2285    /// # Examples
2286    ///
2287    /// ```
2288    /// let mut s = Some(String::from("Hello"));
2289    /// let o: Option<&mut String> = Option::from(&mut s);
2290    ///
2291    /// match o {
2292    ///     Some(t) => *t = String::from("Hello, Rustaceans!"),
2293    ///     None => (),
2294    /// }
2295    ///
2296    /// assert_eq!(s, Some(String::from("Hello, Rustaceans!")));
2297    /// ```
2298    fn from(o: &'a mut Option<T>) -> Option<&'a mut T> {
2299        o.as_mut()
2300    }
2301}
2302
2303// Ideally, LLVM should be able to optimize our derive code to this.
2304// Once https://github.com/llvm/llvm-project/issues/52622 is fixed, we can
2305// go back to deriving `PartialEq`.
2306#[stable(feature = "rust1", since = "1.0.0")]
2307impl<T> crate::marker::StructuralPartialEq for Option<T> {}
2308#[stable(feature = "rust1", since = "1.0.0")]
2309#[rustc_const_unstable(feature = "const_cmp", issue = "143800")]
2310impl<T: [const] PartialEq> const PartialEq for Option<T> {
2311    #[inline]
2312    fn eq(&self, other: &Self) -> bool {
2313        // Spelling out the cases explicitly optimizes better than
2314        // `_ => false`
2315        match (self, other) {
2316            (Some(l), Some(r)) => *l == *r,
2317            (Some(_), None) => false,
2318            (None, Some(_)) => false,
2319            (None, None) => true,
2320        }
2321    }
2322}
2323
2324// Manually implementing here somewhat improves codegen for
2325// https://github.com/rust-lang/rust/issues/49892, although still
2326// not optimal.
2327#[stable(feature = "rust1", since = "1.0.0")]
2328impl<T: PartialOrd> PartialOrd for Option<T> {
2329    #[inline]
2330    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
2331        match (self, other) {
2332            (Some(l), Some(r)) => l.partial_cmp(r),
2333            (Some(_), None) => Some(cmp::Ordering::Greater),
2334            (None, Some(_)) => Some(cmp::Ordering::Less),
2335            (None, None) => Some(cmp::Ordering::Equal),
2336        }
2337    }
2338}
2339
2340#[stable(feature = "rust1", since = "1.0.0")]
2341impl<T: Ord> Ord for Option<T> {
2342    #[inline]
2343    fn cmp(&self, other: &Self) -> cmp::Ordering {
2344        match (self, other) {
2345            (Some(l), Some(r)) => l.cmp(r),
2346            (Some(_), None) => cmp::Ordering::Greater,
2347            (None, Some(_)) => cmp::Ordering::Less,
2348            (None, None) => cmp::Ordering::Equal,
2349        }
2350    }
2351}
2352
2353/////////////////////////////////////////////////////////////////////////////
2354// The Option Iterators
2355/////////////////////////////////////////////////////////////////////////////
2356
2357#[derive(Clone, Debug)]
2358struct Item<A> {
2359    opt: Option<A>,
2360}
2361
2362impl<A> Iterator for Item<A> {
2363    type Item = A;
2364
2365    #[inline]
2366    fn next(&mut self) -> Option<A> {
2367        self.opt.take()
2368    }
2369
2370    #[inline]
2371    fn size_hint(&self) -> (usize, Option<usize>) {
2372        let len = self.len();
2373        (len, Some(len))
2374    }
2375}
2376
2377impl<A> DoubleEndedIterator for Item<A> {
2378    #[inline]
2379    fn next_back(&mut self) -> Option<A> {
2380        self.opt.take()
2381    }
2382}
2383
2384impl<A> ExactSizeIterator for Item<A> {
2385    #[inline]
2386    fn len(&self) -> usize {
2387        self.opt.len()
2388    }
2389}
2390impl<A> FusedIterator for Item<A> {}
2391unsafe impl<A> TrustedLen for Item<A> {}
2392
2393/// An iterator over a reference to the [`Some`] variant of an [`Option`].
2394///
2395/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2396///
2397/// This `struct` is created by the [`Option::iter`] function.
2398#[stable(feature = "rust1", since = "1.0.0")]
2399#[derive(Debug)]
2400pub struct Iter<'a, A: 'a> {
2401    inner: Item<&'a A>,
2402}
2403
2404#[stable(feature = "rust1", since = "1.0.0")]
2405impl<'a, A> Iterator for Iter<'a, A> {
2406    type Item = &'a A;
2407
2408    #[inline]
2409    fn next(&mut self) -> Option<&'a A> {
2410        self.inner.next()
2411    }
2412    #[inline]
2413    fn size_hint(&self) -> (usize, Option<usize>) {
2414        self.inner.size_hint()
2415    }
2416}
2417
2418#[stable(feature = "rust1", since = "1.0.0")]
2419impl<'a, A> DoubleEndedIterator for Iter<'a, A> {
2420    #[inline]
2421    fn next_back(&mut self) -> Option<&'a A> {
2422        self.inner.next_back()
2423    }
2424}
2425
2426#[stable(feature = "rust1", since = "1.0.0")]
2427impl<A> ExactSizeIterator for Iter<'_, A> {}
2428
2429#[stable(feature = "fused", since = "1.26.0")]
2430impl<A> FusedIterator for Iter<'_, A> {}
2431
2432#[unstable(feature = "trusted_len", issue = "37572")]
2433unsafe impl<A> TrustedLen for Iter<'_, A> {}
2434
2435#[stable(feature = "rust1", since = "1.0.0")]
2436impl<A> Clone for Iter<'_, A> {
2437    #[inline]
2438    fn clone(&self) -> Self {
2439        Iter { inner: self.inner.clone() }
2440    }
2441}
2442
2443/// An iterator over a mutable reference to the [`Some`] variant of an [`Option`].
2444///
2445/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2446///
2447/// This `struct` is created by the [`Option::iter_mut`] function.
2448#[stable(feature = "rust1", since = "1.0.0")]
2449#[derive(Debug)]
2450pub struct IterMut<'a, A: 'a> {
2451    inner: Item<&'a mut A>,
2452}
2453
2454#[stable(feature = "rust1", since = "1.0.0")]
2455impl<'a, A> Iterator for IterMut<'a, A> {
2456    type Item = &'a mut A;
2457
2458    #[inline]
2459    fn next(&mut self) -> Option<&'a mut A> {
2460        self.inner.next()
2461    }
2462    #[inline]
2463    fn size_hint(&self) -> (usize, Option<usize>) {
2464        self.inner.size_hint()
2465    }
2466}
2467
2468#[stable(feature = "rust1", since = "1.0.0")]
2469impl<'a, A> DoubleEndedIterator for IterMut<'a, A> {
2470    #[inline]
2471    fn next_back(&mut self) -> Option<&'a mut A> {
2472        self.inner.next_back()
2473    }
2474}
2475
2476#[stable(feature = "rust1", since = "1.0.0")]
2477impl<A> ExactSizeIterator for IterMut<'_, A> {}
2478
2479#[stable(feature = "fused", since = "1.26.0")]
2480impl<A> FusedIterator for IterMut<'_, A> {}
2481#[unstable(feature = "trusted_len", issue = "37572")]
2482unsafe impl<A> TrustedLen for IterMut<'_, A> {}
2483
2484/// An iterator over the value in [`Some`] variant of an [`Option`].
2485///
2486/// The iterator yields one value if the [`Option`] is a [`Some`], otherwise none.
2487///
2488/// This `struct` is created by the [`Option::into_iter`] function.
2489#[derive(Clone, Debug)]
2490#[stable(feature = "rust1", since = "1.0.0")]
2491pub struct IntoIter<A> {
2492    inner: Item<A>,
2493}
2494
2495#[stable(feature = "rust1", since = "1.0.0")]
2496impl<A> Iterator for IntoIter<A> {
2497    type Item = A;
2498
2499    #[inline]
2500    fn next(&mut self) -> Option<A> {
2501        self.inner.next()
2502    }
2503    #[inline]
2504    fn size_hint(&self) -> (usize, Option<usize>) {
2505        self.inner.size_hint()
2506    }
2507}
2508
2509#[stable(feature = "rust1", since = "1.0.0")]
2510impl<A> DoubleEndedIterator for IntoIter<A> {
2511    #[inline]
2512    fn next_back(&mut self) -> Option<A> {
2513        self.inner.next_back()
2514    }
2515}
2516
2517#[stable(feature = "rust1", since = "1.0.0")]
2518impl<A> ExactSizeIterator for IntoIter<A> {}
2519
2520#[stable(feature = "fused", since = "1.26.0")]
2521impl<A> FusedIterator for IntoIter<A> {}
2522
2523#[unstable(feature = "trusted_len", issue = "37572")]
2524unsafe impl<A> TrustedLen for IntoIter<A> {}
2525
2526/////////////////////////////////////////////////////////////////////////////
2527// FromIterator
2528/////////////////////////////////////////////////////////////////////////////
2529
2530#[stable(feature = "rust1", since = "1.0.0")]
2531impl<A, V: FromIterator<A>> FromIterator<Option<A>> for Option<V> {
2532    /// Takes each element in the [`Iterator`]: if it is [`None`][Option::None],
2533    /// no further elements are taken, and the [`None`][Option::None] is
2534    /// returned. Should no [`None`][Option::None] occur, a container of type
2535    /// `V` containing the values of each [`Option`] is returned.
2536    ///
2537    /// # Examples
2538    ///
2539    /// Here is an example which increments every integer in a vector.
2540    /// We use the checked variant of `add` that returns `None` when the
2541    /// calculation would result in an overflow.
2542    ///
2543    /// ```
2544    /// let items = vec![0_u16, 1, 2];
2545    ///
2546    /// let res: Option<Vec<u16>> = items
2547    ///     .iter()
2548    ///     .map(|x| x.checked_add(1))
2549    ///     .collect();
2550    ///
2551    /// assert_eq!(res, Some(vec![1, 2, 3]));
2552    /// ```
2553    ///
2554    /// As you can see, this will return the expected, valid items.
2555    ///
2556    /// Here is another example that tries to subtract one from another list
2557    /// of integers, this time checking for underflow:
2558    ///
2559    /// ```
2560    /// let items = vec![2_u16, 1, 0];
2561    ///
2562    /// let res: Option<Vec<u16>> = items
2563    ///     .iter()
2564    ///     .map(|x| x.checked_sub(1))
2565    ///     .collect();
2566    ///
2567    /// assert_eq!(res, None);
2568    /// ```
2569    ///
2570    /// Since the last element is zero, it would underflow. Thus, the resulting
2571    /// value is `None`.
2572    ///
2573    /// Here is a variation on the previous example, showing that no
2574    /// further elements are taken from `iter` after the first `None`.
2575    ///
2576    /// ```
2577    /// let items = vec![3_u16, 2, 1, 10];
2578    ///
2579    /// let mut shared = 0;
2580    ///
2581    /// let res: Option<Vec<u16>> = items
2582    ///     .iter()
2583    ///     .map(|x| { shared += x; x.checked_sub(2) })
2584    ///     .collect();
2585    ///
2586    /// assert_eq!(res, None);
2587    /// assert_eq!(shared, 6);
2588    /// ```
2589    ///
2590    /// Since the third element caused an underflow, no further elements were taken,
2591    /// so the final value of `shared` is 6 (= `3 + 2 + 1`), not 16.
2592    #[inline]
2593    fn from_iter<I: IntoIterator<Item = Option<A>>>(iter: I) -> Option<V> {
2594        // FIXME(#11084): This could be replaced with Iterator::scan when this
2595        // performance bug is closed.
2596
2597        iter::try_process(iter.into_iter(), |i| i.collect())
2598    }
2599}
2600
2601#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2602#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2603impl<T> const ops::Try for Option<T> {
2604    type Output = T;
2605    type Residual = Option<convert::Infallible>;
2606
2607    #[inline]
2608    fn from_output(output: Self::Output) -> Self {
2609        Some(output)
2610    }
2611
2612    #[inline]
2613    fn branch(self) -> ControlFlow<Self::Residual, Self::Output> {
2614        match self {
2615            Some(v) => ControlFlow::Continue(v),
2616            None => ControlFlow::Break(None),
2617        }
2618    }
2619}
2620
2621#[unstable(feature = "try_trait_v2", issue = "84277", old_name = "try_trait")]
2622#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2623// Note: manually specifying the residual type instead of using the default to work around
2624// https://github.com/rust-lang/rust/issues/99940
2625impl<T> const ops::FromResidual<Option<convert::Infallible>> for Option<T> {
2626    #[inline]
2627    fn from_residual(residual: Option<convert::Infallible>) -> Self {
2628        match residual {
2629            None => None,
2630        }
2631    }
2632}
2633
2634#[diagnostic::do_not_recommend]
2635#[unstable(feature = "try_trait_v2_yeet", issue = "96374")]
2636#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2637impl<T> const ops::FromResidual<ops::Yeet<()>> for Option<T> {
2638    #[inline]
2639    fn from_residual(ops::Yeet(()): ops::Yeet<()>) -> Self {
2640        None
2641    }
2642}
2643
2644#[unstable(feature = "try_trait_v2_residual", issue = "91285")]
2645#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2646impl<T> const ops::Residual<T> for Option<convert::Infallible> {
2647    type TryType = Option<T>;
2648}
2649
2650impl<T> Option<Option<T>> {
2651    /// Converts from `Option<Option<T>>` to `Option<T>`.
2652    ///
2653    /// # Examples
2654    ///
2655    /// Basic usage:
2656    ///
2657    /// ```
2658    /// let x: Option<Option<u32>> = Some(Some(6));
2659    /// assert_eq!(Some(6), x.flatten());
2660    ///
2661    /// let x: Option<Option<u32>> = Some(None);
2662    /// assert_eq!(None, x.flatten());
2663    ///
2664    /// let x: Option<Option<u32>> = None;
2665    /// assert_eq!(None, x.flatten());
2666    /// ```
2667    ///
2668    /// Flattening only removes one level of nesting at a time:
2669    ///
2670    /// ```
2671    /// let x: Option<Option<Option<u32>>> = Some(Some(Some(6)));
2672    /// assert_eq!(Some(Some(6)), x.flatten());
2673    /// assert_eq!(Some(6), x.flatten().flatten());
2674    /// ```
2675    #[inline]
2676    #[stable(feature = "option_flattening", since = "1.40.0")]
2677    #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2678    #[rustc_const_stable(feature = "const_option", since = "1.83.0")]
2679    pub const fn flatten(self) -> Option<T> {
2680        // FIXME(const-hack): could be written with `and_then`
2681        match self {
2682            Some(inner) => inner,
2683            None => None,
2684        }
2685    }
2686}
2687
2688impl<T, const N: usize> [Option<T>; N] {
2689    /// Transposes a `[Option<T>; N]` into a `Option<[T; N]>`.
2690    ///
2691    /// # Examples
2692    ///
2693    /// ```
2694    /// #![feature(option_array_transpose)]
2695    /// # use std::option::Option;
2696    ///
2697    /// let data = [Some(0); 1000];
2698    /// let data: Option<[u8; 1000]> = data.transpose();
2699    /// assert_eq!(data, Some([0; 1000]));
2700    ///
2701    /// let data = [Some(0), None];
2702    /// let data: Option<[u8; 2]> = data.transpose();
2703    /// assert_eq!(data, None);
2704    /// ```
2705    #[inline]
2706    #[unstable(feature = "option_array_transpose", issue = "130828")]
2707    pub fn transpose(self) -> Option<[T; N]> {
2708        self.try_map(core::convert::identity)
2709    }
2710}