core/num/
uint_macros.rs

1macro_rules! uint_impl {
2    (
3        Self = $SelfT:ty,
4        ActualT = $ActualT:ident,
5        SignedT = $SignedT:ident,
6
7        // These are all for use *only* in doc comments.
8        // As such, they're all passed as literals -- passing them as a string
9        // literal is fine if they need to be multiple code tokens.
10        // In non-comments, use the associated constants rather than these.
11        BITS = $BITS:literal,
12        BITS_MINUS_ONE = $BITS_MINUS_ONE:literal,
13        MAX = $MaxV:literal,
14        rot = $rot:literal,
15        rot_op = $rot_op:literal,
16        rot_result = $rot_result:literal,
17        swap_op = $swap_op:literal,
18        swapped = $swapped:literal,
19        reversed = $reversed:literal,
20        le_bytes = $le_bytes:literal,
21        be_bytes = $be_bytes:literal,
22        to_xe_bytes_doc = $to_xe_bytes_doc:expr,
23        from_xe_bytes_doc = $from_xe_bytes_doc:expr,
24        bound_condition = $bound_condition:literal,
25    ) => {
26        /// The smallest value that can be represented by this integer type.
27        ///
28        /// # Examples
29        ///
30        /// ```
31        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN, 0);")]
32        /// ```
33        #[stable(feature = "assoc_int_consts", since = "1.43.0")]
34        pub const MIN: Self = 0;
35
36        /// The largest value that can be represented by this integer type
37        #[doc = concat!("(2<sup>", $BITS, "</sup> &minus; 1", $bound_condition, ").")]
38        ///
39        /// # Examples
40        ///
41        /// ```
42        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX, ", stringify!($MaxV), ");")]
43        /// ```
44        #[stable(feature = "assoc_int_consts", since = "1.43.0")]
45        pub const MAX: Self = !0;
46
47        /// The size of this integer type in bits.
48        ///
49        /// # Examples
50        ///
51        /// ```
52        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::BITS, ", stringify!($BITS), ");")]
53        /// ```
54        #[stable(feature = "int_bits_const", since = "1.53.0")]
55        pub const BITS: u32 = Self::MAX.count_ones();
56
57        /// Returns the number of ones in the binary representation of `self`.
58        ///
59        /// # Examples
60        ///
61        /// ```
62        #[doc = concat!("let n = 0b01001100", stringify!($SelfT), ";")]
63        /// assert_eq!(n.count_ones(), 3);
64        ///
65        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
66        #[doc = concat!("assert_eq!(max.count_ones(), ", stringify!($BITS), ");")]
67        ///
68        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
69        /// assert_eq!(zero.count_ones(), 0);
70        /// ```
71        #[stable(feature = "rust1", since = "1.0.0")]
72        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
73        #[doc(alias = "popcount")]
74        #[doc(alias = "popcnt")]
75        #[must_use = "this returns the result of the operation, \
76                      without modifying the original"]
77        #[inline(always)]
78        pub const fn count_ones(self) -> u32 {
79            return intrinsics::ctpop(self);
80        }
81
82        /// Returns the number of zeros in the binary representation of `self`.
83        ///
84        /// # Examples
85        ///
86        /// ```
87        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
88        #[doc = concat!("assert_eq!(zero.count_zeros(), ", stringify!($BITS), ");")]
89        ///
90        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
91        /// assert_eq!(max.count_zeros(), 0);
92        /// ```
93        #[stable(feature = "rust1", since = "1.0.0")]
94        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
95        #[must_use = "this returns the result of the operation, \
96                      without modifying the original"]
97        #[inline(always)]
98        pub const fn count_zeros(self) -> u32 {
99            (!self).count_ones()
100        }
101
102        /// Returns the number of leading zeros in the binary representation of `self`.
103        ///
104        /// Depending on what you're doing with the value, you might also be interested in the
105        /// [`ilog2`] function which returns a consistent number, even if the type widens.
106        ///
107        /// # Examples
108        ///
109        /// ```
110        #[doc = concat!("let n = ", stringify!($SelfT), "::MAX >> 2;")]
111        /// assert_eq!(n.leading_zeros(), 2);
112        ///
113        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
114        #[doc = concat!("assert_eq!(zero.leading_zeros(), ", stringify!($BITS), ");")]
115        ///
116        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
117        /// assert_eq!(max.leading_zeros(), 0);
118        /// ```
119        #[doc = concat!("[`ilog2`]: ", stringify!($SelfT), "::ilog2")]
120        #[stable(feature = "rust1", since = "1.0.0")]
121        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
122        #[must_use = "this returns the result of the operation, \
123                      without modifying the original"]
124        #[inline(always)]
125        pub const fn leading_zeros(self) -> u32 {
126            return intrinsics::ctlz(self as $ActualT);
127        }
128
129        /// Returns the number of trailing zeros in the binary representation
130        /// of `self`.
131        ///
132        /// # Examples
133        ///
134        /// ```
135        #[doc = concat!("let n = 0b0101000", stringify!($SelfT), ";")]
136        /// assert_eq!(n.trailing_zeros(), 3);
137        ///
138        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
139        #[doc = concat!("assert_eq!(zero.trailing_zeros(), ", stringify!($BITS), ");")]
140        ///
141        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
142        #[doc = concat!("assert_eq!(max.trailing_zeros(), 0);")]
143        /// ```
144        #[stable(feature = "rust1", since = "1.0.0")]
145        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
146        #[must_use = "this returns the result of the operation, \
147                      without modifying the original"]
148        #[inline(always)]
149        pub const fn trailing_zeros(self) -> u32 {
150            return intrinsics::cttz(self);
151        }
152
153        /// Returns the number of leading ones in the binary representation of `self`.
154        ///
155        /// # Examples
156        ///
157        /// ```
158        #[doc = concat!("let n = !(", stringify!($SelfT), "::MAX >> 2);")]
159        /// assert_eq!(n.leading_ones(), 2);
160        ///
161        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
162        /// assert_eq!(zero.leading_ones(), 0);
163        ///
164        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
165        #[doc = concat!("assert_eq!(max.leading_ones(), ", stringify!($BITS), ");")]
166        /// ```
167        #[stable(feature = "leading_trailing_ones", since = "1.46.0")]
168        #[rustc_const_stable(feature = "leading_trailing_ones", since = "1.46.0")]
169        #[must_use = "this returns the result of the operation, \
170                      without modifying the original"]
171        #[inline(always)]
172        pub const fn leading_ones(self) -> u32 {
173            (!self).leading_zeros()
174        }
175
176        /// Returns the number of trailing ones in the binary representation
177        /// of `self`.
178        ///
179        /// # Examples
180        ///
181        /// ```
182        #[doc = concat!("let n = 0b1010111", stringify!($SelfT), ";")]
183        /// assert_eq!(n.trailing_ones(), 3);
184        ///
185        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
186        /// assert_eq!(zero.trailing_ones(), 0);
187        ///
188        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
189        #[doc = concat!("assert_eq!(max.trailing_ones(), ", stringify!($BITS), ");")]
190        /// ```
191        #[stable(feature = "leading_trailing_ones", since = "1.46.0")]
192        #[rustc_const_stable(feature = "leading_trailing_ones", since = "1.46.0")]
193        #[must_use = "this returns the result of the operation, \
194                      without modifying the original"]
195        #[inline(always)]
196        pub const fn trailing_ones(self) -> u32 {
197            (!self).trailing_zeros()
198        }
199
200        /// Returns the minimum number of bits required to represent `self`.
201        ///
202        /// This method returns zero if `self` is zero.
203        ///
204        /// # Examples
205        ///
206        /// ```
207        /// #![feature(uint_bit_width)]
208        ///
209        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".bit_width(), 0);")]
210        #[doc = concat!("assert_eq!(0b111_", stringify!($SelfT), ".bit_width(), 3);")]
211        #[doc = concat!("assert_eq!(0b1110_", stringify!($SelfT), ".bit_width(), 4);")]
212        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.bit_width(), ", stringify!($BITS), ");")]
213        /// ```
214        #[unstable(feature = "uint_bit_width", issue = "142326")]
215        #[must_use = "this returns the result of the operation, \
216                      without modifying the original"]
217        #[inline(always)]
218        pub const fn bit_width(self) -> u32 {
219            Self::BITS - self.leading_zeros()
220        }
221
222        /// Returns `self` with only the most significant bit set, or `0` if
223        /// the input is `0`.
224        ///
225        /// # Examples
226        ///
227        /// ```
228        /// #![feature(isolate_most_least_significant_one)]
229        ///
230        #[doc = concat!("let n: ", stringify!($SelfT), " = 0b_01100100;")]
231        ///
232        /// assert_eq!(n.isolate_highest_one(), 0b_01000000);
233        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".isolate_highest_one(), 0);")]
234        /// ```
235        #[unstable(feature = "isolate_most_least_significant_one", issue = "136909")]
236        #[must_use = "this returns the result of the operation, \
237                      without modifying the original"]
238        #[inline(always)]
239        pub const fn isolate_highest_one(self) -> Self {
240            self & (((1 as $SelfT) << (<$SelfT>::BITS - 1)).wrapping_shr(self.leading_zeros()))
241        }
242
243        /// Returns `self` with only the least significant bit set, or `0` if
244        /// the input is `0`.
245        ///
246        /// # Examples
247        ///
248        /// ```
249        /// #![feature(isolate_most_least_significant_one)]
250        ///
251        #[doc = concat!("let n: ", stringify!($SelfT), " = 0b_01100100;")]
252        ///
253        /// assert_eq!(n.isolate_lowest_one(), 0b_00000100);
254        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".isolate_lowest_one(), 0);")]
255        /// ```
256        #[unstable(feature = "isolate_most_least_significant_one", issue = "136909")]
257        #[must_use = "this returns the result of the operation, \
258                      without modifying the original"]
259        #[inline(always)]
260        pub const fn isolate_lowest_one(self) -> Self {
261            self & self.wrapping_neg()
262        }
263
264        /// Returns the bit pattern of `self` reinterpreted as a signed integer of the same size.
265        ///
266        /// This produces the same result as an `as` cast, but ensures that the bit-width remains
267        /// the same.
268        ///
269        /// # Examples
270        ///
271        /// ```
272        #[doc = concat!("let n = ", stringify!($SelfT), "::MAX;")]
273        ///
274        #[doc = concat!("assert_eq!(n.cast_signed(), -1", stringify!($SignedT), ");")]
275        /// ```
276        #[stable(feature = "integer_sign_cast", since = "1.87.0")]
277        #[rustc_const_stable(feature = "integer_sign_cast", since = "1.87.0")]
278        #[must_use = "this returns the result of the operation, \
279                      without modifying the original"]
280        #[inline(always)]
281        pub const fn cast_signed(self) -> $SignedT {
282            self as $SignedT
283        }
284
285        /// Shifts the bits to the left by a specified amount, `n`,
286        /// wrapping the truncated bits to the end of the resulting integer.
287        ///
288        /// Please note this isn't the same operation as the `<<` shifting operator!
289        ///
290        /// # Examples
291        ///
292        /// ```
293        #[doc = concat!("let n = ", $rot_op, stringify!($SelfT), ";")]
294        #[doc = concat!("let m = ", $rot_result, ";")]
295        ///
296        #[doc = concat!("assert_eq!(n.rotate_left(", $rot, "), m);")]
297        /// ```
298        #[stable(feature = "rust1", since = "1.0.0")]
299        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
300        #[must_use = "this returns the result of the operation, \
301                      without modifying the original"]
302        #[inline(always)]
303        pub const fn rotate_left(self, n: u32) -> Self {
304            return intrinsics::rotate_left(self, n);
305        }
306
307        /// Shifts the bits to the right by a specified amount, `n`,
308        /// wrapping the truncated bits to the beginning of the resulting
309        /// integer.
310        ///
311        /// Please note this isn't the same operation as the `>>` shifting operator!
312        ///
313        /// # Examples
314        ///
315        /// ```
316        #[doc = concat!("let n = ", $rot_result, stringify!($SelfT), ";")]
317        #[doc = concat!("let m = ", $rot_op, ";")]
318        ///
319        #[doc = concat!("assert_eq!(n.rotate_right(", $rot, "), m);")]
320        /// ```
321        #[stable(feature = "rust1", since = "1.0.0")]
322        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
323        #[must_use = "this returns the result of the operation, \
324                      without modifying the original"]
325        #[inline(always)]
326        pub const fn rotate_right(self, n: u32) -> Self {
327            return intrinsics::rotate_right(self, n);
328        }
329
330        /// Reverses the byte order of the integer.
331        ///
332        /// # Examples
333        ///
334        /// ```
335        #[doc = concat!("let n = ", $swap_op, stringify!($SelfT), ";")]
336        /// let m = n.swap_bytes();
337        ///
338        #[doc = concat!("assert_eq!(m, ", $swapped, ");")]
339        /// ```
340        #[stable(feature = "rust1", since = "1.0.0")]
341        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
342        #[must_use = "this returns the result of the operation, \
343                      without modifying the original"]
344        #[inline(always)]
345        pub const fn swap_bytes(self) -> Self {
346            intrinsics::bswap(self as $ActualT) as Self
347        }
348
349        /// Reverses the order of bits in the integer. The least significant bit becomes the most significant bit,
350        ///                 second least-significant bit becomes second most-significant bit, etc.
351        ///
352        /// # Examples
353        ///
354        /// ```
355        #[doc = concat!("let n = ", $swap_op, stringify!($SelfT), ";")]
356        /// let m = n.reverse_bits();
357        ///
358        #[doc = concat!("assert_eq!(m, ", $reversed, ");")]
359        #[doc = concat!("assert_eq!(0, 0", stringify!($SelfT), ".reverse_bits());")]
360        /// ```
361        #[stable(feature = "reverse_bits", since = "1.37.0")]
362        #[rustc_const_stable(feature = "reverse_bits", since = "1.37.0")]
363        #[must_use = "this returns the result of the operation, \
364                      without modifying the original"]
365        #[inline(always)]
366        pub const fn reverse_bits(self) -> Self {
367            intrinsics::bitreverse(self as $ActualT) as Self
368        }
369
370        /// Converts an integer from big endian to the target's endianness.
371        ///
372        /// On big endian this is a no-op. On little endian the bytes are
373        /// swapped.
374        ///
375        /// # Examples
376        ///
377        /// ```
378        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
379        ///
380        /// if cfg!(target_endian = "big") {
381        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_be(n), n)")]
382        /// } else {
383        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_be(n), n.swap_bytes())")]
384        /// }
385        /// ```
386        #[stable(feature = "rust1", since = "1.0.0")]
387        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
388        #[must_use]
389        #[inline(always)]
390        pub const fn from_be(x: Self) -> Self {
391            #[cfg(target_endian = "big")]
392            {
393                x
394            }
395            #[cfg(not(target_endian = "big"))]
396            {
397                x.swap_bytes()
398            }
399        }
400
401        /// Converts an integer from little endian to the target's endianness.
402        ///
403        /// On little endian this is a no-op. On big endian the bytes are
404        /// swapped.
405        ///
406        /// # Examples
407        ///
408        /// ```
409        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
410        ///
411        /// if cfg!(target_endian = "little") {
412        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_le(n), n)")]
413        /// } else {
414        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_le(n), n.swap_bytes())")]
415        /// }
416        /// ```
417        #[stable(feature = "rust1", since = "1.0.0")]
418        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
419        #[must_use]
420        #[inline(always)]
421        pub const fn from_le(x: Self) -> Self {
422            #[cfg(target_endian = "little")]
423            {
424                x
425            }
426            #[cfg(not(target_endian = "little"))]
427            {
428                x.swap_bytes()
429            }
430        }
431
432        /// Converts `self` to big endian from the target's endianness.
433        ///
434        /// On big endian this is a no-op. On little endian the bytes are
435        /// swapped.
436        ///
437        /// # Examples
438        ///
439        /// ```
440        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
441        ///
442        /// if cfg!(target_endian = "big") {
443        ///     assert_eq!(n.to_be(), n)
444        /// } else {
445        ///     assert_eq!(n.to_be(), n.swap_bytes())
446        /// }
447        /// ```
448        #[stable(feature = "rust1", since = "1.0.0")]
449        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
450        #[must_use = "this returns the result of the operation, \
451                      without modifying the original"]
452        #[inline(always)]
453        pub const fn to_be(self) -> Self { // or not to be?
454            #[cfg(target_endian = "big")]
455            {
456                self
457            }
458            #[cfg(not(target_endian = "big"))]
459            {
460                self.swap_bytes()
461            }
462        }
463
464        /// Converts `self` to little endian from the target's endianness.
465        ///
466        /// On little endian this is a no-op. On big endian the bytes are
467        /// swapped.
468        ///
469        /// # Examples
470        ///
471        /// ```
472        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
473        ///
474        /// if cfg!(target_endian = "little") {
475        ///     assert_eq!(n.to_le(), n)
476        /// } else {
477        ///     assert_eq!(n.to_le(), n.swap_bytes())
478        /// }
479        /// ```
480        #[stable(feature = "rust1", since = "1.0.0")]
481        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
482        #[must_use = "this returns the result of the operation, \
483                      without modifying the original"]
484        #[inline(always)]
485        pub const fn to_le(self) -> Self {
486            #[cfg(target_endian = "little")]
487            {
488                self
489            }
490            #[cfg(not(target_endian = "little"))]
491            {
492                self.swap_bytes()
493            }
494        }
495
496        /// Checked integer addition. Computes `self + rhs`, returning `None`
497        /// if overflow occurred.
498        ///
499        /// # Examples
500        ///
501        /// ```
502        #[doc = concat!(
503            "assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add(1), ",
504            "Some(", stringify!($SelfT), "::MAX - 1));"
505        )]
506        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add(3), None);")]
507        /// ```
508        #[stable(feature = "rust1", since = "1.0.0")]
509        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
510        #[must_use = "this returns the result of the operation, \
511                      without modifying the original"]
512        #[inline]
513        pub const fn checked_add(self, rhs: Self) -> Option<Self> {
514            // This used to use `overflowing_add`, but that means it ends up being
515            // a `wrapping_add`, losing some optimization opportunities. Notably,
516            // phrasing it this way helps `.checked_add(1)` optimize to a check
517            // against `MAX` and a `add nuw`.
518            // Per <https://github.com/rust-lang/rust/pull/124114#issuecomment-2066173305>,
519            // LLVM is happy to re-form the intrinsic later if useful.
520
521            if intrinsics::unlikely(intrinsics::add_with_overflow(self, rhs).1) {
522                None
523            } else {
524                // SAFETY: Just checked it doesn't overflow
525                Some(unsafe { intrinsics::unchecked_add(self, rhs) })
526            }
527        }
528
529        /// Strict integer addition. Computes `self + rhs`, panicking
530        /// if overflow occurred.
531        ///
532        /// # Panics
533        ///
534        /// ## Overflow behavior
535        ///
536        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
537        ///
538        /// # Examples
539        ///
540        /// ```
541        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).strict_add(1), ", stringify!($SelfT), "::MAX - 1);")]
542        /// ```
543        ///
544        /// The following panics because of overflow:
545        ///
546        /// ```should_panic
547        #[doc = concat!("let _ = (", stringify!($SelfT), "::MAX - 2).strict_add(3);")]
548        /// ```
549        #[stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
550        #[rustc_const_stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
551        #[must_use = "this returns the result of the operation, \
552                      without modifying the original"]
553        #[inline]
554        #[track_caller]
555        pub const fn strict_add(self, rhs: Self) -> Self {
556            let (a, b) = self.overflowing_add(rhs);
557            if b { overflow_panic::add() } else { a }
558        }
559
560        /// Unchecked integer addition. Computes `self + rhs`, assuming overflow
561        /// cannot occur.
562        ///
563        /// Calling `x.unchecked_add(y)` is semantically equivalent to calling
564        /// `x.`[`checked_add`]`(y).`[`unwrap_unchecked`]`()`.
565        ///
566        /// If you're just trying to avoid the panic in debug mode, then **do not**
567        /// use this.  Instead, you're looking for [`wrapping_add`].
568        ///
569        /// # Safety
570        ///
571        /// This results in undefined behavior when
572        #[doc = concat!("`self + rhs > ", stringify!($SelfT), "::MAX` or `self + rhs < ", stringify!($SelfT), "::MIN`,")]
573        /// i.e. when [`checked_add`] would return `None`.
574        ///
575        /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
576        #[doc = concat!("[`checked_add`]: ", stringify!($SelfT), "::checked_add")]
577        #[doc = concat!("[`wrapping_add`]: ", stringify!($SelfT), "::wrapping_add")]
578        #[stable(feature = "unchecked_math", since = "1.79.0")]
579        #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
580        #[must_use = "this returns the result of the operation, \
581                      without modifying the original"]
582        #[inline(always)]
583        #[track_caller]
584        pub const unsafe fn unchecked_add(self, rhs: Self) -> Self {
585            assert_unsafe_precondition!(
586                check_language_ub,
587                concat!(stringify!($SelfT), "::unchecked_add cannot overflow"),
588                (
589                    lhs: $SelfT = self,
590                    rhs: $SelfT = rhs,
591                ) => !lhs.overflowing_add(rhs).1,
592            );
593
594            // SAFETY: this is guaranteed to be safe by the caller.
595            unsafe {
596                intrinsics::unchecked_add(self, rhs)
597            }
598        }
599
600        /// Checked addition with a signed integer. Computes `self + rhs`,
601        /// returning `None` if overflow occurred.
602        ///
603        /// # Examples
604        ///
605        /// ```
606        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_add_signed(2), Some(3));")]
607        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_add_signed(-2), None);")]
608        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add_signed(3), None);")]
609        /// ```
610        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
611        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
612        #[must_use = "this returns the result of the operation, \
613                      without modifying the original"]
614        #[inline]
615        pub const fn checked_add_signed(self, rhs: $SignedT) -> Option<Self> {
616            let (a, b) = self.overflowing_add_signed(rhs);
617            if intrinsics::unlikely(b) { None } else { Some(a) }
618        }
619
620        /// Strict addition with a signed integer. Computes `self + rhs`,
621        /// panicking if overflow occurred.
622        ///
623        /// # Panics
624        ///
625        /// ## Overflow behavior
626        ///
627        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
628        ///
629        /// # Examples
630        ///
631        /// ```
632        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".strict_add_signed(2), 3);")]
633        /// ```
634        ///
635        /// The following panic because of overflow:
636        ///
637        /// ```should_panic
638        #[doc = concat!("let _ = 1", stringify!($SelfT), ".strict_add_signed(-2);")]
639        /// ```
640        ///
641        /// ```should_panic
642        #[doc = concat!("let _ = (", stringify!($SelfT), "::MAX - 2).strict_add_signed(3);")]
643        /// ```
644        #[stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
645        #[rustc_const_stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
646        #[must_use = "this returns the result of the operation, \
647                      without modifying the original"]
648        #[inline]
649        #[track_caller]
650        pub const fn strict_add_signed(self, rhs: $SignedT) -> Self {
651            let (a, b) = self.overflowing_add_signed(rhs);
652            if b { overflow_panic::add() } else { a }
653        }
654
655        /// Checked integer subtraction. Computes `self - rhs`, returning
656        /// `None` if overflow occurred.
657        ///
658        /// # Examples
659        ///
660        /// ```
661        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_sub(1), Some(0));")]
662        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".checked_sub(1), None);")]
663        /// ```
664        #[stable(feature = "rust1", since = "1.0.0")]
665        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
666        #[must_use = "this returns the result of the operation, \
667                      without modifying the original"]
668        #[inline]
669        pub const fn checked_sub(self, rhs: Self) -> Option<Self> {
670            // Per PR#103299, there's no advantage to the `overflowing` intrinsic
671            // for *unsigned* subtraction and we just emit the manual check anyway.
672            // Thus, rather than using `overflowing_sub` that produces a wrapping
673            // subtraction, check it ourself so we can use an unchecked one.
674
675            if self < rhs {
676                None
677            } else {
678                // SAFETY: just checked this can't overflow
679                Some(unsafe { intrinsics::unchecked_sub(self, rhs) })
680            }
681        }
682
683        /// Strict integer subtraction. Computes `self - rhs`, panicking if
684        /// overflow occurred.
685        ///
686        /// # Panics
687        ///
688        /// ## Overflow behavior
689        ///
690        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
691        ///
692        /// # Examples
693        ///
694        /// ```
695        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".strict_sub(1), 0);")]
696        /// ```
697        ///
698        /// The following panics because of overflow:
699        ///
700        /// ```should_panic
701        #[doc = concat!("let _ = 0", stringify!($SelfT), ".strict_sub(1);")]
702        /// ```
703        #[stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
704        #[rustc_const_stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
705        #[must_use = "this returns the result of the operation, \
706                      without modifying the original"]
707        #[inline]
708        #[track_caller]
709        pub const fn strict_sub(self, rhs: Self) -> Self {
710            let (a, b) = self.overflowing_sub(rhs);
711            if b { overflow_panic::sub() } else { a }
712        }
713
714        /// Unchecked integer subtraction. Computes `self - rhs`, assuming overflow
715        /// cannot occur.
716        ///
717        /// Calling `x.unchecked_sub(y)` is semantically equivalent to calling
718        /// `x.`[`checked_sub`]`(y).`[`unwrap_unchecked`]`()`.
719        ///
720        /// If you're just trying to avoid the panic in debug mode, then **do not**
721        /// use this.  Instead, you're looking for [`wrapping_sub`].
722        ///
723        /// If you find yourself writing code like this:
724        ///
725        /// ```
726        /// # let foo = 30_u32;
727        /// # let bar = 20;
728        /// if foo >= bar {
729        ///     // SAFETY: just checked it will not overflow
730        ///     let diff = unsafe { foo.unchecked_sub(bar) };
731        ///     // ... use diff ...
732        /// }
733        /// ```
734        ///
735        /// Consider changing it to
736        ///
737        /// ```
738        /// # let foo = 30_u32;
739        /// # let bar = 20;
740        /// if let Some(diff) = foo.checked_sub(bar) {
741        ///     // ... use diff ...
742        /// }
743        /// ```
744        ///
745        /// As that does exactly the same thing -- including telling the optimizer
746        /// that the subtraction cannot overflow -- but avoids needing `unsafe`.
747        ///
748        /// # Safety
749        ///
750        /// This results in undefined behavior when
751        #[doc = concat!("`self - rhs > ", stringify!($SelfT), "::MAX` or `self - rhs < ", stringify!($SelfT), "::MIN`,")]
752        /// i.e. when [`checked_sub`] would return `None`.
753        ///
754        /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
755        #[doc = concat!("[`checked_sub`]: ", stringify!($SelfT), "::checked_sub")]
756        #[doc = concat!("[`wrapping_sub`]: ", stringify!($SelfT), "::wrapping_sub")]
757        #[stable(feature = "unchecked_math", since = "1.79.0")]
758        #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
759        #[must_use = "this returns the result of the operation, \
760                      without modifying the original"]
761        #[inline(always)]
762        #[track_caller]
763        pub const unsafe fn unchecked_sub(self, rhs: Self) -> Self {
764            assert_unsafe_precondition!(
765                check_language_ub,
766                concat!(stringify!($SelfT), "::unchecked_sub cannot overflow"),
767                (
768                    lhs: $SelfT = self,
769                    rhs: $SelfT = rhs,
770                ) => !lhs.overflowing_sub(rhs).1,
771            );
772
773            // SAFETY: this is guaranteed to be safe by the caller.
774            unsafe {
775                intrinsics::unchecked_sub(self, rhs)
776            }
777        }
778
779        /// Checked subtraction with a signed integer. Computes `self - rhs`,
780        /// returning `None` if overflow occurred.
781        ///
782        /// # Examples
783        ///
784        /// ```
785        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_sub_signed(2), None);")]
786        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_sub_signed(-2), Some(3));")]
787        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_sub_signed(-4), None);")]
788        /// ```
789        #[stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
790        #[rustc_const_stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
791        #[must_use = "this returns the result of the operation, \
792                      without modifying the original"]
793        #[inline]
794        pub const fn checked_sub_signed(self, rhs: $SignedT) -> Option<Self> {
795            let (res, overflow) = self.overflowing_sub_signed(rhs);
796
797            if !overflow {
798                Some(res)
799            } else {
800                None
801            }
802        }
803
804        /// Strict subtraction with a signed integer. Computes `self - rhs`,
805        /// panicking if overflow occurred.
806        ///
807        /// # Panics
808        ///
809        /// ## Overflow behavior
810        ///
811        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
812        ///
813        /// # Examples
814        ///
815        /// ```
816        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".strict_sub_signed(2), 1);")]
817        /// ```
818        ///
819        /// The following panic because of overflow:
820        ///
821        /// ```should_panic
822        #[doc = concat!("let _ = 1", stringify!($SelfT), ".strict_sub_signed(2);")]
823        /// ```
824        ///
825        /// ```should_panic
826        #[doc = concat!("let _ = (", stringify!($SelfT), "::MAX).strict_sub_signed(-1);")]
827        /// ```
828        #[stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
829        #[rustc_const_stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
830        #[must_use = "this returns the result of the operation, \
831                      without modifying the original"]
832        #[inline]
833        #[track_caller]
834        pub const fn strict_sub_signed(self, rhs: $SignedT) -> Self {
835            let (a, b) = self.overflowing_sub_signed(rhs);
836            if b { overflow_panic::sub() } else { a }
837        }
838
839        #[doc = concat!(
840            "Checked integer subtraction. Computes `self - rhs` and checks if the result fits into an [`",
841            stringify!($SignedT), "`], returning `None` if overflow occurred."
842        )]
843        ///
844        /// # Examples
845        ///
846        /// ```
847        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_signed_diff(2), Some(8));")]
848        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_signed_diff(10), Some(-8));")]
849        #[doc = concat!(
850            "assert_eq!(",
851            stringify!($SelfT),
852            "::MAX.checked_signed_diff(",
853            stringify!($SignedT),
854            "::MAX as ",
855            stringify!($SelfT),
856            "), None);"
857        )]
858        #[doc = concat!(
859            "assert_eq!((",
860            stringify!($SignedT),
861            "::MAX as ",
862            stringify!($SelfT),
863            ").checked_signed_diff(",
864            stringify!($SelfT),
865            "::MAX), Some(",
866            stringify!($SignedT),
867            "::MIN));"
868        )]
869        #[doc = concat!(
870            "assert_eq!((",
871            stringify!($SignedT),
872            "::MAX as ",
873            stringify!($SelfT),
874            " + 1).checked_signed_diff(0), None);"
875        )]
876        #[doc = concat!(
877            "assert_eq!(",
878            stringify!($SelfT),
879            "::MAX.checked_signed_diff(",
880            stringify!($SelfT),
881            "::MAX), Some(0));"
882        )]
883        /// ```
884        #[stable(feature = "unsigned_signed_diff", since = "CURRENT_RUSTC_VERSION")]
885        #[rustc_const_stable(feature = "unsigned_signed_diff", since = "CURRENT_RUSTC_VERSION")]
886        #[inline]
887        pub const fn checked_signed_diff(self, rhs: Self) -> Option<$SignedT> {
888            let res = self.wrapping_sub(rhs) as $SignedT;
889            let overflow = (self >= rhs) == (res < 0);
890
891            if !overflow {
892                Some(res)
893            } else {
894                None
895            }
896        }
897
898        /// Checked integer multiplication. Computes `self * rhs`, returning
899        /// `None` if overflow occurred.
900        ///
901        /// # Examples
902        ///
903        /// ```
904        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_mul(1), Some(5));")]
905        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_mul(2), None);")]
906        /// ```
907        #[stable(feature = "rust1", since = "1.0.0")]
908        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
909        #[must_use = "this returns the result of the operation, \
910                      without modifying the original"]
911        #[inline]
912        pub const fn checked_mul(self, rhs: Self) -> Option<Self> {
913            let (a, b) = self.overflowing_mul(rhs);
914            if intrinsics::unlikely(b) { None } else { Some(a) }
915        }
916
917        /// Strict integer multiplication. Computes `self * rhs`, panicking if
918        /// overflow occurred.
919        ///
920        /// # Panics
921        ///
922        /// ## Overflow behavior
923        ///
924        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
925        ///
926        /// # Examples
927        ///
928        /// ```
929        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".strict_mul(1), 5);")]
930        /// ```
931        ///
932        /// The following panics because of overflow:
933        ///
934        /// ``` should_panic
935        #[doc = concat!("let _ = ", stringify!($SelfT), "::MAX.strict_mul(2);")]
936        /// ```
937        #[stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
938        #[rustc_const_stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
939        #[must_use = "this returns the result of the operation, \
940                      without modifying the original"]
941        #[inline]
942        #[track_caller]
943        pub const fn strict_mul(self, rhs: Self) -> Self {
944            let (a, b) = self.overflowing_mul(rhs);
945            if b { overflow_panic::mul() } else { a }
946        }
947
948        /// Unchecked integer multiplication. Computes `self * rhs`, assuming overflow
949        /// cannot occur.
950        ///
951        /// Calling `x.unchecked_mul(y)` is semantically equivalent to calling
952        /// `x.`[`checked_mul`]`(y).`[`unwrap_unchecked`]`()`.
953        ///
954        /// If you're just trying to avoid the panic in debug mode, then **do not**
955        /// use this.  Instead, you're looking for [`wrapping_mul`].
956        ///
957        /// # Safety
958        ///
959        /// This results in undefined behavior when
960        #[doc = concat!("`self * rhs > ", stringify!($SelfT), "::MAX` or `self * rhs < ", stringify!($SelfT), "::MIN`,")]
961        /// i.e. when [`checked_mul`] would return `None`.
962        ///
963        /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
964        #[doc = concat!("[`checked_mul`]: ", stringify!($SelfT), "::checked_mul")]
965        #[doc = concat!("[`wrapping_mul`]: ", stringify!($SelfT), "::wrapping_mul")]
966        #[stable(feature = "unchecked_math", since = "1.79.0")]
967        #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
968        #[must_use = "this returns the result of the operation, \
969                      without modifying the original"]
970        #[inline(always)]
971        #[track_caller]
972        pub const unsafe fn unchecked_mul(self, rhs: Self) -> Self {
973            assert_unsafe_precondition!(
974                check_language_ub,
975                concat!(stringify!($SelfT), "::unchecked_mul cannot overflow"),
976                (
977                    lhs: $SelfT = self,
978                    rhs: $SelfT = rhs,
979                ) => !lhs.overflowing_mul(rhs).1,
980            );
981
982            // SAFETY: this is guaranteed to be safe by the caller.
983            unsafe {
984                intrinsics::unchecked_mul(self, rhs)
985            }
986        }
987
988        /// Checked integer division. Computes `self / rhs`, returning `None`
989        /// if `rhs == 0`.
990        ///
991        /// # Examples
992        ///
993        /// ```
994        #[doc = concat!("assert_eq!(128", stringify!($SelfT), ".checked_div(2), Some(64));")]
995        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_div(0), None);")]
996        /// ```
997        #[stable(feature = "rust1", since = "1.0.0")]
998        #[rustc_const_stable(feature = "const_checked_int_div", since = "1.52.0")]
999        #[must_use = "this returns the result of the operation, \
1000                      without modifying the original"]
1001        #[inline]
1002        pub const fn checked_div(self, rhs: Self) -> Option<Self> {
1003            if intrinsics::unlikely(rhs == 0) {
1004                None
1005            } else {
1006                // SAFETY: div by zero has been checked above and unsigned types have no other
1007                // failure modes for division
1008                Some(unsafe { intrinsics::unchecked_div(self, rhs) })
1009            }
1010        }
1011
1012        /// Strict integer division. Computes `self / rhs`.
1013        ///
1014        /// Strict division on unsigned types is just normal division. There's no
1015        /// way overflow could ever happen. This function exists so that all
1016        /// operations are accounted for in the strict operations.
1017        ///
1018        /// # Panics
1019        ///
1020        /// This function will panic if `rhs` is zero.
1021        ///
1022        /// # Examples
1023        ///
1024        /// ```
1025        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_div(10), 10);")]
1026        /// ```
1027        ///
1028        /// The following panics because of division by zero:
1029        ///
1030        /// ```should_panic
1031        #[doc = concat!("let _ = (1", stringify!($SelfT), ").strict_div(0);")]
1032        /// ```
1033        #[stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
1034        #[rustc_const_stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
1035        #[must_use = "this returns the result of the operation, \
1036                      without modifying the original"]
1037        #[inline(always)]
1038        #[track_caller]
1039        pub const fn strict_div(self, rhs: Self) -> Self {
1040            self / rhs
1041        }
1042
1043        /// Checked Euclidean division. Computes `self.div_euclid(rhs)`, returning `None`
1044        /// if `rhs == 0`.
1045        ///
1046        /// # Examples
1047        ///
1048        /// ```
1049        #[doc = concat!("assert_eq!(128", stringify!($SelfT), ".checked_div_euclid(2), Some(64));")]
1050        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_div_euclid(0), None);")]
1051        /// ```
1052        #[stable(feature = "euclidean_division", since = "1.38.0")]
1053        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
1054        #[must_use = "this returns the result of the operation, \
1055                      without modifying the original"]
1056        #[inline]
1057        pub const fn checked_div_euclid(self, rhs: Self) -> Option<Self> {
1058            if intrinsics::unlikely(rhs == 0) {
1059                None
1060            } else {
1061                Some(self.div_euclid(rhs))
1062            }
1063        }
1064
1065        /// Strict Euclidean division. Computes `self.div_euclid(rhs)`.
1066        ///
1067        /// Strict division on unsigned types is just normal division. There's no
1068        /// way overflow could ever happen. This function exists so that all
1069        /// operations are accounted for in the strict operations. Since, for the
1070        /// positive integers, all common definitions of division are equal, this
1071        /// is exactly equal to `self.strict_div(rhs)`.
1072        ///
1073        /// # Panics
1074        ///
1075        /// This function will panic if `rhs` is zero.
1076        ///
1077        /// # Examples
1078        ///
1079        /// ```
1080        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_div_euclid(10), 10);")]
1081        /// ```
1082        /// The following panics because of division by zero:
1083        ///
1084        /// ```should_panic
1085        #[doc = concat!("let _ = (1", stringify!($SelfT), ").strict_div_euclid(0);")]
1086        /// ```
1087        #[stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
1088        #[rustc_const_stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
1089        #[must_use = "this returns the result of the operation, \
1090                      without modifying the original"]
1091        #[inline(always)]
1092        #[track_caller]
1093        pub const fn strict_div_euclid(self, rhs: Self) -> Self {
1094            self / rhs
1095        }
1096
1097        /// Checked integer division without remainder. Computes `self / rhs`.
1098        ///
1099        /// # Panics
1100        ///
1101        /// This function will panic  if `rhs == 0` or `self % rhs != 0`.
1102        ///
1103        /// # Examples
1104        ///
1105        /// ```
1106        /// #![feature(exact_div)]
1107        #[doc = concat!("assert_eq!(64", stringify!($SelfT), ".exact_div(2), 32);")]
1108        #[doc = concat!("assert_eq!(64", stringify!($SelfT), ".exact_div(32), 2);")]
1109        /// ```
1110        ///
1111        /// ```should_panic
1112        /// #![feature(exact_div)]
1113        #[doc = concat!("let _ = 65", stringify!($SelfT), ".exact_div(2);")]
1114        /// ```
1115        #[unstable(
1116            feature = "exact_div",
1117            issue = "139911",
1118        )]
1119        #[must_use = "this returns the result of the operation, \
1120                      without modifying the original"]
1121        #[inline]
1122        pub const fn checked_exact_div(self, rhs: Self) -> Option<Self> {
1123            if intrinsics::unlikely(rhs == 0) {
1124                None
1125            } else {
1126                // SAFETY: division by zero is checked above
1127                unsafe {
1128                    if intrinsics::unlikely(intrinsics::unchecked_rem(self, rhs) != 0) {
1129                        None
1130                    } else {
1131                        Some(intrinsics::exact_div(self, rhs))
1132                    }
1133                }
1134            }
1135        }
1136
1137        /// Checked integer division without remainder. Computes `self / rhs`.
1138        ///
1139        /// # Panics
1140        ///
1141        /// This function will panic  if `rhs == 0` or `self % rhs != 0`.
1142        ///
1143        /// # Examples
1144        ///
1145        /// ```
1146        /// #![feature(exact_div)]
1147        #[doc = concat!("assert_eq!(64", stringify!($SelfT), ".exact_div(2), 32);")]
1148        #[doc = concat!("assert_eq!(64", stringify!($SelfT), ".exact_div(32), 2);")]
1149        /// ```
1150        ///
1151        /// ```should_panic
1152        /// #![feature(exact_div)]
1153        #[doc = concat!("let _ = 65", stringify!($SelfT), ".exact_div(2);")]
1154        /// ```
1155        #[unstable(
1156            feature = "exact_div",
1157            issue = "139911",
1158        )]
1159        #[must_use = "this returns the result of the operation, \
1160                      without modifying the original"]
1161        #[inline]
1162        pub const fn exact_div(self, rhs: Self) -> Self {
1163            match self.checked_exact_div(rhs) {
1164                Some(x) => x,
1165                None => panic!("Failed to divide without remainder"),
1166            }
1167        }
1168
1169        /// Unchecked integer division without remainder. Computes `self / rhs`.
1170        ///
1171        /// # Safety
1172        ///
1173        /// This results in undefined behavior when `rhs == 0` or `self % rhs != 0`,
1174        /// i.e. when [`checked_exact_div`](Self::checked_exact_div) would return `None`.
1175        #[unstable(
1176            feature = "exact_div",
1177            issue = "139911",
1178        )]
1179        #[must_use = "this returns the result of the operation, \
1180                      without modifying the original"]
1181        #[inline]
1182        pub const unsafe fn unchecked_exact_div(self, rhs: Self) -> Self {
1183            assert_unsafe_precondition!(
1184                check_language_ub,
1185                concat!(stringify!($SelfT), "::unchecked_exact_div divide by zero or leave a remainder"),
1186                (
1187                    lhs: $SelfT = self,
1188                    rhs: $SelfT = rhs,
1189                ) => rhs > 0 && lhs % rhs == 0,
1190            );
1191            // SAFETY: Same precondition
1192            unsafe { intrinsics::exact_div(self, rhs) }
1193        }
1194
1195        /// Checked integer remainder. Computes `self % rhs`, returning `None`
1196        /// if `rhs == 0`.
1197        ///
1198        /// # Examples
1199        ///
1200        /// ```
1201        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem(2), Some(1));")]
1202        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem(0), None);")]
1203        /// ```
1204        #[stable(feature = "wrapping", since = "1.7.0")]
1205        #[rustc_const_stable(feature = "const_checked_int_div", since = "1.52.0")]
1206        #[must_use = "this returns the result of the operation, \
1207                      without modifying the original"]
1208        #[inline]
1209        pub const fn checked_rem(self, rhs: Self) -> Option<Self> {
1210            if intrinsics::unlikely(rhs == 0) {
1211                None
1212            } else {
1213                // SAFETY: div by zero has been checked above and unsigned types have no other
1214                // failure modes for division
1215                Some(unsafe { intrinsics::unchecked_rem(self, rhs) })
1216            }
1217        }
1218
1219        /// Strict integer remainder. Computes `self % rhs`.
1220        ///
1221        /// Strict remainder calculation on unsigned types is just the regular
1222        /// remainder calculation. There's no way overflow could ever happen.
1223        /// This function exists so that all operations are accounted for in the
1224        /// strict operations.
1225        ///
1226        /// # Panics
1227        ///
1228        /// This function will panic if `rhs` is zero.
1229        ///
1230        /// # Examples
1231        ///
1232        /// ```
1233        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_rem(10), 0);")]
1234        /// ```
1235        ///
1236        /// The following panics because of division by zero:
1237        ///
1238        /// ```should_panic
1239        #[doc = concat!("let _ = 5", stringify!($SelfT), ".strict_rem(0);")]
1240        /// ```
1241        #[stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
1242        #[rustc_const_stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
1243        #[must_use = "this returns the result of the operation, \
1244                      without modifying the original"]
1245        #[inline(always)]
1246        #[track_caller]
1247        pub const fn strict_rem(self, rhs: Self) -> Self {
1248            self % rhs
1249        }
1250
1251        /// Checked Euclidean modulo. Computes `self.rem_euclid(rhs)`, returning `None`
1252        /// if `rhs == 0`.
1253        ///
1254        /// # Examples
1255        ///
1256        /// ```
1257        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem_euclid(2), Some(1));")]
1258        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem_euclid(0), None);")]
1259        /// ```
1260        #[stable(feature = "euclidean_division", since = "1.38.0")]
1261        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
1262        #[must_use = "this returns the result of the operation, \
1263                      without modifying the original"]
1264        #[inline]
1265        pub const fn checked_rem_euclid(self, rhs: Self) -> Option<Self> {
1266            if intrinsics::unlikely(rhs == 0) {
1267                None
1268            } else {
1269                Some(self.rem_euclid(rhs))
1270            }
1271        }
1272
1273        /// Strict Euclidean modulo. Computes `self.rem_euclid(rhs)`.
1274        ///
1275        /// Strict modulo calculation on unsigned types is just the regular
1276        /// remainder calculation. There's no way overflow could ever happen.
1277        /// This function exists so that all operations are accounted for in the
1278        /// strict operations. Since, for the positive integers, all common
1279        /// definitions of division are equal, this is exactly equal to
1280        /// `self.strict_rem(rhs)`.
1281        ///
1282        /// # Panics
1283        ///
1284        /// This function will panic if `rhs` is zero.
1285        ///
1286        /// # Examples
1287        ///
1288        /// ```
1289        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_rem_euclid(10), 0);")]
1290        /// ```
1291        ///
1292        /// The following panics because of division by zero:
1293        ///
1294        /// ```should_panic
1295        #[doc = concat!("let _ = 5", stringify!($SelfT), ".strict_rem_euclid(0);")]
1296        /// ```
1297        #[stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
1298        #[rustc_const_stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
1299        #[must_use = "this returns the result of the operation, \
1300                      without modifying the original"]
1301        #[inline(always)]
1302        #[track_caller]
1303        pub const fn strict_rem_euclid(self, rhs: Self) -> Self {
1304            self % rhs
1305        }
1306
1307        /// Same value as `self | other`, but UB if any bit position is set in both inputs.
1308        ///
1309        /// This is a situational micro-optimization for places where you'd rather
1310        /// use addition on some platforms and bitwise or on other platforms, based
1311        /// on exactly which instructions combine better with whatever else you're
1312        /// doing.  Note that there's no reason to bother using this for places
1313        /// where it's clear from the operations involved that they can't overlap.
1314        /// For example, if you're combining `u16`s into a `u32` with
1315        /// `((a as u32) << 16) | (b as u32)`, that's fine, as the backend will
1316        /// know those sides of the `|` are disjoint without needing help.
1317        ///
1318        /// # Examples
1319        ///
1320        /// ```
1321        /// #![feature(disjoint_bitor)]
1322        ///
1323        /// // SAFETY: `1` and `4` have no bits in common.
1324        /// unsafe {
1325        #[doc = concat!("    assert_eq!(1_", stringify!($SelfT), ".unchecked_disjoint_bitor(4), 5);")]
1326        /// }
1327        /// ```
1328        ///
1329        /// # Safety
1330        ///
1331        /// Requires that `(self & other) == 0`, otherwise it's immediate UB.
1332        ///
1333        /// Equivalently, requires that `(self | other) == (self + other)`.
1334        #[unstable(feature = "disjoint_bitor", issue = "135758")]
1335        #[rustc_const_unstable(feature = "disjoint_bitor", issue = "135758")]
1336        #[inline]
1337        pub const unsafe fn unchecked_disjoint_bitor(self, other: Self) -> Self {
1338            assert_unsafe_precondition!(
1339                check_language_ub,
1340                concat!(stringify!($SelfT), "::unchecked_disjoint_bitor cannot have overlapping bits"),
1341                (
1342                    lhs: $SelfT = self,
1343                    rhs: $SelfT = other,
1344                ) => (lhs & rhs) == 0,
1345            );
1346
1347            // SAFETY: Same precondition
1348            unsafe { intrinsics::disjoint_bitor(self, other) }
1349        }
1350
1351        /// Returns the logarithm of the number with respect to an arbitrary base,
1352        /// rounded down.
1353        ///
1354        /// This method might not be optimized owing to implementation details;
1355        /// `ilog2` can produce results more efficiently for base 2, and `ilog10`
1356        /// can produce results more efficiently for base 10.
1357        ///
1358        /// # Panics
1359        ///
1360        /// This function will panic if `self` is zero, or if `base` is less than 2.
1361        ///
1362        /// # Examples
1363        ///
1364        /// ```
1365        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".ilog(5), 1);")]
1366        /// ```
1367        #[stable(feature = "int_log", since = "1.67.0")]
1368        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
1369        #[must_use = "this returns the result of the operation, \
1370                      without modifying the original"]
1371        #[inline]
1372        #[track_caller]
1373        pub const fn ilog(self, base: Self) -> u32 {
1374            assert!(base >= 2, "base of integer logarithm must be at least 2");
1375            if let Some(log) = self.checked_ilog(base) {
1376                log
1377            } else {
1378                int_log10::panic_for_nonpositive_argument()
1379            }
1380        }
1381
1382        /// Returns the base 2 logarithm of the number, rounded down.
1383        ///
1384        /// # Panics
1385        ///
1386        /// This function will panic if `self` is zero.
1387        ///
1388        /// # Examples
1389        ///
1390        /// ```
1391        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".ilog2(), 1);")]
1392        /// ```
1393        #[stable(feature = "int_log", since = "1.67.0")]
1394        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
1395        #[must_use = "this returns the result of the operation, \
1396                      without modifying the original"]
1397        #[inline]
1398        #[track_caller]
1399        pub const fn ilog2(self) -> u32 {
1400            if let Some(log) = self.checked_ilog2() {
1401                log
1402            } else {
1403                int_log10::panic_for_nonpositive_argument()
1404            }
1405        }
1406
1407        /// Returns the base 10 logarithm of the number, rounded down.
1408        ///
1409        /// # Panics
1410        ///
1411        /// This function will panic if `self` is zero.
1412        ///
1413        /// # Example
1414        ///
1415        /// ```
1416        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".ilog10(), 1);")]
1417        /// ```
1418        #[stable(feature = "int_log", since = "1.67.0")]
1419        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
1420        #[must_use = "this returns the result of the operation, \
1421                      without modifying the original"]
1422        #[inline]
1423        #[track_caller]
1424        pub const fn ilog10(self) -> u32 {
1425            if let Some(log) = self.checked_ilog10() {
1426                log
1427            } else {
1428                int_log10::panic_for_nonpositive_argument()
1429            }
1430        }
1431
1432        /// Returns the logarithm of the number with respect to an arbitrary base,
1433        /// rounded down.
1434        ///
1435        /// Returns `None` if the number is zero, or if the base is not at least 2.
1436        ///
1437        /// This method might not be optimized owing to implementation details;
1438        /// `checked_ilog2` can produce results more efficiently for base 2, and
1439        /// `checked_ilog10` can produce results more efficiently for base 10.
1440        ///
1441        /// # Examples
1442        ///
1443        /// ```
1444        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_ilog(5), Some(1));")]
1445        /// ```
1446        #[stable(feature = "int_log", since = "1.67.0")]
1447        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
1448        #[must_use = "this returns the result of the operation, \
1449                      without modifying the original"]
1450        #[inline]
1451        pub const fn checked_ilog(self, base: Self) -> Option<u32> {
1452            if self <= 0 || base <= 1 {
1453                None
1454            } else if self < base {
1455                Some(0)
1456            } else {
1457                // Since base >= self, n >= 1
1458                let mut n = 1;
1459                let mut r = base;
1460
1461                // Optimization for 128 bit wide integers.
1462                if Self::BITS == 128 {
1463                    // The following is a correct lower bound for ⌊log(base,self)⌋ because
1464                    //
1465                    // log(base,self) = log(2,self) / log(2,base)
1466                    //                ≥ ⌊log(2,self)⌋ / (⌊log(2,base)⌋ + 1)
1467                    //
1468                    // hence
1469                    //
1470                    // ⌊log(base,self)⌋ ≥ ⌊ ⌊log(2,self)⌋ / (⌊log(2,base)⌋ + 1) ⌋ .
1471                    n = self.ilog2() / (base.ilog2() + 1);
1472                    r = base.pow(n);
1473                }
1474
1475                while r <= self / base {
1476                    n += 1;
1477                    r *= base;
1478                }
1479                Some(n)
1480            }
1481        }
1482
1483        /// Returns the base 2 logarithm of the number, rounded down.
1484        ///
1485        /// Returns `None` if the number is zero.
1486        ///
1487        /// # Examples
1488        ///
1489        /// ```
1490        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_ilog2(), Some(1));")]
1491        /// ```
1492        #[stable(feature = "int_log", since = "1.67.0")]
1493        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
1494        #[must_use = "this returns the result of the operation, \
1495                      without modifying the original"]
1496        #[inline]
1497        pub const fn checked_ilog2(self) -> Option<u32> {
1498            match NonZero::new(self) {
1499                Some(x) => Some(x.ilog2()),
1500                None => None,
1501            }
1502        }
1503
1504        /// Returns the base 10 logarithm of the number, rounded down.
1505        ///
1506        /// Returns `None` if the number is zero.
1507        ///
1508        /// # Examples
1509        ///
1510        /// ```
1511        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_ilog10(), Some(1));")]
1512        /// ```
1513        #[stable(feature = "int_log", since = "1.67.0")]
1514        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
1515        #[must_use = "this returns the result of the operation, \
1516                      without modifying the original"]
1517        #[inline]
1518        pub const fn checked_ilog10(self) -> Option<u32> {
1519            match NonZero::new(self) {
1520                Some(x) => Some(x.ilog10()),
1521                None => None,
1522            }
1523        }
1524
1525        /// Checked negation. Computes `-self`, returning `None` unless `self ==
1526        /// 0`.
1527        ///
1528        /// Note that negating any positive integer will overflow.
1529        ///
1530        /// # Examples
1531        ///
1532        /// ```
1533        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".checked_neg(), Some(0));")]
1534        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_neg(), None);")]
1535        /// ```
1536        #[stable(feature = "wrapping", since = "1.7.0")]
1537        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1538        #[must_use = "this returns the result of the operation, \
1539                      without modifying the original"]
1540        #[inline]
1541        pub const fn checked_neg(self) -> Option<Self> {
1542            let (a, b) = self.overflowing_neg();
1543            if intrinsics::unlikely(b) { None } else { Some(a) }
1544        }
1545
1546        /// Strict negation. Computes `-self`, panicking unless `self ==
1547        /// 0`.
1548        ///
1549        /// Note that negating any positive integer will overflow.
1550        ///
1551        /// # Panics
1552        ///
1553        /// ## Overflow behavior
1554        ///
1555        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1556        ///
1557        /// # Examples
1558        ///
1559        /// ```
1560        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".strict_neg(), 0);")]
1561        /// ```
1562        ///
1563        /// The following panics because of overflow:
1564        ///
1565        /// ```should_panic
1566        #[doc = concat!("let _ = 1", stringify!($SelfT), ".strict_neg();")]
1567        ///
1568        #[stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
1569        #[rustc_const_stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
1570        #[must_use = "this returns the result of the operation, \
1571                      without modifying the original"]
1572        #[inline]
1573        #[track_caller]
1574        pub const fn strict_neg(self) -> Self {
1575            let (a, b) = self.overflowing_neg();
1576            if b { overflow_panic::neg() } else { a }
1577        }
1578
1579        /// Checked shift left. Computes `self << rhs`, returning `None`
1580        /// if `rhs` is larger than or equal to the number of bits in `self`.
1581        ///
1582        /// # Examples
1583        ///
1584        /// ```
1585        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".checked_shl(4), Some(0x10));")]
1586        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shl(129), None);")]
1587        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shl(", stringify!($BITS_MINUS_ONE), "), Some(0));")]
1588        /// ```
1589        #[stable(feature = "wrapping", since = "1.7.0")]
1590        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1591        #[must_use = "this returns the result of the operation, \
1592                      without modifying the original"]
1593        #[inline]
1594        pub const fn checked_shl(self, rhs: u32) -> Option<Self> {
1595            // Not using overflowing_shl as that's a wrapping shift
1596            if rhs < Self::BITS {
1597                // SAFETY: just checked the RHS is in-range
1598                Some(unsafe { self.unchecked_shl(rhs) })
1599            } else {
1600                None
1601            }
1602        }
1603
1604        /// Strict shift left. Computes `self << rhs`, panicking if `rhs` is larger
1605        /// than or equal to the number of bits in `self`.
1606        ///
1607        /// # Panics
1608        ///
1609        /// ## Overflow behavior
1610        ///
1611        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1612        ///
1613        /// # Examples
1614        ///
1615        /// ```
1616        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".strict_shl(4), 0x10);")]
1617        /// ```
1618        ///
1619        /// The following panics because of overflow:
1620        ///
1621        /// ```should_panic
1622        #[doc = concat!("let _ = 0x10", stringify!($SelfT), ".strict_shl(129);")]
1623        /// ```
1624        #[stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
1625        #[rustc_const_stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
1626        #[must_use = "this returns the result of the operation, \
1627                      without modifying the original"]
1628        #[inline]
1629        #[track_caller]
1630        pub const fn strict_shl(self, rhs: u32) -> Self {
1631            let (a, b) = self.overflowing_shl(rhs);
1632            if b { overflow_panic::shl() } else { a }
1633        }
1634
1635        /// Unchecked shift left. Computes `self << rhs`, assuming that
1636        /// `rhs` is less than the number of bits in `self`.
1637        ///
1638        /// # Safety
1639        ///
1640        /// This results in undefined behavior if `rhs` is larger than
1641        /// or equal to the number of bits in `self`,
1642        /// i.e. when [`checked_shl`] would return `None`.
1643        ///
1644        #[doc = concat!("[`checked_shl`]: ", stringify!($SelfT), "::checked_shl")]
1645        #[unstable(
1646            feature = "unchecked_shifts",
1647            reason = "niche optimization path",
1648            issue = "85122",
1649        )]
1650        #[must_use = "this returns the result of the operation, \
1651                      without modifying the original"]
1652        #[inline(always)]
1653        #[track_caller]
1654        pub const unsafe fn unchecked_shl(self, rhs: u32) -> Self {
1655            assert_unsafe_precondition!(
1656                check_language_ub,
1657                concat!(stringify!($SelfT), "::unchecked_shl cannot overflow"),
1658                (
1659                    rhs: u32 = rhs,
1660                ) => rhs < <$ActualT>::BITS,
1661            );
1662
1663            // SAFETY: this is guaranteed to be safe by the caller.
1664            unsafe {
1665                intrinsics::unchecked_shl(self, rhs)
1666            }
1667        }
1668
1669        /// Unbounded shift left. Computes `self << rhs`, without bounding the value of `rhs`.
1670        ///
1671        /// If `rhs` is larger or equal to the number of bits in `self`,
1672        /// the entire value is shifted out, and `0` is returned.
1673        ///
1674        /// # Examples
1675        ///
1676        /// ```
1677        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".unbounded_shl(4), 0x10);")]
1678        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".unbounded_shl(129), 0);")]
1679        /// ```
1680        #[stable(feature = "unbounded_shifts", since = "1.87.0")]
1681        #[rustc_const_stable(feature = "unbounded_shifts", since = "1.87.0")]
1682        #[must_use = "this returns the result of the operation, \
1683                      without modifying the original"]
1684        #[inline]
1685        pub const fn unbounded_shl(self, rhs: u32) -> $SelfT{
1686            if rhs < Self::BITS {
1687                // SAFETY:
1688                // rhs is just checked to be in-range above
1689                unsafe { self.unchecked_shl(rhs) }
1690            } else {
1691                0
1692            }
1693        }
1694
1695        /// Checked shift right. Computes `self >> rhs`, returning `None`
1696        /// if `rhs` is larger than or equal to the number of bits in `self`.
1697        ///
1698        /// # Examples
1699        ///
1700        /// ```
1701        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shr(4), Some(0x1));")]
1702        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shr(129), None);")]
1703        /// ```
1704        #[stable(feature = "wrapping", since = "1.7.0")]
1705        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
1706        #[must_use = "this returns the result of the operation, \
1707                      without modifying the original"]
1708        #[inline]
1709        pub const fn checked_shr(self, rhs: u32) -> Option<Self> {
1710            // Not using overflowing_shr as that's a wrapping shift
1711            if rhs < Self::BITS {
1712                // SAFETY: just checked the RHS is in-range
1713                Some(unsafe { self.unchecked_shr(rhs) })
1714            } else {
1715                None
1716            }
1717        }
1718
1719        /// Strict shift right. Computes `self >> rhs`, panicking `rhs` is
1720        /// larger than or equal to the number of bits in `self`.
1721        ///
1722        /// # Panics
1723        ///
1724        /// ## Overflow behavior
1725        ///
1726        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1727        ///
1728        /// # Examples
1729        ///
1730        /// ```
1731        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".strict_shr(4), 0x1);")]
1732        /// ```
1733        ///
1734        /// The following panics because of overflow:
1735        ///
1736        /// ```should_panic
1737        #[doc = concat!("let _ = 0x10", stringify!($SelfT), ".strict_shr(129);")]
1738        /// ```
1739        #[stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
1740        #[rustc_const_stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
1741        #[must_use = "this returns the result of the operation, \
1742                      without modifying the original"]
1743        #[inline]
1744        #[track_caller]
1745        pub const fn strict_shr(self, rhs: u32) -> Self {
1746            let (a, b) = self.overflowing_shr(rhs);
1747            if b { overflow_panic::shr() } else { a }
1748        }
1749
1750        /// Unchecked shift right. Computes `self >> rhs`, assuming that
1751        /// `rhs` is less than the number of bits in `self`.
1752        ///
1753        /// # Safety
1754        ///
1755        /// This results in undefined behavior if `rhs` is larger than
1756        /// or equal to the number of bits in `self`,
1757        /// i.e. when [`checked_shr`] would return `None`.
1758        ///
1759        #[doc = concat!("[`checked_shr`]: ", stringify!($SelfT), "::checked_shr")]
1760        #[unstable(
1761            feature = "unchecked_shifts",
1762            reason = "niche optimization path",
1763            issue = "85122",
1764        )]
1765        #[must_use = "this returns the result of the operation, \
1766                      without modifying the original"]
1767        #[inline(always)]
1768        #[track_caller]
1769        pub const unsafe fn unchecked_shr(self, rhs: u32) -> Self {
1770            assert_unsafe_precondition!(
1771                check_language_ub,
1772                concat!(stringify!($SelfT), "::unchecked_shr cannot overflow"),
1773                (
1774                    rhs: u32 = rhs,
1775                ) => rhs < <$ActualT>::BITS,
1776            );
1777
1778            // SAFETY: this is guaranteed to be safe by the caller.
1779            unsafe {
1780                intrinsics::unchecked_shr(self, rhs)
1781            }
1782        }
1783
1784        /// Unbounded shift right. Computes `self >> rhs`, without bounding the value of `rhs`.
1785        ///
1786        /// If `rhs` is larger or equal to the number of bits in `self`,
1787        /// the entire value is shifted out, and `0` is returned.
1788        ///
1789        /// # Examples
1790        ///
1791        /// ```
1792        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".unbounded_shr(4), 0x1);")]
1793        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".unbounded_shr(129), 0);")]
1794        /// ```
1795        #[stable(feature = "unbounded_shifts", since = "1.87.0")]
1796        #[rustc_const_stable(feature = "unbounded_shifts", since = "1.87.0")]
1797        #[must_use = "this returns the result of the operation, \
1798                      without modifying the original"]
1799        #[inline]
1800        pub const fn unbounded_shr(self, rhs: u32) -> $SelfT{
1801            if rhs < Self::BITS {
1802                // SAFETY:
1803                // rhs is just checked to be in-range above
1804                unsafe { self.unchecked_shr(rhs) }
1805            } else {
1806                0
1807            }
1808        }
1809
1810        /// Checked exponentiation. Computes `self.pow(exp)`, returning `None` if
1811        /// overflow occurred.
1812        ///
1813        /// # Examples
1814        ///
1815        /// ```
1816        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_pow(5), Some(32));")]
1817        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_pow(2), None);")]
1818        /// ```
1819        #[stable(feature = "no_panic_pow", since = "1.34.0")]
1820        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
1821        #[must_use = "this returns the result of the operation, \
1822                      without modifying the original"]
1823        #[inline]
1824        pub const fn checked_pow(self, mut exp: u32) -> Option<Self> {
1825            if exp == 0 {
1826                return Some(1);
1827            }
1828            let mut base = self;
1829            let mut acc: Self = 1;
1830
1831            loop {
1832                if (exp & 1) == 1 {
1833                    acc = try_opt!(acc.checked_mul(base));
1834                    // since exp!=0, finally the exp must be 1.
1835                    if exp == 1 {
1836                        return Some(acc);
1837                    }
1838                }
1839                exp /= 2;
1840                base = try_opt!(base.checked_mul(base));
1841            }
1842        }
1843
1844        /// Strict exponentiation. Computes `self.pow(exp)`, panicking if
1845        /// overflow occurred.
1846        ///
1847        /// # Panics
1848        ///
1849        /// ## Overflow behavior
1850        ///
1851        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
1852        ///
1853        /// # Examples
1854        ///
1855        /// ```
1856        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".strict_pow(5), 32);")]
1857        /// ```
1858        ///
1859        /// The following panics because of overflow:
1860        ///
1861        /// ```should_panic
1862        #[doc = concat!("let _ = ", stringify!($SelfT), "::MAX.strict_pow(2);")]
1863        /// ```
1864        #[stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
1865        #[rustc_const_stable(feature = "strict_overflow_ops", since = "CURRENT_RUSTC_VERSION")]
1866        #[must_use = "this returns the result of the operation, \
1867                      without modifying the original"]
1868        #[inline]
1869        #[track_caller]
1870        pub const fn strict_pow(self, mut exp: u32) -> Self {
1871            if exp == 0 {
1872                return 1;
1873            }
1874            let mut base = self;
1875            let mut acc: Self = 1;
1876
1877            loop {
1878                if (exp & 1) == 1 {
1879                    acc = acc.strict_mul(base);
1880                    // since exp!=0, finally the exp must be 1.
1881                    if exp == 1 {
1882                        return acc;
1883                    }
1884                }
1885                exp /= 2;
1886                base = base.strict_mul(base);
1887            }
1888        }
1889
1890        /// Saturating integer addition. Computes `self + rhs`, saturating at
1891        /// the numeric bounds instead of overflowing.
1892        ///
1893        /// # Examples
1894        ///
1895        /// ```
1896        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_add(1), 101);")]
1897        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_add(127), ", stringify!($SelfT), "::MAX);")]
1898        /// ```
1899        #[stable(feature = "rust1", since = "1.0.0")]
1900        #[must_use = "this returns the result of the operation, \
1901                      without modifying the original"]
1902        #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
1903        #[inline(always)]
1904        pub const fn saturating_add(self, rhs: Self) -> Self {
1905            intrinsics::saturating_add(self, rhs)
1906        }
1907
1908        /// Saturating addition with a signed integer. Computes `self + rhs`,
1909        /// saturating at the numeric bounds instead of overflowing.
1910        ///
1911        /// # Examples
1912        ///
1913        /// ```
1914        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_add_signed(2), 3);")]
1915        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_add_signed(-2), 0);")]
1916        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).saturating_add_signed(4), ", stringify!($SelfT), "::MAX);")]
1917        /// ```
1918        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
1919        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
1920        #[must_use = "this returns the result of the operation, \
1921                      without modifying the original"]
1922        #[inline]
1923        pub const fn saturating_add_signed(self, rhs: $SignedT) -> Self {
1924            let (res, overflow) = self.overflowing_add(rhs as Self);
1925            if overflow == (rhs < 0) {
1926                res
1927            } else if overflow {
1928                Self::MAX
1929            } else {
1930                0
1931            }
1932        }
1933
1934        /// Saturating integer subtraction. Computes `self - rhs`, saturating
1935        /// at the numeric bounds instead of overflowing.
1936        ///
1937        /// # Examples
1938        ///
1939        /// ```
1940        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_sub(27), 73);")]
1941        #[doc = concat!("assert_eq!(13", stringify!($SelfT), ".saturating_sub(127), 0);")]
1942        /// ```
1943        #[stable(feature = "rust1", since = "1.0.0")]
1944        #[must_use = "this returns the result of the operation, \
1945                      without modifying the original"]
1946        #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
1947        #[inline(always)]
1948        pub const fn saturating_sub(self, rhs: Self) -> Self {
1949            intrinsics::saturating_sub(self, rhs)
1950        }
1951
1952        /// Saturating integer subtraction. Computes `self` - `rhs`, saturating at
1953        /// the numeric bounds instead of overflowing.
1954        ///
1955        /// # Examples
1956        ///
1957        /// ```
1958        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_sub_signed(2), 0);")]
1959        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_sub_signed(-2), 3);")]
1960        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).saturating_sub_signed(-4), ", stringify!($SelfT), "::MAX);")]
1961        /// ```
1962        #[stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
1963        #[rustc_const_stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
1964        #[must_use = "this returns the result of the operation, \
1965                      without modifying the original"]
1966        #[inline]
1967        pub const fn saturating_sub_signed(self, rhs: $SignedT) -> Self {
1968            let (res, overflow) = self.overflowing_sub_signed(rhs);
1969
1970            if !overflow {
1971                res
1972            } else if rhs < 0 {
1973                Self::MAX
1974            } else {
1975                0
1976            }
1977        }
1978
1979        /// Saturating integer multiplication. Computes `self * rhs`,
1980        /// saturating at the numeric bounds instead of overflowing.
1981        ///
1982        /// # Examples
1983        ///
1984        /// ```
1985        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".saturating_mul(10), 20);")]
1986        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX).saturating_mul(10), ", stringify!($SelfT),"::MAX);")]
1987        /// ```
1988        #[stable(feature = "wrapping", since = "1.7.0")]
1989        #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
1990        #[must_use = "this returns the result of the operation, \
1991                      without modifying the original"]
1992        #[inline]
1993        pub const fn saturating_mul(self, rhs: Self) -> Self {
1994            match self.checked_mul(rhs) {
1995                Some(x) => x,
1996                None => Self::MAX,
1997            }
1998        }
1999
2000        /// Saturating integer division. Computes `self / rhs`, saturating at the
2001        /// numeric bounds instead of overflowing.
2002        ///
2003        /// # Panics
2004        ///
2005        /// This function will panic if `rhs` is zero.
2006        ///
2007        /// # Examples
2008        ///
2009        /// ```
2010        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".saturating_div(2), 2);")]
2011        ///
2012        /// ```
2013        #[stable(feature = "saturating_div", since = "1.58.0")]
2014        #[rustc_const_stable(feature = "saturating_div", since = "1.58.0")]
2015        #[must_use = "this returns the result of the operation, \
2016                      without modifying the original"]
2017        #[inline]
2018        #[track_caller]
2019        pub const fn saturating_div(self, rhs: Self) -> Self {
2020            // on unsigned types, there is no overflow in integer division
2021            self.wrapping_div(rhs)
2022        }
2023
2024        /// Saturating integer exponentiation. Computes `self.pow(exp)`,
2025        /// saturating at the numeric bounds instead of overflowing.
2026        ///
2027        /// # Examples
2028        ///
2029        /// ```
2030        #[doc = concat!("assert_eq!(4", stringify!($SelfT), ".saturating_pow(3), 64);")]
2031        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_pow(2), ", stringify!($SelfT), "::MAX);")]
2032        /// ```
2033        #[stable(feature = "no_panic_pow", since = "1.34.0")]
2034        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
2035        #[must_use = "this returns the result of the operation, \
2036                      without modifying the original"]
2037        #[inline]
2038        pub const fn saturating_pow(self, exp: u32) -> Self {
2039            match self.checked_pow(exp) {
2040                Some(x) => x,
2041                None => Self::MAX,
2042            }
2043        }
2044
2045        /// Wrapping (modular) addition. Computes `self + rhs`,
2046        /// wrapping around at the boundary of the type.
2047        ///
2048        /// # Examples
2049        ///
2050        /// ```
2051        #[doc = concat!("assert_eq!(200", stringify!($SelfT), ".wrapping_add(55), 255);")]
2052        #[doc = concat!("assert_eq!(200", stringify!($SelfT), ".wrapping_add(", stringify!($SelfT), "::MAX), 199);")]
2053        /// ```
2054        #[stable(feature = "rust1", since = "1.0.0")]
2055        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2056        #[must_use = "this returns the result of the operation, \
2057                      without modifying the original"]
2058        #[inline(always)]
2059        pub const fn wrapping_add(self, rhs: Self) -> Self {
2060            intrinsics::wrapping_add(self, rhs)
2061        }
2062
2063        /// Wrapping (modular) addition with a signed integer. Computes
2064        /// `self + rhs`, wrapping around at the boundary of the type.
2065        ///
2066        /// # Examples
2067        ///
2068        /// ```
2069        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_add_signed(2), 3);")]
2070        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_add_signed(-2), ", stringify!($SelfT), "::MAX);")]
2071        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).wrapping_add_signed(4), 1);")]
2072        /// ```
2073        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
2074        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
2075        #[must_use = "this returns the result of the operation, \
2076                      without modifying the original"]
2077        #[inline]
2078        pub const fn wrapping_add_signed(self, rhs: $SignedT) -> Self {
2079            self.wrapping_add(rhs as Self)
2080        }
2081
2082        /// Wrapping (modular) subtraction. Computes `self - rhs`,
2083        /// wrapping around at the boundary of the type.
2084        ///
2085        /// # Examples
2086        ///
2087        /// ```
2088        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_sub(100), 0);")]
2089        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_sub(", stringify!($SelfT), "::MAX), 101);")]
2090        /// ```
2091        #[stable(feature = "rust1", since = "1.0.0")]
2092        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2093        #[must_use = "this returns the result of the operation, \
2094                      without modifying the original"]
2095        #[inline(always)]
2096        pub const fn wrapping_sub(self, rhs: Self) -> Self {
2097            intrinsics::wrapping_sub(self, rhs)
2098        }
2099
2100        /// Wrapping (modular) subtraction with a signed integer. Computes
2101        /// `self - rhs`, wrapping around at the boundary of the type.
2102        ///
2103        /// # Examples
2104        ///
2105        /// ```
2106        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_sub_signed(2), ", stringify!($SelfT), "::MAX);")]
2107        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_sub_signed(-2), 3);")]
2108        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).wrapping_sub_signed(-4), 1);")]
2109        /// ```
2110        #[stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
2111        #[rustc_const_stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
2112        #[must_use = "this returns the result of the operation, \
2113                      without modifying the original"]
2114        #[inline]
2115        pub const fn wrapping_sub_signed(self, rhs: $SignedT) -> Self {
2116            self.wrapping_sub(rhs as Self)
2117        }
2118
2119        /// Wrapping (modular) multiplication. Computes `self *
2120        /// rhs`, wrapping around at the boundary of the type.
2121        ///
2122        /// # Examples
2123        ///
2124        /// Please note that this example is shared between integer types.
2125        /// Which explains why `u8` is used here.
2126        ///
2127        /// ```
2128        /// assert_eq!(10u8.wrapping_mul(12), 120);
2129        /// assert_eq!(25u8.wrapping_mul(12), 44);
2130        /// ```
2131        #[stable(feature = "rust1", since = "1.0.0")]
2132        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2133        #[must_use = "this returns the result of the operation, \
2134                      without modifying the original"]
2135        #[inline(always)]
2136        pub const fn wrapping_mul(self, rhs: Self) -> Self {
2137            intrinsics::wrapping_mul(self, rhs)
2138        }
2139
2140        /// Wrapping (modular) division. Computes `self / rhs`.
2141        ///
2142        /// Wrapped division on unsigned types is just normal division. There's
2143        /// no way wrapping could ever happen. This function exists so that all
2144        /// operations are accounted for in the wrapping operations.
2145        ///
2146        /// # Panics
2147        ///
2148        /// This function will panic if `rhs` is zero.
2149        ///
2150        /// # Examples
2151        ///
2152        /// ```
2153        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_div(10), 10);")]
2154        /// ```
2155        #[stable(feature = "num_wrapping", since = "1.2.0")]
2156        #[rustc_const_stable(feature = "const_wrapping_int_methods", since = "1.52.0")]
2157        #[must_use = "this returns the result of the operation, \
2158                      without modifying the original"]
2159        #[inline(always)]
2160        #[track_caller]
2161        pub const fn wrapping_div(self, rhs: Self) -> Self {
2162            self / rhs
2163        }
2164
2165        /// Wrapping Euclidean division. Computes `self.div_euclid(rhs)`.
2166        ///
2167        /// Wrapped division on unsigned types is just normal division. There's
2168        /// no way wrapping could ever happen. This function exists so that all
2169        /// operations are accounted for in the wrapping operations. Since, for
2170        /// the positive integers, all common definitions of division are equal,
2171        /// this is exactly equal to `self.wrapping_div(rhs)`.
2172        ///
2173        /// # Panics
2174        ///
2175        /// This function will panic if `rhs` is zero.
2176        ///
2177        /// # Examples
2178        ///
2179        /// ```
2180        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_div_euclid(10), 10);")]
2181        /// ```
2182        #[stable(feature = "euclidean_division", since = "1.38.0")]
2183        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
2184        #[must_use = "this returns the result of the operation, \
2185                      without modifying the original"]
2186        #[inline(always)]
2187        #[track_caller]
2188        pub const fn wrapping_div_euclid(self, rhs: Self) -> Self {
2189            self / rhs
2190        }
2191
2192        /// Wrapping (modular) remainder. Computes `self % rhs`.
2193        ///
2194        /// Wrapped remainder calculation on unsigned types is just the regular
2195        /// remainder calculation. There's no way wrapping could ever happen.
2196        /// This function exists so that all operations are accounted for in the
2197        /// wrapping operations.
2198        ///
2199        /// # Panics
2200        ///
2201        /// This function will panic if `rhs` is zero.
2202        ///
2203        /// # Examples
2204        ///
2205        /// ```
2206        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_rem(10), 0);")]
2207        /// ```
2208        #[stable(feature = "num_wrapping", since = "1.2.0")]
2209        #[rustc_const_stable(feature = "const_wrapping_int_methods", since = "1.52.0")]
2210        #[must_use = "this returns the result of the operation, \
2211                      without modifying the original"]
2212        #[inline(always)]
2213        #[track_caller]
2214        pub const fn wrapping_rem(self, rhs: Self) -> Self {
2215            self % rhs
2216        }
2217
2218        /// Wrapping Euclidean modulo. Computes `self.rem_euclid(rhs)`.
2219        ///
2220        /// Wrapped modulo calculation on unsigned types is just the regular
2221        /// remainder calculation. There's no way wrapping could ever happen.
2222        /// This function exists so that all operations are accounted for in the
2223        /// wrapping operations. Since, for the positive integers, all common
2224        /// definitions of division are equal, this is exactly equal to
2225        /// `self.wrapping_rem(rhs)`.
2226        ///
2227        /// # Panics
2228        ///
2229        /// This function will panic if `rhs` is zero.
2230        ///
2231        /// # Examples
2232        ///
2233        /// ```
2234        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_rem_euclid(10), 0);")]
2235        /// ```
2236        #[stable(feature = "euclidean_division", since = "1.38.0")]
2237        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
2238        #[must_use = "this returns the result of the operation, \
2239                      without modifying the original"]
2240        #[inline(always)]
2241        #[track_caller]
2242        pub const fn wrapping_rem_euclid(self, rhs: Self) -> Self {
2243            self % rhs
2244        }
2245
2246        /// Wrapping (modular) negation. Computes `-self`,
2247        /// wrapping around at the boundary of the type.
2248        ///
2249        /// Since unsigned types do not have negative equivalents
2250        /// all applications of this function will wrap (except for `-0`).
2251        /// For values smaller than the corresponding signed type's maximum
2252        /// the result is the same as casting the corresponding signed value.
2253        /// Any larger values are equivalent to `MAX + 1 - (val - MAX - 1)` where
2254        /// `MAX` is the corresponding signed type's maximum.
2255        ///
2256        /// # Examples
2257        ///
2258        /// ```
2259        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".wrapping_neg(), 0);")]
2260        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.wrapping_neg(), 1);")]
2261        #[doc = concat!("assert_eq!(13_", stringify!($SelfT), ".wrapping_neg(), (!13) + 1);")]
2262        #[doc = concat!("assert_eq!(42_", stringify!($SelfT), ".wrapping_neg(), !(42 - 1));")]
2263        /// ```
2264        #[stable(feature = "num_wrapping", since = "1.2.0")]
2265        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2266        #[must_use = "this returns the result of the operation, \
2267                      without modifying the original"]
2268        #[inline(always)]
2269        pub const fn wrapping_neg(self) -> Self {
2270            (0 as $SelfT).wrapping_sub(self)
2271        }
2272
2273        /// Panic-free bitwise shift-left; yields `self << mask(rhs)`,
2274        /// where `mask` removes any high-order bits of `rhs` that
2275        /// would cause the shift to exceed the bitwidth of the type.
2276        ///
2277        /// Note that this is *not* the same as a rotate-left; the
2278        /// RHS of a wrapping shift-left is restricted to the range
2279        /// of the type, rather than the bits shifted out of the LHS
2280        /// being returned to the other end. The primitive integer
2281        /// types all implement a [`rotate_left`](Self::rotate_left) function,
2282        /// which may be what you want instead.
2283        ///
2284        /// # Examples
2285        ///
2286        /// ```
2287        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_shl(7), 128);")]
2288        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_shl(128), 1);")]
2289        /// ```
2290        #[stable(feature = "num_wrapping", since = "1.2.0")]
2291        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2292        #[must_use = "this returns the result of the operation, \
2293                      without modifying the original"]
2294        #[inline(always)]
2295        pub const fn wrapping_shl(self, rhs: u32) -> Self {
2296            // SAFETY: the masking by the bitsize of the type ensures that we do not shift
2297            // out of bounds
2298            unsafe {
2299                self.unchecked_shl(rhs & (Self::BITS - 1))
2300            }
2301        }
2302
2303        /// Panic-free bitwise shift-right; yields `self >> mask(rhs)`,
2304        /// where `mask` removes any high-order bits of `rhs` that
2305        /// would cause the shift to exceed the bitwidth of the type.
2306        ///
2307        /// Note that this is *not* the same as a rotate-right; the
2308        /// RHS of a wrapping shift-right is restricted to the range
2309        /// of the type, rather than the bits shifted out of the LHS
2310        /// being returned to the other end. The primitive integer
2311        /// types all implement a [`rotate_right`](Self::rotate_right) function,
2312        /// which may be what you want instead.
2313        ///
2314        /// # Examples
2315        ///
2316        /// ```
2317        #[doc = concat!("assert_eq!(128", stringify!($SelfT), ".wrapping_shr(7), 1);")]
2318        #[doc = concat!("assert_eq!(128", stringify!($SelfT), ".wrapping_shr(128), 128);")]
2319        /// ```
2320        #[stable(feature = "num_wrapping", since = "1.2.0")]
2321        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2322        #[must_use = "this returns the result of the operation, \
2323                      without modifying the original"]
2324        #[inline(always)]
2325        pub const fn wrapping_shr(self, rhs: u32) -> Self {
2326            // SAFETY: the masking by the bitsize of the type ensures that we do not shift
2327            // out of bounds
2328            unsafe {
2329                self.unchecked_shr(rhs & (Self::BITS - 1))
2330            }
2331        }
2332
2333        /// Wrapping (modular) exponentiation. Computes `self.pow(exp)`,
2334        /// wrapping around at the boundary of the type.
2335        ///
2336        /// # Examples
2337        ///
2338        /// ```
2339        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".wrapping_pow(5), 243);")]
2340        /// assert_eq!(3u8.wrapping_pow(6), 217);
2341        /// ```
2342        #[stable(feature = "no_panic_pow", since = "1.34.0")]
2343        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
2344        #[must_use = "this returns the result of the operation, \
2345                      without modifying the original"]
2346        #[inline]
2347        pub const fn wrapping_pow(self, mut exp: u32) -> Self {
2348            if exp == 0 {
2349                return 1;
2350            }
2351            let mut base = self;
2352            let mut acc: Self = 1;
2353
2354            if intrinsics::is_val_statically_known(exp) {
2355                while exp > 1 {
2356                    if (exp & 1) == 1 {
2357                        acc = acc.wrapping_mul(base);
2358                    }
2359                    exp /= 2;
2360                    base = base.wrapping_mul(base);
2361                }
2362
2363                // since exp!=0, finally the exp must be 1.
2364                // Deal with the final bit of the exponent separately, since
2365                // squaring the base afterwards is not necessary.
2366                acc.wrapping_mul(base)
2367            } else {
2368                // This is faster than the above when the exponent is not known
2369                // at compile time. We can't use the same code for the constant
2370                // exponent case because LLVM is currently unable to unroll
2371                // this loop.
2372                loop {
2373                    if (exp & 1) == 1 {
2374                        acc = acc.wrapping_mul(base);
2375                        // since exp!=0, finally the exp must be 1.
2376                        if exp == 1 {
2377                            return acc;
2378                        }
2379                    }
2380                    exp /= 2;
2381                    base = base.wrapping_mul(base);
2382                }
2383            }
2384        }
2385
2386        /// Calculates `self` + `rhs`.
2387        ///
2388        /// Returns a tuple of the addition along with a boolean indicating
2389        /// whether an arithmetic overflow would occur. If an overflow would
2390        /// have occurred then the wrapped value is returned.
2391        ///
2392        /// # Examples
2393        ///
2394        /// ```
2395        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_add(2), (7, false));")]
2396        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.overflowing_add(1), (0, true));")]
2397        /// ```
2398        #[stable(feature = "wrapping", since = "1.7.0")]
2399        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2400        #[must_use = "this returns the result of the operation, \
2401                      without modifying the original"]
2402        #[inline(always)]
2403        pub const fn overflowing_add(self, rhs: Self) -> (Self, bool) {
2404            let (a, b) = intrinsics::add_with_overflow(self as $ActualT, rhs as $ActualT);
2405            (a as Self, b)
2406        }
2407
2408        /// Calculates `self` + `rhs` + `carry` and returns a tuple containing
2409        /// the sum and the output carry.
2410        ///
2411        /// Performs "ternary addition" of two integer operands and a carry-in
2412        /// bit, and returns an output integer and a carry-out bit. This allows
2413        /// chaining together multiple additions to create a wider addition, and
2414        /// can be useful for bignum addition.
2415        ///
2416        #[doc = concat!("This can be thought of as a ", stringify!($BITS), "-bit \"full adder\", in the electronics sense.")]
2417        ///
2418        /// If the input carry is false, this method is equivalent to
2419        /// [`overflowing_add`](Self::overflowing_add), and the output carry is
2420        /// equal to the overflow flag. Note that although carry and overflow
2421        /// flags are similar for unsigned integers, they are different for
2422        /// signed integers.
2423        ///
2424        /// # Examples
2425        ///
2426        /// ```
2427        /// #![feature(bigint_helper_methods)]
2428        ///
2429        #[doc = concat!("//    3  MAX    (a = 3 × 2^", stringify!($BITS), " + 2^", stringify!($BITS), " - 1)")]
2430        #[doc = concat!("// +  5    7    (b = 5 × 2^", stringify!($BITS), " + 7)")]
2431        /// // ---------
2432        #[doc = concat!("//    9    6    (sum = 9 × 2^", stringify!($BITS), " + 6)")]
2433        ///
2434        #[doc = concat!("let (a1, a0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (3, ", stringify!($SelfT), "::MAX);")]
2435        #[doc = concat!("let (b1, b0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (5, 7);")]
2436        /// let carry0 = false;
2437        ///
2438        /// let (sum0, carry1) = a0.carrying_add(b0, carry0);
2439        /// assert_eq!(carry1, true);
2440        /// let (sum1, carry2) = a1.carrying_add(b1, carry1);
2441        /// assert_eq!(carry2, false);
2442        ///
2443        /// assert_eq!((sum1, sum0), (9, 6));
2444        /// ```
2445        #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2446        #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
2447        #[must_use = "this returns the result of the operation, \
2448                      without modifying the original"]
2449        #[inline]
2450        pub const fn carrying_add(self, rhs: Self, carry: bool) -> (Self, bool) {
2451            // note: longer-term this should be done via an intrinsic, but this has been shown
2452            //   to generate optimal code for now, and LLVM doesn't have an equivalent intrinsic
2453            let (a, c1) = self.overflowing_add(rhs);
2454            let (b, c2) = a.overflowing_add(carry as $SelfT);
2455            // Ideally LLVM would know this is disjoint without us telling them,
2456            // but it doesn't <https://github.com/llvm/llvm-project/issues/118162>
2457            // SAFETY: Only one of `c1` and `c2` can be set.
2458            // For c1 to be set we need to have overflowed, but if we did then
2459            // `a` is at most `MAX-1`, which means that `c2` cannot possibly
2460            // overflow because it's adding at most `1` (since it came from `bool`)
2461            (b, unsafe { intrinsics::disjoint_bitor(c1, c2) })
2462        }
2463
2464        /// Calculates `self` + `rhs` with a signed `rhs`.
2465        ///
2466        /// Returns a tuple of the addition along with a boolean indicating
2467        /// whether an arithmetic overflow would occur. If an overflow would
2468        /// have occurred then the wrapped value is returned.
2469        ///
2470        /// # Examples
2471        ///
2472        /// ```
2473        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_add_signed(2), (3, false));")]
2474        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_add_signed(-2), (", stringify!($SelfT), "::MAX, true));")]
2475        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).overflowing_add_signed(4), (1, true));")]
2476        /// ```
2477        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
2478        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
2479        #[must_use = "this returns the result of the operation, \
2480                      without modifying the original"]
2481        #[inline]
2482        pub const fn overflowing_add_signed(self, rhs: $SignedT) -> (Self, bool) {
2483            let (res, overflowed) = self.overflowing_add(rhs as Self);
2484            (res, overflowed ^ (rhs < 0))
2485        }
2486
2487        /// Calculates `self` - `rhs`.
2488        ///
2489        /// Returns a tuple of the subtraction along with a boolean indicating
2490        /// whether an arithmetic overflow would occur. If an overflow would
2491        /// have occurred then the wrapped value is returned.
2492        ///
2493        /// # Examples
2494        ///
2495        /// ```
2496        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_sub(2), (3, false));")]
2497        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".overflowing_sub(1), (", stringify!($SelfT), "::MAX, true));")]
2498        /// ```
2499        #[stable(feature = "wrapping", since = "1.7.0")]
2500        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2501        #[must_use = "this returns the result of the operation, \
2502                      without modifying the original"]
2503        #[inline(always)]
2504        pub const fn overflowing_sub(self, rhs: Self) -> (Self, bool) {
2505            let (a, b) = intrinsics::sub_with_overflow(self as $ActualT, rhs as $ActualT);
2506            (a as Self, b)
2507        }
2508
2509        /// Calculates `self` &minus; `rhs` &minus; `borrow` and returns a tuple
2510        /// containing the difference and the output borrow.
2511        ///
2512        /// Performs "ternary subtraction" by subtracting both an integer
2513        /// operand and a borrow-in bit from `self`, and returns an output
2514        /// integer and a borrow-out bit. This allows chaining together multiple
2515        /// subtractions to create a wider subtraction, and can be useful for
2516        /// bignum subtraction.
2517        ///
2518        /// # Examples
2519        ///
2520        /// ```
2521        /// #![feature(bigint_helper_methods)]
2522        ///
2523        #[doc = concat!("//    9    6    (a = 9 × 2^", stringify!($BITS), " + 6)")]
2524        #[doc = concat!("// -  5    7    (b = 5 × 2^", stringify!($BITS), " + 7)")]
2525        /// // ---------
2526        #[doc = concat!("//    3  MAX    (diff = 3 × 2^", stringify!($BITS), " + 2^", stringify!($BITS), " - 1)")]
2527        ///
2528        #[doc = concat!("let (a1, a0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (9, 6);")]
2529        #[doc = concat!("let (b1, b0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (5, 7);")]
2530        /// let borrow0 = false;
2531        ///
2532        /// let (diff0, borrow1) = a0.borrowing_sub(b0, borrow0);
2533        /// assert_eq!(borrow1, true);
2534        /// let (diff1, borrow2) = a1.borrowing_sub(b1, borrow1);
2535        /// assert_eq!(borrow2, false);
2536        ///
2537        #[doc = concat!("assert_eq!((diff1, diff0), (3, ", stringify!($SelfT), "::MAX));")]
2538        /// ```
2539        #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2540        #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
2541        #[must_use = "this returns the result of the operation, \
2542                      without modifying the original"]
2543        #[inline]
2544        pub const fn borrowing_sub(self, rhs: Self, borrow: bool) -> (Self, bool) {
2545            // note: longer-term this should be done via an intrinsic, but this has been shown
2546            //   to generate optimal code for now, and LLVM doesn't have an equivalent intrinsic
2547            let (a, c1) = self.overflowing_sub(rhs);
2548            let (b, c2) = a.overflowing_sub(borrow as $SelfT);
2549            // SAFETY: Only one of `c1` and `c2` can be set.
2550            // For c1 to be set we need to have underflowed, but if we did then
2551            // `a` is nonzero, which means that `c2` cannot possibly
2552            // underflow because it's subtracting at most `1` (since it came from `bool`)
2553            (b, unsafe { intrinsics::disjoint_bitor(c1, c2) })
2554        }
2555
2556        /// Calculates `self` - `rhs` with a signed `rhs`
2557        ///
2558        /// Returns a tuple of the subtraction along with a boolean indicating
2559        /// whether an arithmetic overflow would occur. If an overflow would
2560        /// have occurred then the wrapped value is returned.
2561        ///
2562        /// # Examples
2563        ///
2564        /// ```
2565        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_sub_signed(2), (", stringify!($SelfT), "::MAX, true));")]
2566        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_sub_signed(-2), (3, false));")]
2567        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).overflowing_sub_signed(-4), (1, true));")]
2568        /// ```
2569        #[stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
2570        #[rustc_const_stable(feature = "mixed_integer_ops_unsigned_sub", since = "1.90.0")]
2571        #[must_use = "this returns the result of the operation, \
2572                      without modifying the original"]
2573        #[inline]
2574        pub const fn overflowing_sub_signed(self, rhs: $SignedT) -> (Self, bool) {
2575            let (res, overflow) = self.overflowing_sub(rhs as Self);
2576
2577            (res, overflow ^ (rhs < 0))
2578        }
2579
2580        /// Computes the absolute difference between `self` and `other`.
2581        ///
2582        /// # Examples
2583        ///
2584        /// ```
2585        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".abs_diff(80), 20", stringify!($SelfT), ");")]
2586        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".abs_diff(110), 10", stringify!($SelfT), ");")]
2587        /// ```
2588        #[stable(feature = "int_abs_diff", since = "1.60.0")]
2589        #[rustc_const_stable(feature = "int_abs_diff", since = "1.60.0")]
2590        #[must_use = "this returns the result of the operation, \
2591                      without modifying the original"]
2592        #[inline]
2593        pub const fn abs_diff(self, other: Self) -> Self {
2594            if size_of::<Self>() == 1 {
2595                // Trick LLVM into generating the psadbw instruction when SSE2
2596                // is available and this function is autovectorized for u8's.
2597                (self as i32).wrapping_sub(other as i32).unsigned_abs() as Self
2598            } else {
2599                if self < other {
2600                    other - self
2601                } else {
2602                    self - other
2603                }
2604            }
2605        }
2606
2607        /// Calculates the multiplication of `self` and `rhs`.
2608        ///
2609        /// Returns a tuple of the multiplication along with a boolean
2610        /// indicating whether an arithmetic overflow would occur. If an
2611        /// overflow would have occurred then the wrapped value is returned.
2612        ///
2613        /// # Examples
2614        ///
2615        /// Please note that this example is shared between integer types.
2616        /// Which explains why `u32` is used here.
2617        ///
2618        /// ```
2619        /// assert_eq!(5u32.overflowing_mul(2), (10, false));
2620        /// assert_eq!(1_000_000_000u32.overflowing_mul(10), (1410065408, true));
2621        /// ```
2622        #[stable(feature = "wrapping", since = "1.7.0")]
2623        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2624        #[must_use = "this returns the result of the operation, \
2625                          without modifying the original"]
2626        #[inline(always)]
2627        pub const fn overflowing_mul(self, rhs: Self) -> (Self, bool) {
2628            let (a, b) = intrinsics::mul_with_overflow(self as $ActualT, rhs as $ActualT);
2629            (a as Self, b)
2630        }
2631
2632        /// Calculates the complete product `self * rhs` without the possibility to overflow.
2633        ///
2634        /// This returns the low-order (wrapping) bits and the high-order (overflow) bits
2635        /// of the result as two separate values, in that order.
2636        ///
2637        /// If you also need to add a carry to the wide result, then you want
2638        /// [`Self::carrying_mul`] instead.
2639        ///
2640        /// # Examples
2641        ///
2642        /// Please note that this example is shared between integer types.
2643        /// Which explains why `u32` is used here.
2644        ///
2645        /// ```
2646        /// #![feature(bigint_helper_methods)]
2647        /// assert_eq!(5u32.widening_mul(2), (10, 0));
2648        /// assert_eq!(1_000_000_000u32.widening_mul(10), (1410065408, 2));
2649        /// ```
2650        #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2651        #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
2652        #[must_use = "this returns the result of the operation, \
2653                      without modifying the original"]
2654        #[inline]
2655        pub const fn widening_mul(self, rhs: Self) -> (Self, Self) {
2656            Self::carrying_mul_add(self, rhs, 0, 0)
2657        }
2658
2659        /// Calculates the "full multiplication" `self * rhs + carry`
2660        /// without the possibility to overflow.
2661        ///
2662        /// This returns the low-order (wrapping) bits and the high-order (overflow) bits
2663        /// of the result as two separate values, in that order.
2664        ///
2665        /// Performs "long multiplication" which takes in an extra amount to add, and may return an
2666        /// additional amount of overflow. This allows for chaining together multiple
2667        /// multiplications to create "big integers" which represent larger values.
2668        ///
2669        /// If you don't need the `carry`, then you can use [`Self::widening_mul`] instead.
2670        ///
2671        /// # Examples
2672        ///
2673        /// Please note that this example is shared between integer types.
2674        /// Which explains why `u32` is used here.
2675        ///
2676        /// ```
2677        /// #![feature(bigint_helper_methods)]
2678        /// assert_eq!(5u32.carrying_mul(2, 0), (10, 0));
2679        /// assert_eq!(5u32.carrying_mul(2, 10), (20, 0));
2680        /// assert_eq!(1_000_000_000u32.carrying_mul(10, 0), (1410065408, 2));
2681        /// assert_eq!(1_000_000_000u32.carrying_mul(10, 10), (1410065418, 2));
2682        #[doc = concat!("assert_eq!(",
2683            stringify!($SelfT), "::MAX.carrying_mul(", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX), ",
2684            "(0, ", stringify!($SelfT), "::MAX));"
2685        )]
2686        /// ```
2687        ///
2688        /// This is the core operation needed for scalar multiplication when
2689        /// implementing it for wider-than-native types.
2690        ///
2691        /// ```
2692        /// #![feature(bigint_helper_methods)]
2693        /// fn scalar_mul_eq(little_endian_digits: &mut Vec<u16>, multiplicand: u16) {
2694        ///     let mut carry = 0;
2695        ///     for d in little_endian_digits.iter_mut() {
2696        ///         (*d, carry) = d.carrying_mul(multiplicand, carry);
2697        ///     }
2698        ///     if carry != 0 {
2699        ///         little_endian_digits.push(carry);
2700        ///     }
2701        /// }
2702        ///
2703        /// let mut v = vec![10, 20];
2704        /// scalar_mul_eq(&mut v, 3);
2705        /// assert_eq!(v, [30, 60]);
2706        ///
2707        /// assert_eq!(0x87654321_u64 * 0xFEED, 0x86D3D159E38D);
2708        /// let mut v = vec![0x4321, 0x8765];
2709        /// scalar_mul_eq(&mut v, 0xFEED);
2710        /// assert_eq!(v, [0xE38D, 0xD159, 0x86D3]);
2711        /// ```
2712        ///
2713        /// If `carry` is zero, this is similar to [`overflowing_mul`](Self::overflowing_mul),
2714        /// except that it gives the value of the overflow instead of just whether one happened:
2715        ///
2716        /// ```
2717        /// #![feature(bigint_helper_methods)]
2718        /// let r = u8::carrying_mul(7, 13, 0);
2719        /// assert_eq!((r.0, r.1 != 0), u8::overflowing_mul(7, 13));
2720        /// let r = u8::carrying_mul(13, 42, 0);
2721        /// assert_eq!((r.0, r.1 != 0), u8::overflowing_mul(13, 42));
2722        /// ```
2723        ///
2724        /// The value of the first field in the returned tuple matches what you'd get
2725        /// by combining the [`wrapping_mul`](Self::wrapping_mul) and
2726        /// [`wrapping_add`](Self::wrapping_add) methods:
2727        ///
2728        /// ```
2729        /// #![feature(bigint_helper_methods)]
2730        /// assert_eq!(
2731        ///     789_u16.carrying_mul(456, 123).0,
2732        ///     789_u16.wrapping_mul(456).wrapping_add(123),
2733        /// );
2734        /// ```
2735        #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2736        #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
2737        #[must_use = "this returns the result of the operation, \
2738                      without modifying the original"]
2739        #[inline]
2740        pub const fn carrying_mul(self, rhs: Self, carry: Self) -> (Self, Self) {
2741            Self::carrying_mul_add(self, rhs, carry, 0)
2742        }
2743
2744        /// Calculates the "full multiplication" `self * rhs + carry1 + carry2`
2745        /// without the possibility to overflow.
2746        ///
2747        /// This returns the low-order (wrapping) bits and the high-order (overflow) bits
2748        /// of the result as two separate values, in that order.
2749        ///
2750        /// Performs "long multiplication" which takes in an extra amount to add, and may return an
2751        /// additional amount of overflow. This allows for chaining together multiple
2752        /// multiplications to create "big integers" which represent larger values.
2753        ///
2754        /// If you don't need either `carry`, then you can use [`Self::widening_mul`] instead,
2755        /// and if you only need one `carry`, then you can use [`Self::carrying_mul`] instead.
2756        ///
2757        /// # Examples
2758        ///
2759        /// Please note that this example is shared between integer types,
2760        /// which explains why `u32` is used here.
2761        ///
2762        /// ```
2763        /// #![feature(bigint_helper_methods)]
2764        /// assert_eq!(5u32.carrying_mul_add(2, 0, 0), (10, 0));
2765        /// assert_eq!(5u32.carrying_mul_add(2, 10, 10), (30, 0));
2766        /// assert_eq!(1_000_000_000u32.carrying_mul_add(10, 0, 0), (1410065408, 2));
2767        /// assert_eq!(1_000_000_000u32.carrying_mul_add(10, 10, 10), (1410065428, 2));
2768        #[doc = concat!("assert_eq!(",
2769            stringify!($SelfT), "::MAX.carrying_mul_add(", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX), ",
2770            "(", stringify!($SelfT), "::MAX, ", stringify!($SelfT), "::MAX));"
2771        )]
2772        /// ```
2773        ///
2774        /// This is the core per-digit operation for "grade school" O(n²) multiplication.
2775        ///
2776        /// Please note that this example is shared between integer types,
2777        /// using `u8` for simplicity of the demonstration.
2778        ///
2779        /// ```
2780        /// #![feature(bigint_helper_methods)]
2781        ///
2782        /// fn quadratic_mul<const N: usize>(a: [u8; N], b: [u8; N]) -> [u8; N] {
2783        ///     let mut out = [0; N];
2784        ///     for j in 0..N {
2785        ///         let mut carry = 0;
2786        ///         for i in 0..(N - j) {
2787        ///             (out[j + i], carry) = u8::carrying_mul_add(a[i], b[j], out[j + i], carry);
2788        ///         }
2789        ///     }
2790        ///     out
2791        /// }
2792        ///
2793        /// // -1 * -1 == 1
2794        /// assert_eq!(quadratic_mul([0xFF; 3], [0xFF; 3]), [1, 0, 0]);
2795        ///
2796        /// assert_eq!(u32::wrapping_mul(0x9e3779b9, 0x7f4a7c15), 0xCFFC982D);
2797        /// assert_eq!(
2798        ///     quadratic_mul(u32::to_le_bytes(0x9e3779b9), u32::to_le_bytes(0x7f4a7c15)),
2799        ///     u32::to_le_bytes(0xCFFC982D)
2800        /// );
2801        /// ```
2802        #[unstable(feature = "bigint_helper_methods", issue = "85532")]
2803        #[rustc_const_unstable(feature = "bigint_helper_methods", issue = "85532")]
2804        #[must_use = "this returns the result of the operation, \
2805                      without modifying the original"]
2806        #[inline]
2807        pub const fn carrying_mul_add(self, rhs: Self, carry: Self, add: Self) -> (Self, Self) {
2808            intrinsics::carrying_mul_add(self, rhs, carry, add)
2809        }
2810
2811        /// Calculates the divisor when `self` is divided by `rhs`.
2812        ///
2813        /// Returns a tuple of the divisor along with a boolean indicating
2814        /// whether an arithmetic overflow would occur. Note that for unsigned
2815        /// integers overflow never occurs, so the second value is always
2816        /// `false`.
2817        ///
2818        /// # Panics
2819        ///
2820        /// This function will panic if `rhs` is zero.
2821        ///
2822        /// # Examples
2823        ///
2824        /// ```
2825        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_div(2), (2, false));")]
2826        /// ```
2827        #[inline(always)]
2828        #[stable(feature = "wrapping", since = "1.7.0")]
2829        #[rustc_const_stable(feature = "const_overflowing_int_methods", since = "1.52.0")]
2830        #[must_use = "this returns the result of the operation, \
2831                      without modifying the original"]
2832        #[track_caller]
2833        pub const fn overflowing_div(self, rhs: Self) -> (Self, bool) {
2834            (self / rhs, false)
2835        }
2836
2837        /// Calculates the quotient of Euclidean division `self.div_euclid(rhs)`.
2838        ///
2839        /// Returns a tuple of the divisor along with a boolean indicating
2840        /// whether an arithmetic overflow would occur. Note that for unsigned
2841        /// integers overflow never occurs, so the second value is always
2842        /// `false`.
2843        /// Since, for the positive integers, all common
2844        /// definitions of division are equal, this
2845        /// is exactly equal to `self.overflowing_div(rhs)`.
2846        ///
2847        /// # Panics
2848        ///
2849        /// This function will panic if `rhs` is zero.
2850        ///
2851        /// # Examples
2852        ///
2853        /// ```
2854        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_div_euclid(2), (2, false));")]
2855        /// ```
2856        #[inline(always)]
2857        #[stable(feature = "euclidean_division", since = "1.38.0")]
2858        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
2859        #[must_use = "this returns the result of the operation, \
2860                      without modifying the original"]
2861        #[track_caller]
2862        pub const fn overflowing_div_euclid(self, rhs: Self) -> (Self, bool) {
2863            (self / rhs, false)
2864        }
2865
2866        /// Calculates the remainder when `self` is divided by `rhs`.
2867        ///
2868        /// Returns a tuple of the remainder after dividing along with a boolean
2869        /// indicating whether an arithmetic overflow would occur. Note that for
2870        /// unsigned integers overflow never occurs, so the second value is
2871        /// always `false`.
2872        ///
2873        /// # Panics
2874        ///
2875        /// This function will panic if `rhs` is zero.
2876        ///
2877        /// # Examples
2878        ///
2879        /// ```
2880        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_rem(2), (1, false));")]
2881        /// ```
2882        #[inline(always)]
2883        #[stable(feature = "wrapping", since = "1.7.0")]
2884        #[rustc_const_stable(feature = "const_overflowing_int_methods", since = "1.52.0")]
2885        #[must_use = "this returns the result of the operation, \
2886                      without modifying the original"]
2887        #[track_caller]
2888        pub const fn overflowing_rem(self, rhs: Self) -> (Self, bool) {
2889            (self % rhs, false)
2890        }
2891
2892        /// Calculates the remainder `self.rem_euclid(rhs)` as if by Euclidean division.
2893        ///
2894        /// Returns a tuple of the modulo after dividing along with a boolean
2895        /// indicating whether an arithmetic overflow would occur. Note that for
2896        /// unsigned integers overflow never occurs, so the second value is
2897        /// always `false`.
2898        /// Since, for the positive integers, all common
2899        /// definitions of division are equal, this operation
2900        /// is exactly equal to `self.overflowing_rem(rhs)`.
2901        ///
2902        /// # Panics
2903        ///
2904        /// This function will panic if `rhs` is zero.
2905        ///
2906        /// # Examples
2907        ///
2908        /// ```
2909        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_rem_euclid(2), (1, false));")]
2910        /// ```
2911        #[inline(always)]
2912        #[stable(feature = "euclidean_division", since = "1.38.0")]
2913        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
2914        #[must_use = "this returns the result of the operation, \
2915                      without modifying the original"]
2916        #[track_caller]
2917        pub const fn overflowing_rem_euclid(self, rhs: Self) -> (Self, bool) {
2918            (self % rhs, false)
2919        }
2920
2921        /// Negates self in an overflowing fashion.
2922        ///
2923        /// Returns `!self + 1` using wrapping operations to return the value
2924        /// that represents the negation of this unsigned value. Note that for
2925        /// positive unsigned values overflow always occurs, but negating 0 does
2926        /// not overflow.
2927        ///
2928        /// # Examples
2929        ///
2930        /// ```
2931        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".overflowing_neg(), (0, false));")]
2932        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".overflowing_neg(), (-2i32 as ", stringify!($SelfT), ", true));")]
2933        /// ```
2934        #[inline(always)]
2935        #[stable(feature = "wrapping", since = "1.7.0")]
2936        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2937        #[must_use = "this returns the result of the operation, \
2938                      without modifying the original"]
2939        pub const fn overflowing_neg(self) -> (Self, bool) {
2940            ((!self).wrapping_add(1), self != 0)
2941        }
2942
2943        /// Shifts self left by `rhs` bits.
2944        ///
2945        /// Returns a tuple of the shifted version of self along with a boolean
2946        /// indicating whether the shift value was larger than or equal to the
2947        /// number of bits. If the shift value is too large, then value is
2948        /// masked (N-1) where N is the number of bits, and this value is then
2949        /// used to perform the shift.
2950        ///
2951        /// # Examples
2952        ///
2953        /// ```
2954        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".overflowing_shl(4), (0x10, false));")]
2955        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".overflowing_shl(132), (0x10, true));")]
2956        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shl(", stringify!($BITS_MINUS_ONE), "), (0, false));")]
2957        /// ```
2958        #[stable(feature = "wrapping", since = "1.7.0")]
2959        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2960        #[must_use = "this returns the result of the operation, \
2961                      without modifying the original"]
2962        #[inline(always)]
2963        pub const fn overflowing_shl(self, rhs: u32) -> (Self, bool) {
2964            (self.wrapping_shl(rhs), rhs >= Self::BITS)
2965        }
2966
2967        /// Shifts self right by `rhs` bits.
2968        ///
2969        /// Returns a tuple of the shifted version of self along with a boolean
2970        /// indicating whether the shift value was larger than or equal to the
2971        /// number of bits. If the shift value is too large, then value is
2972        /// masked (N-1) where N is the number of bits, and this value is then
2973        /// used to perform the shift.
2974        ///
2975        /// # Examples
2976        ///
2977        /// ```
2978        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shr(4), (0x1, false));")]
2979        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shr(132), (0x1, true));")]
2980        /// ```
2981        #[stable(feature = "wrapping", since = "1.7.0")]
2982        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
2983        #[must_use = "this returns the result of the operation, \
2984                      without modifying the original"]
2985        #[inline(always)]
2986        pub const fn overflowing_shr(self, rhs: u32) -> (Self, bool) {
2987            (self.wrapping_shr(rhs), rhs >= Self::BITS)
2988        }
2989
2990        /// Raises self to the power of `exp`, using exponentiation by squaring.
2991        ///
2992        /// Returns a tuple of the exponentiation along with a bool indicating
2993        /// whether an overflow happened.
2994        ///
2995        /// # Examples
2996        ///
2997        /// ```
2998        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".overflowing_pow(5), (243, false));")]
2999        /// assert_eq!(3u8.overflowing_pow(6), (217, true));
3000        /// ```
3001        #[stable(feature = "no_panic_pow", since = "1.34.0")]
3002        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
3003        #[must_use = "this returns the result of the operation, \
3004                      without modifying the original"]
3005        #[inline]
3006        pub const fn overflowing_pow(self, mut exp: u32) -> (Self, bool) {
3007            if exp == 0{
3008                return (1,false);
3009            }
3010            let mut base = self;
3011            let mut acc: Self = 1;
3012            let mut overflown = false;
3013            // Scratch space for storing results of overflowing_mul.
3014            let mut r;
3015
3016            loop {
3017                if (exp & 1) == 1 {
3018                    r = acc.overflowing_mul(base);
3019                    // since exp!=0, finally the exp must be 1.
3020                    if exp == 1 {
3021                        r.1 |= overflown;
3022                        return r;
3023                    }
3024                    acc = r.0;
3025                    overflown |= r.1;
3026                }
3027                exp /= 2;
3028                r = base.overflowing_mul(base);
3029                base = r.0;
3030                overflown |= r.1;
3031            }
3032        }
3033
3034        /// Raises self to the power of `exp`, using exponentiation by squaring.
3035        ///
3036        /// # Examples
3037        ///
3038        /// ```
3039        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".pow(5), 32);")]
3040        /// ```
3041        #[stable(feature = "rust1", since = "1.0.0")]
3042        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
3043        #[must_use = "this returns the result of the operation, \
3044                      without modifying the original"]
3045        #[inline]
3046        #[rustc_inherit_overflow_checks]
3047        pub const fn pow(self, mut exp: u32) -> Self {
3048            if exp == 0 {
3049                return 1;
3050            }
3051            let mut base = self;
3052            let mut acc = 1;
3053
3054            if intrinsics::is_val_statically_known(exp) {
3055                while exp > 1 {
3056                    if (exp & 1) == 1 {
3057                        acc = acc * base;
3058                    }
3059                    exp /= 2;
3060                    base = base * base;
3061                }
3062
3063                // since exp!=0, finally the exp must be 1.
3064                // Deal with the final bit of the exponent separately, since
3065                // squaring the base afterwards is not necessary and may cause a
3066                // needless overflow.
3067                acc * base
3068            } else {
3069                // This is faster than the above when the exponent is not known
3070                // at compile time. We can't use the same code for the constant
3071                // exponent case because LLVM is currently unable to unroll
3072                // this loop.
3073                loop {
3074                    if (exp & 1) == 1 {
3075                        acc = acc * base;
3076                        // since exp!=0, finally the exp must be 1.
3077                        if exp == 1 {
3078                            return acc;
3079                        }
3080                    }
3081                    exp /= 2;
3082                    base = base * base;
3083                }
3084            }
3085        }
3086
3087        /// Returns the square root of the number, rounded down.
3088        ///
3089        /// # Examples
3090        ///
3091        /// ```
3092        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".isqrt(), 3);")]
3093        /// ```
3094        #[stable(feature = "isqrt", since = "1.84.0")]
3095        #[rustc_const_stable(feature = "isqrt", since = "1.84.0")]
3096        #[must_use = "this returns the result of the operation, \
3097                      without modifying the original"]
3098        #[inline]
3099        pub const fn isqrt(self) -> Self {
3100            let result = crate::num::int_sqrt::$ActualT(self as $ActualT) as $SelfT;
3101
3102            // Inform the optimizer what the range of outputs is. If testing
3103            // `core` crashes with no panic message and a `num::int_sqrt::u*`
3104            // test failed, it's because your edits caused these assertions or
3105            // the assertions in `fn isqrt` of `nonzero.rs` to become false.
3106            //
3107            // SAFETY: Integer square root is a monotonically nondecreasing
3108            // function, which means that increasing the input will never
3109            // cause the output to decrease. Thus, since the input for unsigned
3110            // integers is bounded by `[0, <$ActualT>::MAX]`, sqrt(n) will be
3111            // bounded by `[sqrt(0), sqrt(<$ActualT>::MAX)]`.
3112            unsafe {
3113                const MAX_RESULT: $SelfT = crate::num::int_sqrt::$ActualT(<$ActualT>::MAX) as $SelfT;
3114                crate::hint::assert_unchecked(result <= MAX_RESULT);
3115            }
3116
3117            result
3118        }
3119
3120        /// Performs Euclidean division.
3121        ///
3122        /// Since, for the positive integers, all common
3123        /// definitions of division are equal, this
3124        /// is exactly equal to `self / rhs`.
3125        ///
3126        /// # Panics
3127        ///
3128        /// This function will panic if `rhs` is zero.
3129        ///
3130        /// # Examples
3131        ///
3132        /// ```
3133        #[doc = concat!("assert_eq!(7", stringify!($SelfT), ".div_euclid(4), 1); // or any other integer type")]
3134        /// ```
3135        #[stable(feature = "euclidean_division", since = "1.38.0")]
3136        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
3137        #[must_use = "this returns the result of the operation, \
3138                      without modifying the original"]
3139        #[inline(always)]
3140        #[track_caller]
3141        pub const fn div_euclid(self, rhs: Self) -> Self {
3142            self / rhs
3143        }
3144
3145
3146        /// Calculates the least remainder of `self (mod rhs)`.
3147        ///
3148        /// Since, for the positive integers, all common
3149        /// definitions of division are equal, this
3150        /// is exactly equal to `self % rhs`.
3151        ///
3152        /// # Panics
3153        ///
3154        /// This function will panic if `rhs` is zero.
3155        ///
3156        /// # Examples
3157        ///
3158        /// ```
3159        #[doc = concat!("assert_eq!(7", stringify!($SelfT), ".rem_euclid(4), 3); // or any other integer type")]
3160        /// ```
3161        #[doc(alias = "modulo", alias = "mod")]
3162        #[stable(feature = "euclidean_division", since = "1.38.0")]
3163        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
3164        #[must_use = "this returns the result of the operation, \
3165                      without modifying the original"]
3166        #[inline(always)]
3167        #[track_caller]
3168        pub const fn rem_euclid(self, rhs: Self) -> Self {
3169            self % rhs
3170        }
3171
3172        /// Calculates the quotient of `self` and `rhs`, rounding the result towards negative infinity.
3173        ///
3174        /// This is the same as performing `self / rhs` for all unsigned integers.
3175        ///
3176        /// # Panics
3177        ///
3178        /// This function will panic if `rhs` is zero.
3179        ///
3180        /// # Examples
3181        ///
3182        /// ```
3183        /// #![feature(int_roundings)]
3184        #[doc = concat!("assert_eq!(7_", stringify!($SelfT), ".div_floor(4), 1);")]
3185        /// ```
3186        #[unstable(feature = "int_roundings", issue = "88581")]
3187        #[must_use = "this returns the result of the operation, \
3188                      without modifying the original"]
3189        #[inline(always)]
3190        #[track_caller]
3191        pub const fn div_floor(self, rhs: Self) -> Self {
3192            self / rhs
3193        }
3194
3195        /// Calculates the quotient of `self` and `rhs`, rounding the result towards positive infinity.
3196        ///
3197        /// # Panics
3198        ///
3199        /// This function will panic if `rhs` is zero.
3200        ///
3201        /// # Examples
3202        ///
3203        /// ```
3204        #[doc = concat!("assert_eq!(7_", stringify!($SelfT), ".div_ceil(4), 2);")]
3205        /// ```
3206        #[stable(feature = "int_roundings1", since = "1.73.0")]
3207        #[rustc_const_stable(feature = "int_roundings1", since = "1.73.0")]
3208        #[must_use = "this returns the result of the operation, \
3209                      without modifying the original"]
3210        #[inline]
3211        #[track_caller]
3212        pub const fn div_ceil(self, rhs: Self) -> Self {
3213            let d = self / rhs;
3214            let r = self % rhs;
3215            if r > 0 {
3216                d + 1
3217            } else {
3218                d
3219            }
3220        }
3221
3222        /// Calculates the smallest value greater than or equal to `self` that
3223        /// is a multiple of `rhs`.
3224        ///
3225        /// # Panics
3226        ///
3227        /// This function will panic if `rhs` is zero.
3228        ///
3229        /// ## Overflow behavior
3230        ///
3231        /// On overflow, this function will panic if overflow checks are enabled (default in debug
3232        /// mode) and wrap if overflow checks are disabled (default in release mode).
3233        ///
3234        /// # Examples
3235        ///
3236        /// ```
3237        #[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".next_multiple_of(8), 16);")]
3238        #[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".next_multiple_of(8), 24);")]
3239        /// ```
3240        #[stable(feature = "int_roundings1", since = "1.73.0")]
3241        #[rustc_const_stable(feature = "int_roundings1", since = "1.73.0")]
3242        #[must_use = "this returns the result of the operation, \
3243                      without modifying the original"]
3244        #[inline]
3245        #[rustc_inherit_overflow_checks]
3246        pub const fn next_multiple_of(self, rhs: Self) -> Self {
3247            match self % rhs {
3248                0 => self,
3249                r => self + (rhs - r)
3250            }
3251        }
3252
3253        /// Calculates the smallest value greater than or equal to `self` that
3254        /// is a multiple of `rhs`. Returns `None` if `rhs` is zero or the
3255        /// operation would result in overflow.
3256        ///
3257        /// # Examples
3258        ///
3259        /// ```
3260        #[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".checked_next_multiple_of(8), Some(16));")]
3261        #[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".checked_next_multiple_of(8), Some(24));")]
3262        #[doc = concat!("assert_eq!(1_", stringify!($SelfT), ".checked_next_multiple_of(0), None);")]
3263        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_next_multiple_of(2), None);")]
3264        /// ```
3265        #[stable(feature = "int_roundings1", since = "1.73.0")]
3266        #[rustc_const_stable(feature = "int_roundings1", since = "1.73.0")]
3267        #[must_use = "this returns the result of the operation, \
3268                      without modifying the original"]
3269        #[inline]
3270        pub const fn checked_next_multiple_of(self, rhs: Self) -> Option<Self> {
3271            match try_opt!(self.checked_rem(rhs)) {
3272                0 => Some(self),
3273                // rhs - r cannot overflow because r is smaller than rhs
3274                r => self.checked_add(rhs - r)
3275            }
3276        }
3277
3278        /// Returns `true` if `self` is an integer multiple of `rhs`, and false otherwise.
3279        ///
3280        /// This function is equivalent to `self % rhs == 0`, except that it will not panic
3281        /// for `rhs == 0`. Instead, `0.is_multiple_of(0) == true`, and for any non-zero `n`,
3282        /// `n.is_multiple_of(0) == false`.
3283        ///
3284        /// # Examples
3285        ///
3286        /// ```
3287        #[doc = concat!("assert!(6_", stringify!($SelfT), ".is_multiple_of(2));")]
3288        #[doc = concat!("assert!(!5_", stringify!($SelfT), ".is_multiple_of(2));")]
3289        ///
3290        #[doc = concat!("assert!(0_", stringify!($SelfT), ".is_multiple_of(0));")]
3291        #[doc = concat!("assert!(!6_", stringify!($SelfT), ".is_multiple_of(0));")]
3292        /// ```
3293        #[stable(feature = "unsigned_is_multiple_of", since = "1.87.0")]
3294        #[rustc_const_stable(feature = "unsigned_is_multiple_of", since = "1.87.0")]
3295        #[must_use]
3296        #[inline]
3297        #[rustc_inherit_overflow_checks]
3298        pub const fn is_multiple_of(self, rhs: Self) -> bool {
3299            match rhs {
3300                0 => self == 0,
3301                _ => self % rhs == 0,
3302            }
3303        }
3304
3305        /// Returns `true` if and only if `self == 2^k` for some unsigned integer `k`.
3306        ///
3307        /// # Examples
3308        ///
3309        /// ```
3310        #[doc = concat!("assert!(16", stringify!($SelfT), ".is_power_of_two());")]
3311        #[doc = concat!("assert!(!10", stringify!($SelfT), ".is_power_of_two());")]
3312        /// ```
3313        #[must_use]
3314        #[stable(feature = "rust1", since = "1.0.0")]
3315        #[rustc_const_stable(feature = "const_is_power_of_two", since = "1.32.0")]
3316        #[inline(always)]
3317        pub const fn is_power_of_two(self) -> bool {
3318            self.count_ones() == 1
3319        }
3320
3321        // Returns one less than next power of two.
3322        // (For 8u8 next power of two is 8u8 and for 6u8 it is 8u8)
3323        //
3324        // 8u8.one_less_than_next_power_of_two() == 7
3325        // 6u8.one_less_than_next_power_of_two() == 7
3326        //
3327        // This method cannot overflow, as in the `next_power_of_two`
3328        // overflow cases it instead ends up returning the maximum value
3329        // of the type, and can return 0 for 0.
3330        #[inline]
3331        const fn one_less_than_next_power_of_two(self) -> Self {
3332            if self <= 1 { return 0; }
3333
3334            let p = self - 1;
3335            // SAFETY: Because `p > 0`, it cannot consist entirely of leading zeros.
3336            // That means the shift is always in-bounds, and some processors
3337            // (such as intel pre-haswell) have more efficient ctlz
3338            // intrinsics when the argument is non-zero.
3339            let z = unsafe { intrinsics::ctlz_nonzero(p) };
3340            <$SelfT>::MAX >> z
3341        }
3342
3343        /// Returns the smallest power of two greater than or equal to `self`.
3344        ///
3345        /// When return value overflows (i.e., `self > (1 << (N-1))` for type
3346        /// `uN`), it panics in debug mode and the return value is wrapped to 0 in
3347        /// release mode (the only situation in which this method can return 0).
3348        ///
3349        /// # Examples
3350        ///
3351        /// ```
3352        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".next_power_of_two(), 2);")]
3353        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".next_power_of_two(), 4);")]
3354        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".next_power_of_two(), 1);")]
3355        /// ```
3356        #[stable(feature = "rust1", since = "1.0.0")]
3357        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
3358        #[must_use = "this returns the result of the operation, \
3359                      without modifying the original"]
3360        #[inline]
3361        #[rustc_inherit_overflow_checks]
3362        pub const fn next_power_of_two(self) -> Self {
3363            self.one_less_than_next_power_of_two() + 1
3364        }
3365
3366        /// Returns the smallest power of two greater than or equal to `self`. If
3367        /// the next power of two is greater than the type's maximum value,
3368        /// `None` is returned, otherwise the power of two is wrapped in `Some`.
3369        ///
3370        /// # Examples
3371        ///
3372        /// ```
3373        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_next_power_of_two(), Some(2));")]
3374        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".checked_next_power_of_two(), Some(4));")]
3375        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_next_power_of_two(), None);")]
3376        /// ```
3377        #[inline]
3378        #[stable(feature = "rust1", since = "1.0.0")]
3379        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
3380        #[must_use = "this returns the result of the operation, \
3381                      without modifying the original"]
3382        pub const fn checked_next_power_of_two(self) -> Option<Self> {
3383            self.one_less_than_next_power_of_two().checked_add(1)
3384        }
3385
3386        /// Returns the smallest power of two greater than or equal to `n`. If
3387        /// the next power of two is greater than the type's maximum value,
3388        /// the return value is wrapped to `0`.
3389        ///
3390        /// # Examples
3391        ///
3392        /// ```
3393        /// #![feature(wrapping_next_power_of_two)]
3394        ///
3395        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".wrapping_next_power_of_two(), 2);")]
3396        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".wrapping_next_power_of_two(), 4);")]
3397        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.wrapping_next_power_of_two(), 0);")]
3398        /// ```
3399        #[inline]
3400        #[unstable(feature = "wrapping_next_power_of_two", issue = "32463",
3401                   reason = "needs decision on wrapping behavior")]
3402        #[must_use = "this returns the result of the operation, \
3403                      without modifying the original"]
3404        pub const fn wrapping_next_power_of_two(self) -> Self {
3405            self.one_less_than_next_power_of_two().wrapping_add(1)
3406        }
3407
3408        /// Returns the memory representation of this integer as a byte array in
3409        /// big-endian (network) byte order.
3410        ///
3411        #[doc = $to_xe_bytes_doc]
3412        ///
3413        /// # Examples
3414        ///
3415        /// ```
3416        #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_be_bytes();")]
3417        #[doc = concat!("assert_eq!(bytes, ", $be_bytes, ");")]
3418        /// ```
3419        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3420        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3421        #[must_use = "this returns the result of the operation, \
3422                      without modifying the original"]
3423        #[inline]
3424        pub const fn to_be_bytes(self) -> [u8; size_of::<Self>()] {
3425            self.to_be().to_ne_bytes()
3426        }
3427
3428        /// Returns the memory representation of this integer as a byte array in
3429        /// little-endian byte order.
3430        ///
3431        #[doc = $to_xe_bytes_doc]
3432        ///
3433        /// # Examples
3434        ///
3435        /// ```
3436        #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_le_bytes();")]
3437        #[doc = concat!("assert_eq!(bytes, ", $le_bytes, ");")]
3438        /// ```
3439        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3440        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3441        #[must_use = "this returns the result of the operation, \
3442                      without modifying the original"]
3443        #[inline]
3444        pub const fn to_le_bytes(self) -> [u8; size_of::<Self>()] {
3445            self.to_le().to_ne_bytes()
3446        }
3447
3448        /// Returns the memory representation of this integer as a byte array in
3449        /// native byte order.
3450        ///
3451        /// As the target platform's native endianness is used, portable code
3452        /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate,
3453        /// instead.
3454        ///
3455        #[doc = $to_xe_bytes_doc]
3456        ///
3457        /// [`to_be_bytes`]: Self::to_be_bytes
3458        /// [`to_le_bytes`]: Self::to_le_bytes
3459        ///
3460        /// # Examples
3461        ///
3462        /// ```
3463        #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_ne_bytes();")]
3464        /// assert_eq!(
3465        ///     bytes,
3466        ///     if cfg!(target_endian = "big") {
3467        #[doc = concat!("        ", $be_bytes)]
3468        ///     } else {
3469        #[doc = concat!("        ", $le_bytes)]
3470        ///     }
3471        /// );
3472        /// ```
3473        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3474        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3475        #[must_use = "this returns the result of the operation, \
3476                      without modifying the original"]
3477        #[allow(unnecessary_transmutes)]
3478        // SAFETY: const sound because integers are plain old datatypes so we can always
3479        // transmute them to arrays of bytes
3480        #[inline]
3481        pub const fn to_ne_bytes(self) -> [u8; size_of::<Self>()] {
3482            // SAFETY: integers are plain old datatypes so we can always transmute them to
3483            // arrays of bytes
3484            unsafe { mem::transmute(self) }
3485        }
3486
3487        /// Creates a native endian integer value from its representation
3488        /// as a byte array in big endian.
3489        ///
3490        #[doc = $from_xe_bytes_doc]
3491        ///
3492        /// # Examples
3493        ///
3494        /// ```
3495        #[doc = concat!("let value = ", stringify!($SelfT), "::from_be_bytes(", $be_bytes, ");")]
3496        #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
3497        /// ```
3498        ///
3499        /// When starting from a slice rather than an array, fallible conversion APIs can be used:
3500        ///
3501        /// ```
3502        #[doc = concat!("fn read_be_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
3503        #[doc = concat!("    let (int_bytes, rest) = input.split_at(size_of::<", stringify!($SelfT), ">());")]
3504        ///     *input = rest;
3505        #[doc = concat!("    ", stringify!($SelfT), "::from_be_bytes(int_bytes.try_into().unwrap())")]
3506        /// }
3507        /// ```
3508        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3509        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3510        #[must_use]
3511        #[inline]
3512        pub const fn from_be_bytes(bytes: [u8; size_of::<Self>()]) -> Self {
3513            Self::from_be(Self::from_ne_bytes(bytes))
3514        }
3515
3516        /// Creates a native endian integer value from its representation
3517        /// as a byte array in little endian.
3518        ///
3519        #[doc = $from_xe_bytes_doc]
3520        ///
3521        /// # Examples
3522        ///
3523        /// ```
3524        #[doc = concat!("let value = ", stringify!($SelfT), "::from_le_bytes(", $le_bytes, ");")]
3525        #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
3526        /// ```
3527        ///
3528        /// When starting from a slice rather than an array, fallible conversion APIs can be used:
3529        ///
3530        /// ```
3531        #[doc = concat!("fn read_le_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
3532        #[doc = concat!("    let (int_bytes, rest) = input.split_at(size_of::<", stringify!($SelfT), ">());")]
3533        ///     *input = rest;
3534        #[doc = concat!("    ", stringify!($SelfT), "::from_le_bytes(int_bytes.try_into().unwrap())")]
3535        /// }
3536        /// ```
3537        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3538        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3539        #[must_use]
3540        #[inline]
3541        pub const fn from_le_bytes(bytes: [u8; size_of::<Self>()]) -> Self {
3542            Self::from_le(Self::from_ne_bytes(bytes))
3543        }
3544
3545        /// Creates a native endian integer value from its memory representation
3546        /// as a byte array in native endianness.
3547        ///
3548        /// As the target platform's native endianness is used, portable code
3549        /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
3550        /// appropriate instead.
3551        ///
3552        /// [`from_be_bytes`]: Self::from_be_bytes
3553        /// [`from_le_bytes`]: Self::from_le_bytes
3554        ///
3555        #[doc = $from_xe_bytes_doc]
3556        ///
3557        /// # Examples
3558        ///
3559        /// ```
3560        #[doc = concat!("let value = ", stringify!($SelfT), "::from_ne_bytes(if cfg!(target_endian = \"big\") {")]
3561        #[doc = concat!("    ", $be_bytes, "")]
3562        /// } else {
3563        #[doc = concat!("    ", $le_bytes, "")]
3564        /// });
3565        #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
3566        /// ```
3567        ///
3568        /// When starting from a slice rather than an array, fallible conversion APIs can be used:
3569        ///
3570        /// ```
3571        #[doc = concat!("fn read_ne_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
3572        #[doc = concat!("    let (int_bytes, rest) = input.split_at(size_of::<", stringify!($SelfT), ">());")]
3573        ///     *input = rest;
3574        #[doc = concat!("    ", stringify!($SelfT), "::from_ne_bytes(int_bytes.try_into().unwrap())")]
3575        /// }
3576        /// ```
3577        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
3578        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
3579        #[allow(unnecessary_transmutes)]
3580        #[must_use]
3581        // SAFETY: const sound because integers are plain old datatypes so we can always
3582        // transmute to them
3583        #[inline]
3584        pub const fn from_ne_bytes(bytes: [u8; size_of::<Self>()]) -> Self {
3585            // SAFETY: integers are plain old datatypes so we can always transmute to them
3586            unsafe { mem::transmute(bytes) }
3587        }
3588
3589        /// New code should prefer to use
3590        #[doc = concat!("[`", stringify!($SelfT), "::MIN", "`] instead.")]
3591        ///
3592        /// Returns the smallest value that can be represented by this integer type.
3593        #[stable(feature = "rust1", since = "1.0.0")]
3594        #[rustc_promotable]
3595        #[inline(always)]
3596        #[rustc_const_stable(feature = "const_max_value", since = "1.32.0")]
3597        #[deprecated(since = "TBD", note = "replaced by the `MIN` associated constant on this type")]
3598        #[rustc_diagnostic_item = concat!(stringify!($SelfT), "_legacy_fn_min_value")]
3599        pub const fn min_value() -> Self { Self::MIN }
3600
3601        /// New code should prefer to use
3602        #[doc = concat!("[`", stringify!($SelfT), "::MAX", "`] instead.")]
3603        ///
3604        /// Returns the largest value that can be represented by this integer type.
3605        #[stable(feature = "rust1", since = "1.0.0")]
3606        #[rustc_promotable]
3607        #[inline(always)]
3608        #[rustc_const_stable(feature = "const_max_value", since = "1.32.0")]
3609        #[deprecated(since = "TBD", note = "replaced by the `MAX` associated constant on this type")]
3610        #[rustc_diagnostic_item = concat!(stringify!($SelfT), "_legacy_fn_max_value")]
3611        pub const fn max_value() -> Self { Self::MAX }
3612    }
3613}