core/macros/
mod.rs

1#[doc = include_str!("panic.md")]
2#[macro_export]
3#[rustc_builtin_macro(core_panic)]
4#[allow_internal_unstable(edition_panic)]
5#[stable(feature = "core", since = "1.6.0")]
6#[rustc_diagnostic_item = "core_panic_macro"]
7macro_rules! panic {
8    // Expands to either `$crate::panic::panic_2015` or `$crate::panic::panic_2021`
9    // depending on the edition of the caller.
10    ($($arg:tt)*) => {
11        /* compiler built-in */
12    };
13}
14
15/// Asserts that two expressions are equal to each other (using [`PartialEq`]).
16///
17/// Assertions are always checked in both debug and release builds, and cannot
18/// be disabled. See [`debug_assert_eq!`] for assertions that are disabled in
19/// release builds by default.
20///
21/// [`debug_assert_eq!`]: crate::debug_assert_eq
22///
23/// On panic, this macro will print the values of the expressions with their
24/// debug representations.
25///
26/// Like [`assert!`], this macro has a second form, where a custom
27/// panic message can be provided.
28///
29/// # Examples
30///
31/// ```
32/// let a = 3;
33/// let b = 1 + 2;
34/// assert_eq!(a, b);
35///
36/// assert_eq!(a, b, "we are testing addition with {} and {}", a, b);
37/// ```
38#[macro_export]
39#[stable(feature = "rust1", since = "1.0.0")]
40#[rustc_diagnostic_item = "assert_eq_macro"]
41#[allow_internal_unstable(panic_internals)]
42macro_rules! assert_eq {
43    ($left:expr, $right:expr $(,)?) => {
44        match (&$left, &$right) {
45            (left_val, right_val) => {
46                if !(*left_val == *right_val) {
47                    let kind = $crate::panicking::AssertKind::Eq;
48                    // The reborrows below are intentional. Without them, the stack slot for the
49                    // borrow is initialized even before the values are compared, leading to a
50                    // noticeable slow down.
51                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None);
52                }
53            }
54        }
55    };
56    ($left:expr, $right:expr, $($arg:tt)+) => {
57        match (&$left, &$right) {
58            (left_val, right_val) => {
59                if !(*left_val == *right_val) {
60                    let kind = $crate::panicking::AssertKind::Eq;
61                    // The reborrows below are intentional. Without them, the stack slot for the
62                    // borrow is initialized even before the values are compared, leading to a
63                    // noticeable slow down.
64                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+)));
65                }
66            }
67        }
68    };
69}
70
71/// Asserts that two expressions are not equal to each other (using [`PartialEq`]).
72///
73/// Assertions are always checked in both debug and release builds, and cannot
74/// be disabled. See [`debug_assert_ne!`] for assertions that are disabled in
75/// release builds by default.
76///
77/// [`debug_assert_ne!`]: crate::debug_assert_ne
78///
79/// On panic, this macro will print the values of the expressions with their
80/// debug representations.
81///
82/// Like [`assert!`], this macro has a second form, where a custom
83/// panic message can be provided.
84///
85/// # Examples
86///
87/// ```
88/// let a = 3;
89/// let b = 2;
90/// assert_ne!(a, b);
91///
92/// assert_ne!(a, b, "we are testing that the values are not equal");
93/// ```
94#[macro_export]
95#[stable(feature = "assert_ne", since = "1.13.0")]
96#[rustc_diagnostic_item = "assert_ne_macro"]
97#[allow_internal_unstable(panic_internals)]
98macro_rules! assert_ne {
99    ($left:expr, $right:expr $(,)?) => {
100        match (&$left, &$right) {
101            (left_val, right_val) => {
102                if *left_val == *right_val {
103                    let kind = $crate::panicking::AssertKind::Ne;
104                    // The reborrows below are intentional. Without them, the stack slot for the
105                    // borrow is initialized even before the values are compared, leading to a
106                    // noticeable slow down.
107                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::None);
108                }
109            }
110        }
111    };
112    ($left:expr, $right:expr, $($arg:tt)+) => {
113        match (&($left), &($right)) {
114            (left_val, right_val) => {
115                if *left_val == *right_val {
116                    let kind = $crate::panicking::AssertKind::Ne;
117                    // The reborrows below are intentional. Without them, the stack slot for the
118                    // borrow is initialized even before the values are compared, leading to a
119                    // noticeable slow down.
120                    $crate::panicking::assert_failed(kind, &*left_val, &*right_val, $crate::option::Option::Some($crate::format_args!($($arg)+)));
121                }
122            }
123        }
124    };
125}
126
127/// Asserts that an expression matches the provided pattern.
128///
129/// This macro is generally preferable to `assert!(matches!(value, pattern))`, because it can print
130/// the debug representation of the actual value shape that did not meet expectations. In contrast,
131/// using [`assert!`] will only print that expectations were not met, but not why.
132///
133/// The pattern syntax is exactly the same as found in a match arm and the `matches!` macro. The
134/// optional if guard can be used to add additional checks that must be true for the matched value,
135/// otherwise this macro will panic.
136///
137/// Assertions are always checked in both debug and release builds, and cannot
138/// be disabled. See [`debug_assert_matches!`] for assertions that are disabled in
139/// release builds by default.
140///
141/// [`debug_assert_matches!`]: crate::assert_matches::debug_assert_matches
142///
143/// On panic, this macro will print the value of the expression with its debug representation.
144///
145/// Like [`assert!`], this macro has a second form, where a custom panic message can be provided.
146///
147/// # Examples
148///
149/// ```
150/// #![feature(assert_matches)]
151///
152/// use std::assert_matches::assert_matches;
153///
154/// let a = Some(345);
155/// let b = Some(56);
156/// assert_matches!(a, Some(_));
157/// assert_matches!(b, Some(_));
158///
159/// assert_matches!(a, Some(345));
160/// assert_matches!(a, Some(345) | None);
161///
162/// // assert_matches!(a, None); // panics
163/// // assert_matches!(b, Some(345)); // panics
164/// // assert_matches!(b, Some(345) | None); // panics
165///
166/// assert_matches!(a, Some(x) if x > 100);
167/// // assert_matches!(a, Some(x) if x < 100); // panics
168/// ```
169#[unstable(feature = "assert_matches", issue = "82775")]
170#[allow_internal_unstable(panic_internals)]
171#[rustc_macro_transparency = "semitransparent"]
172pub macro assert_matches {
173    ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )? $(,)?) => {
174        match $left {
175            $( $pattern )|+ $( if $guard )? => {}
176            ref left_val => {
177                $crate::panicking::assert_matches_failed(
178                    left_val,
179                    $crate::stringify!($($pattern)|+ $(if $guard)?),
180                    $crate::option::Option::None
181                );
182            }
183        }
184    },
185    ($left:expr, $(|)? $( $pattern:pat_param )|+ $( if $guard: expr )?, $($arg:tt)+) => {
186        match $left {
187            $( $pattern )|+ $( if $guard )? => {}
188            ref left_val => {
189                $crate::panicking::assert_matches_failed(
190                    left_val,
191                    $crate::stringify!($($pattern)|+ $(if $guard)?),
192                    $crate::option::Option::Some($crate::format_args!($($arg)+))
193                );
194            }
195        }
196    },
197}
198
199/// Selects code at compile-time based on `cfg` predicates.
200///
201/// This macro evaluates, at compile-time, a series of `cfg` predicates,
202/// selects the first that is true, and emits the code guarded by that
203/// predicate. The code guarded by other predicates is not emitted.
204///
205/// An optional trailing `_` wildcard can be used to specify a fallback. If
206/// none of the predicates are true, a [`compile_error`] is emitted.
207///
208/// # Example
209///
210/// ```
211/// #![feature(cfg_select)]
212///
213/// cfg_select! {
214///     unix => {
215///         fn foo() { /* unix specific functionality */ }
216///     }
217///     target_pointer_width = "32" => {
218///         fn foo() { /* non-unix, 32-bit functionality */ }
219///     }
220///     _ => {
221///         fn foo() { /* fallback implementation */ }
222///     }
223/// }
224/// ```
225///
226/// The `cfg_select!` macro can also be used in expression position:
227///
228/// ```
229/// #![feature(cfg_select)]
230///
231/// let _some_string = cfg_select! {
232///     unix => { "With great power comes great electricity bills" }
233///     _ => { "Behind every successful diet is an unwatched pizza" }
234/// };
235/// ```
236#[unstable(feature = "cfg_select", issue = "115585")]
237#[rustc_diagnostic_item = "cfg_select"]
238#[rustc_builtin_macro]
239pub macro cfg_select($($tt:tt)*) {
240    /* compiler built-in */
241}
242
243/// Asserts that a boolean expression is `true` at runtime.
244///
245/// This will invoke the [`panic!`] macro if the provided expression cannot be
246/// evaluated to `true` at runtime.
247///
248/// Like [`assert!`], this macro also has a second version, where a custom panic
249/// message can be provided.
250///
251/// # Uses
252///
253/// Unlike [`assert!`], `debug_assert!` statements are only enabled in non
254/// optimized builds by default. An optimized build will not execute
255/// `debug_assert!` statements unless `-C debug-assertions` is passed to the
256/// compiler. This makes `debug_assert!` useful for checks that are too
257/// expensive to be present in a release build but may be helpful during
258/// development. The result of expanding `debug_assert!` is always type checked.
259///
260/// An unchecked assertion allows a program in an inconsistent state to keep
261/// running, which might have unexpected consequences but does not introduce
262/// unsafety as long as this only happens in safe code. The performance cost
263/// of assertions, however, is not measurable in general. Replacing [`assert!`]
264/// with `debug_assert!` is thus only encouraged after thorough profiling, and
265/// more importantly, only in safe code!
266///
267/// # Examples
268///
269/// ```
270/// // the panic message for these assertions is the stringified value of the
271/// // expression given.
272/// debug_assert!(true);
273///
274/// fn some_expensive_computation() -> bool {
275///     // Some expensive computation here
276///     true
277/// }
278/// debug_assert!(some_expensive_computation());
279///
280/// // assert with a custom message
281/// let x = true;
282/// debug_assert!(x, "x wasn't true!");
283///
284/// let a = 3; let b = 27;
285/// debug_assert!(a + b == 30, "a = {}, b = {}", a, b);
286/// ```
287#[macro_export]
288#[stable(feature = "rust1", since = "1.0.0")]
289#[rustc_diagnostic_item = "debug_assert_macro"]
290#[allow_internal_unstable(edition_panic)]
291macro_rules! debug_assert {
292    ($($arg:tt)*) => {
293        if $crate::cfg!(debug_assertions) {
294            $crate::assert!($($arg)*);
295        }
296    };
297}
298
299/// Asserts that two expressions are equal to each other.
300///
301/// On panic, this macro will print the values of the expressions with their
302/// debug representations.
303///
304/// Unlike [`assert_eq!`], `debug_assert_eq!` statements are only enabled in non
305/// optimized builds by default. An optimized build will not execute
306/// `debug_assert_eq!` statements unless `-C debug-assertions` is passed to the
307/// compiler. This makes `debug_assert_eq!` useful for checks that are too
308/// expensive to be present in a release build but may be helpful during
309/// development. The result of expanding `debug_assert_eq!` is always type checked.
310///
311/// # Examples
312///
313/// ```
314/// let a = 3;
315/// let b = 1 + 2;
316/// debug_assert_eq!(a, b);
317/// ```
318#[macro_export]
319#[stable(feature = "rust1", since = "1.0.0")]
320#[rustc_diagnostic_item = "debug_assert_eq_macro"]
321macro_rules! debug_assert_eq {
322    ($($arg:tt)*) => {
323        if $crate::cfg!(debug_assertions) {
324            $crate::assert_eq!($($arg)*);
325        }
326    };
327}
328
329/// Asserts that two expressions are not equal to each other.
330///
331/// On panic, this macro will print the values of the expressions with their
332/// debug representations.
333///
334/// Unlike [`assert_ne!`], `debug_assert_ne!` statements are only enabled in non
335/// optimized builds by default. An optimized build will not execute
336/// `debug_assert_ne!` statements unless `-C debug-assertions` is passed to the
337/// compiler. This makes `debug_assert_ne!` useful for checks that are too
338/// expensive to be present in a release build but may be helpful during
339/// development. The result of expanding `debug_assert_ne!` is always type checked.
340///
341/// # Examples
342///
343/// ```
344/// let a = 3;
345/// let b = 2;
346/// debug_assert_ne!(a, b);
347/// ```
348#[macro_export]
349#[stable(feature = "assert_ne", since = "1.13.0")]
350#[rustc_diagnostic_item = "debug_assert_ne_macro"]
351macro_rules! debug_assert_ne {
352    ($($arg:tt)*) => {
353        if $crate::cfg!(debug_assertions) {
354            $crate::assert_ne!($($arg)*);
355        }
356    };
357}
358
359/// Asserts that an expression matches the provided pattern.
360///
361/// This macro is generally preferable to `debug_assert!(matches!(value, pattern))`, because it can
362/// print the debug representation of the actual value shape that did not meet expectations. In
363/// contrast, using [`debug_assert!`] will only print that expectations were not met, but not why.
364///
365/// The pattern syntax is exactly the same as found in a match arm and the `matches!` macro. The
366/// optional if guard can be used to add additional checks that must be true for the matched value,
367/// otherwise this macro will panic.
368///
369/// On panic, this macro will print the value of the expression with its debug representation.
370///
371/// Like [`assert!`], this macro has a second form, where a custom panic message can be provided.
372///
373/// Unlike [`assert_matches!`], `debug_assert_matches!` statements are only enabled in non optimized
374/// builds by default. An optimized build will not execute `debug_assert_matches!` statements unless
375/// `-C debug-assertions` is passed to the compiler. This makes `debug_assert_matches!` useful for
376/// checks that are too expensive to be present in a release build but may be helpful during
377/// development. The result of expanding `debug_assert_matches!` is always type checked.
378///
379/// # Examples
380///
381/// ```
382/// #![feature(assert_matches)]
383///
384/// use std::assert_matches::debug_assert_matches;
385///
386/// let a = Some(345);
387/// let b = Some(56);
388/// debug_assert_matches!(a, Some(_));
389/// debug_assert_matches!(b, Some(_));
390///
391/// debug_assert_matches!(a, Some(345));
392/// debug_assert_matches!(a, Some(345) | None);
393///
394/// // debug_assert_matches!(a, None); // panics
395/// // debug_assert_matches!(b, Some(345)); // panics
396/// // debug_assert_matches!(b, Some(345) | None); // panics
397///
398/// debug_assert_matches!(a, Some(x) if x > 100);
399/// // debug_assert_matches!(a, Some(x) if x < 100); // panics
400/// ```
401#[unstable(feature = "assert_matches", issue = "82775")]
402#[allow_internal_unstable(assert_matches)]
403#[rustc_macro_transparency = "semitransparent"]
404pub macro debug_assert_matches($($arg:tt)*) {
405    if $crate::cfg!(debug_assertions) {
406        $crate::assert_matches::assert_matches!($($arg)*);
407    }
408}
409
410/// Returns whether the given expression matches the provided pattern.
411///
412/// The pattern syntax is exactly the same as found in a match arm. The optional if guard can be
413/// used to add additional checks that must be true for the matched value, otherwise this macro will
414/// return `false`.
415///
416/// When testing that a value matches a pattern, it's generally preferable to use
417/// [`assert_matches!`] as it will print the debug representation of the value if the assertion
418/// fails.
419///
420/// # Examples
421///
422/// ```
423/// let foo = 'f';
424/// assert!(matches!(foo, 'A'..='Z' | 'a'..='z'));
425///
426/// let bar = Some(4);
427/// assert!(matches!(bar, Some(x) if x > 2));
428/// ```
429#[macro_export]
430#[stable(feature = "matches_macro", since = "1.42.0")]
431#[rustc_diagnostic_item = "matches_macro"]
432#[allow_internal_unstable(non_exhaustive_omitted_patterns_lint, stmt_expr_attributes)]
433macro_rules! matches {
434    ($expression:expr, $pattern:pat $(if $guard:expr)? $(,)?) => {
435        #[allow(non_exhaustive_omitted_patterns)]
436        match $expression {
437            $pattern $(if $guard)? => true,
438            _ => false
439        }
440    };
441}
442
443/// Unwraps a result or propagates its error.
444///
445/// The [`?` operator][propagating-errors] was added to replace `try!`
446/// and should be used instead. Furthermore, `try` is a reserved word
447/// in Rust 2018, so if you must use it, you will need to use the
448/// [raw-identifier syntax][ris]: `r#try`.
449///
450/// [propagating-errors]: https://doc.rust-lang.org/book/ch09-02-recoverable-errors-with-result.html#a-shortcut-for-propagating-errors-the--operator
451/// [ris]: https://doc.rust-lang.org/nightly/rust-by-example/compatibility/raw_identifiers.html
452///
453/// `try!` matches the given [`Result`]. In case of the `Ok` variant, the
454/// expression has the value of the wrapped value.
455///
456/// In case of the `Err` variant, it retrieves the inner error. `try!` then
457/// performs conversion using `From`. This provides automatic conversion
458/// between specialized errors and more general ones. The resulting
459/// error is then immediately returned.
460///
461/// Because of the early return, `try!` can only be used in functions that
462/// return [`Result`].
463///
464/// # Examples
465///
466/// ```
467/// use std::io;
468/// use std::fs::File;
469/// use std::io::prelude::*;
470///
471/// enum MyError {
472///     FileWriteError
473/// }
474///
475/// impl From<io::Error> for MyError {
476///     fn from(e: io::Error) -> MyError {
477///         MyError::FileWriteError
478///     }
479/// }
480///
481/// // The preferred method of quick returning Errors
482/// fn write_to_file_question() -> Result<(), MyError> {
483///     let mut file = File::create("my_best_friends.txt")?;
484///     file.write_all(b"This is a list of my best friends.")?;
485///     Ok(())
486/// }
487///
488/// // The previous method of quick returning Errors
489/// fn write_to_file_using_try() -> Result<(), MyError> {
490///     let mut file = r#try!(File::create("my_best_friends.txt"));
491///     r#try!(file.write_all(b"This is a list of my best friends."));
492///     Ok(())
493/// }
494///
495/// // This is equivalent to:
496/// fn write_to_file_using_match() -> Result<(), MyError> {
497///     let mut file = r#try!(File::create("my_best_friends.txt"));
498///     match file.write_all(b"This is a list of my best friends.") {
499///         Ok(v) => v,
500///         Err(e) => return Err(From::from(e)),
501///     }
502///     Ok(())
503/// }
504/// ```
505#[macro_export]
506#[stable(feature = "rust1", since = "1.0.0")]
507#[deprecated(since = "1.39.0", note = "use the `?` operator instead")]
508#[doc(alias = "?")]
509macro_rules! r#try {
510    ($expr:expr $(,)?) => {
511        match $expr {
512            $crate::result::Result::Ok(val) => val,
513            $crate::result::Result::Err(err) => {
514                return $crate::result::Result::Err($crate::convert::From::from(err));
515            }
516        }
517    };
518}
519
520/// Writes formatted data into a buffer.
521///
522/// This macro accepts a 'writer', a format string, and a list of arguments. Arguments will be
523/// formatted according to the specified format string and the result will be passed to the writer.
524/// The writer may be any value with a `write_fmt` method; generally this comes from an
525/// implementation of either the [`fmt::Write`] or the [`io::Write`] trait. The macro
526/// returns whatever the `write_fmt` method returns; commonly a [`fmt::Result`], or an
527/// [`io::Result`].
528///
529/// See [`std::fmt`] for more information on the format string syntax.
530///
531/// [`std::fmt`]: ../std/fmt/index.html
532/// [`fmt::Write`]: crate::fmt::Write
533/// [`io::Write`]: ../std/io/trait.Write.html
534/// [`fmt::Result`]: crate::fmt::Result
535/// [`io::Result`]: ../std/io/type.Result.html
536///
537/// # Examples
538///
539/// ```
540/// use std::io::Write;
541///
542/// fn main() -> std::io::Result<()> {
543///     let mut w = Vec::new();
544///     write!(&mut w, "test")?;
545///     write!(&mut w, "formatted {}", "arguments")?;
546///
547///     assert_eq!(w, b"testformatted arguments");
548///     Ok(())
549/// }
550/// ```
551///
552/// A module can import both `std::fmt::Write` and `std::io::Write` and call `write!` on objects
553/// implementing either, as objects do not typically implement both. However, the module must
554/// avoid conflict between the trait names, such as by importing them as `_` or otherwise renaming
555/// them:
556///
557/// ```
558/// use std::fmt::Write as _;
559/// use std::io::Write as _;
560///
561/// fn main() -> Result<(), Box<dyn std::error::Error>> {
562///     let mut s = String::new();
563///     let mut v = Vec::new();
564///
565///     write!(&mut s, "{} {}", "abc", 123)?; // uses fmt::Write::write_fmt
566///     write!(&mut v, "s = {:?}", s)?; // uses io::Write::write_fmt
567///     assert_eq!(v, b"s = \"abc 123\"");
568///     Ok(())
569/// }
570/// ```
571///
572/// If you also need the trait names themselves, such as to implement one or both on your types,
573/// import the containing module and then name them with a prefix:
574///
575/// ```
576/// # #![allow(unused_imports)]
577/// use std::fmt::{self, Write as _};
578/// use std::io::{self, Write as _};
579///
580/// struct Example;
581///
582/// impl fmt::Write for Example {
583///     fn write_str(&mut self, _s: &str) -> core::fmt::Result {
584///          unimplemented!();
585///     }
586/// }
587/// ```
588///
589/// Note: This macro can be used in `no_std` setups as well.
590/// In a `no_std` setup you are responsible for the implementation details of the components.
591///
592/// ```no_run
593/// use core::fmt::Write;
594///
595/// struct Example;
596///
597/// impl Write for Example {
598///     fn write_str(&mut self, _s: &str) -> core::fmt::Result {
599///          unimplemented!();
600///     }
601/// }
602///
603/// let mut m = Example{};
604/// write!(&mut m, "Hello World").expect("Not written");
605/// ```
606#[macro_export]
607#[stable(feature = "rust1", since = "1.0.0")]
608#[rustc_diagnostic_item = "write_macro"]
609macro_rules! write {
610    ($dst:expr, $($arg:tt)*) => {
611        $dst.write_fmt($crate::format_args!($($arg)*))
612    };
613}
614
615/// Writes formatted data into a buffer, with a newline appended.
616///
617/// On all platforms, the newline is the LINE FEED character (`\n`/`U+000A`) alone
618/// (no additional CARRIAGE RETURN (`\r`/`U+000D`).
619///
620/// For more information, see [`write!`]. For information on the format string syntax, see
621/// [`std::fmt`].
622///
623/// [`std::fmt`]: ../std/fmt/index.html
624///
625/// # Examples
626///
627/// ```
628/// use std::io::{Write, Result};
629///
630/// fn main() -> Result<()> {
631///     let mut w = Vec::new();
632///     writeln!(&mut w)?;
633///     writeln!(&mut w, "test")?;
634///     writeln!(&mut w, "formatted {}", "arguments")?;
635///
636///     assert_eq!(&w[..], "\ntest\nformatted arguments\n".as_bytes());
637///     Ok(())
638/// }
639/// ```
640#[macro_export]
641#[stable(feature = "rust1", since = "1.0.0")]
642#[rustc_diagnostic_item = "writeln_macro"]
643#[allow_internal_unstable(format_args_nl)]
644macro_rules! writeln {
645    ($dst:expr $(,)?) => {
646        $crate::write!($dst, "\n")
647    };
648    ($dst:expr, $($arg:tt)*) => {
649        $dst.write_fmt($crate::format_args_nl!($($arg)*))
650    };
651}
652
653/// Indicates unreachable code.
654///
655/// This is useful any time that the compiler can't determine that some code is unreachable. For
656/// example:
657///
658/// * Match arms with guard conditions.
659/// * Loops that dynamically terminate.
660/// * Iterators that dynamically terminate.
661///
662/// If the determination that the code is unreachable proves incorrect, the
663/// program immediately terminates with a [`panic!`].
664///
665/// The unsafe counterpart of this macro is the [`unreachable_unchecked`] function, which
666/// will cause undefined behavior if the code is reached.
667///
668/// [`unreachable_unchecked`]: crate::hint::unreachable_unchecked
669///
670/// # Panics
671///
672/// This will always [`panic!`] because `unreachable!` is just a shorthand for `panic!` with a
673/// fixed, specific message.
674///
675/// Like `panic!`, this macro has a second form for displaying custom values.
676///
677/// # Examples
678///
679/// Match arms:
680///
681/// ```
682/// # #[allow(dead_code)]
683/// fn foo(x: Option<i32>) {
684///     match x {
685///         Some(n) if n >= 0 => println!("Some(Non-negative)"),
686///         Some(n) if n <  0 => println!("Some(Negative)"),
687///         Some(_)           => unreachable!(), // compile error if commented out
688///         None              => println!("None")
689///     }
690/// }
691/// ```
692///
693/// Iterators:
694///
695/// ```
696/// # #[allow(dead_code)]
697/// fn divide_by_three(x: u32) -> u32 { // one of the poorest implementations of x/3
698///     for i in 0.. {
699///         if 3*i < i { panic!("u32 overflow"); }
700///         if x < 3*i { return i-1; }
701///     }
702///     unreachable!("The loop should always return");
703/// }
704/// ```
705#[macro_export]
706#[rustc_builtin_macro(unreachable)]
707#[allow_internal_unstable(edition_panic)]
708#[stable(feature = "rust1", since = "1.0.0")]
709#[rustc_diagnostic_item = "unreachable_macro"]
710macro_rules! unreachable {
711    // Expands to either `$crate::panic::unreachable_2015` or `$crate::panic::unreachable_2021`
712    // depending on the edition of the caller.
713    ($($arg:tt)*) => {
714        /* compiler built-in */
715    };
716}
717
718/// Indicates unimplemented code by panicking with a message of "not implemented".
719///
720/// This allows your code to type-check, which is useful if you are prototyping or
721/// implementing a trait that requires multiple methods which you don't plan to use all of.
722///
723/// The difference between `unimplemented!` and [`todo!`] is that while `todo!`
724/// conveys an intent of implementing the functionality later and the message is "not yet
725/// implemented", `unimplemented!` makes no such claims. Its message is "not implemented".
726///
727/// Also, some IDEs will mark `todo!`s.
728///
729/// # Panics
730///
731/// This will always [`panic!`] because `unimplemented!` is just a shorthand for `panic!` with a
732/// fixed, specific message.
733///
734/// Like `panic!`, this macro has a second form for displaying custom values.
735///
736/// [`todo!`]: crate::todo
737///
738/// # Examples
739///
740/// Say we have a trait `Foo`:
741///
742/// ```
743/// trait Foo {
744///     fn bar(&self) -> u8;
745///     fn baz(&self);
746///     fn qux(&self) -> Result<u64, ()>;
747/// }
748/// ```
749///
750/// We want to implement `Foo` for 'MyStruct', but for some reason it only makes sense
751/// to implement the `bar()` function. `baz()` and `qux()` will still need to be defined
752/// in our implementation of `Foo`, but we can use `unimplemented!` in their definitions
753/// to allow our code to compile.
754///
755/// We still want to have our program stop running if the unimplemented methods are
756/// reached.
757///
758/// ```
759/// # trait Foo {
760/// #     fn bar(&self) -> u8;
761/// #     fn baz(&self);
762/// #     fn qux(&self) -> Result<u64, ()>;
763/// # }
764/// struct MyStruct;
765///
766/// impl Foo for MyStruct {
767///     fn bar(&self) -> u8 {
768///         1 + 1
769///     }
770///
771///     fn baz(&self) {
772///         // It makes no sense to `baz` a `MyStruct`, so we have no logic here
773///         // at all.
774///         // This will display "thread 'main' panicked at 'not implemented'".
775///         unimplemented!();
776///     }
777///
778///     fn qux(&self) -> Result<u64, ()> {
779///         // We have some logic here,
780///         // We can add a message to unimplemented! to display our omission.
781///         // This will display:
782///         // "thread 'main' panicked at 'not implemented: MyStruct isn't quxable'".
783///         unimplemented!("MyStruct isn't quxable");
784///     }
785/// }
786///
787/// fn main() {
788///     let s = MyStruct;
789///     s.bar();
790/// }
791/// ```
792#[macro_export]
793#[stable(feature = "rust1", since = "1.0.0")]
794#[rustc_diagnostic_item = "unimplemented_macro"]
795#[allow_internal_unstable(panic_internals)]
796macro_rules! unimplemented {
797    () => {
798        $crate::panicking::panic("not implemented")
799    };
800    ($($arg:tt)+) => {
801        $crate::panic!("not implemented: {}", $crate::format_args!($($arg)+))
802    };
803}
804
805/// Indicates unfinished code.
806///
807/// This can be useful if you are prototyping and just
808/// want a placeholder to let your code pass type analysis.
809///
810/// The difference between [`unimplemented!`] and `todo!` is that while `todo!` conveys
811/// an intent of implementing the functionality later and the message is "not yet
812/// implemented", `unimplemented!` makes no such claims. Its message is "not implemented".
813///
814/// Also, some IDEs will mark `todo!`s.
815///
816/// # Panics
817///
818/// This will always [`panic!`] because `todo!` is just a shorthand for `panic!` with a
819/// fixed, specific message.
820///
821/// Like `panic!`, this macro has a second form for displaying custom values.
822///
823/// # Examples
824///
825/// Here's an example of some in-progress code. We have a trait `Foo`:
826///
827/// ```
828/// trait Foo {
829///     fn bar(&self) -> u8;
830///     fn baz(&self);
831///     fn qux(&self) -> Result<u64, ()>;
832/// }
833/// ```
834///
835/// We want to implement `Foo` on one of our types, but we also want to work on
836/// just `bar()` first. In order for our code to compile, we need to implement
837/// `baz()` and `qux()`, so we can use `todo!`:
838///
839/// ```
840/// # trait Foo {
841/// #     fn bar(&self) -> u8;
842/// #     fn baz(&self);
843/// #     fn qux(&self) -> Result<u64, ()>;
844/// # }
845/// struct MyStruct;
846///
847/// impl Foo for MyStruct {
848///     fn bar(&self) -> u8 {
849///         1 + 1
850///     }
851///
852///     fn baz(&self) {
853///         // Let's not worry about implementing baz() for now
854///         todo!();
855///     }
856///
857///     fn qux(&self) -> Result<u64, ()> {
858///         // We can add a message to todo! to display our omission.
859///         // This will display:
860///         // "thread 'main' panicked at 'not yet implemented: MyStruct is not yet quxable'".
861///         todo!("MyStruct is not yet quxable");
862///     }
863/// }
864///
865/// fn main() {
866///     let s = MyStruct;
867///     s.bar();
868///
869///     // We aren't even using baz() or qux(), so this is fine.
870/// }
871/// ```
872#[macro_export]
873#[stable(feature = "todo_macro", since = "1.40.0")]
874#[rustc_diagnostic_item = "todo_macro"]
875#[allow_internal_unstable(panic_internals)]
876macro_rules! todo {
877    () => {
878        $crate::panicking::panic("not yet implemented")
879    };
880    ($($arg:tt)+) => {
881        $crate::panic!("not yet implemented: {}", $crate::format_args!($($arg)+))
882    };
883}
884
885/// Definitions of built-in macros.
886///
887/// Most of the macro properties (stability, visibility, etc.) are taken from the source code here,
888/// with exception of expansion functions transforming macro inputs into outputs,
889/// those functions are provided by the compiler.
890pub(crate) mod builtin {
891
892    /// Causes compilation to fail with the given error message when encountered.
893    ///
894    /// This macro should be used when a crate uses a conditional compilation strategy to provide
895    /// better error messages for erroneous conditions. It's the compiler-level form of [`panic!`],
896    /// but emits an error during *compilation* rather than at *runtime*.
897    ///
898    /// # Examples
899    ///
900    /// Two such examples are macros and `#[cfg]` environments.
901    ///
902    /// Emit a better compiler error if a macro is passed invalid values. Without the final branch,
903    /// the compiler would still emit an error, but the error's message would not mention the two
904    /// valid values.
905    ///
906    /// ```compile_fail
907    /// macro_rules! give_me_foo_or_bar {
908    ///     (foo) => {};
909    ///     (bar) => {};
910    ///     ($x:ident) => {
911    ///         compile_error!("This macro only accepts `foo` or `bar`");
912    ///     }
913    /// }
914    ///
915    /// give_me_foo_or_bar!(neither);
916    /// // ^ will fail at compile time with message "This macro only accepts `foo` or `bar`"
917    /// ```
918    ///
919    /// Emit a compiler error if one of a number of features isn't available.
920    ///
921    /// ```compile_fail
922    /// #[cfg(not(any(feature = "foo", feature = "bar")))]
923    /// compile_error!("Either feature \"foo\" or \"bar\" must be enabled for this crate.");
924    /// ```
925    #[stable(feature = "compile_error_macro", since = "1.20.0")]
926    #[rustc_builtin_macro]
927    #[macro_export]
928    macro_rules! compile_error {
929        ($msg:expr $(,)?) => {{ /* compiler built-in */ }};
930    }
931
932    /// Constructs parameters for the other string-formatting macros.
933    ///
934    /// This macro functions by taking a formatting string literal containing
935    /// `{}` for each additional argument passed. `format_args!` prepares the
936    /// additional parameters to ensure the output can be interpreted as a string
937    /// and canonicalizes the arguments into a single type. Any value that implements
938    /// the [`Display`] trait can be passed to `format_args!`, as can any
939    /// [`Debug`] implementation be passed to a `{:?}` within the formatting string.
940    ///
941    /// This macro produces a value of type [`fmt::Arguments`]. This value can be
942    /// passed to the macros within [`std::fmt`] for performing useful redirection.
943    /// All other formatting macros ([`format!`], [`write!`], [`println!`], etc) are
944    /// proxied through this one. `format_args!`, unlike its derived macros, avoids
945    /// heap allocations.
946    ///
947    /// You can use the [`fmt::Arguments`] value that `format_args!` returns
948    /// in `Debug` and `Display` contexts as seen below. The example also shows
949    /// that `Debug` and `Display` format to the same thing: the interpolated
950    /// format string in `format_args!`.
951    ///
952    /// ```rust
953    /// let debug = format!("{:?}", format_args!("{} foo {:?}", 1, 2));
954    /// let display = format!("{}", format_args!("{} foo {:?}", 1, 2));
955    /// assert_eq!("1 foo 2", display);
956    /// assert_eq!(display, debug);
957    /// ```
958    ///
959    /// See [the formatting documentation in `std::fmt`](../std/fmt/index.html)
960    /// for details of the macro argument syntax, and further information.
961    ///
962    /// [`Display`]: crate::fmt::Display
963    /// [`Debug`]: crate::fmt::Debug
964    /// [`fmt::Arguments`]: crate::fmt::Arguments
965    /// [`std::fmt`]: ../std/fmt/index.html
966    /// [`format!`]: ../std/macro.format.html
967    /// [`println!`]: ../std/macro.println.html
968    ///
969    /// # Examples
970    ///
971    /// ```
972    /// use std::fmt;
973    ///
974    /// let s = fmt::format(format_args!("hello {}", "world"));
975    /// assert_eq!(s, format!("hello {}", "world"));
976    /// ```
977    ///
978    /// # Lifetime limitation
979    ///
980    /// Except when no formatting arguments are used,
981    /// the produced `fmt::Arguments` value borrows temporary values,
982    /// which means it can only be used within the same expression
983    /// and cannot be stored for later use.
984    /// This is a known limitation, see [#92698](https://github.com/rust-lang/rust/issues/92698).
985    #[stable(feature = "rust1", since = "1.0.0")]
986    #[rustc_diagnostic_item = "format_args_macro"]
987    #[allow_internal_unsafe]
988    #[allow_internal_unstable(fmt_internals)]
989    #[rustc_builtin_macro]
990    #[macro_export]
991    macro_rules! format_args {
992        ($fmt:expr) => {{ /* compiler built-in */ }};
993        ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
994    }
995
996    /// Same as [`format_args`], but can be used in some const contexts.
997    ///
998    /// This macro is used by the panic macros for the `const_panic` feature.
999    ///
1000    /// This macro will be removed once `format_args` is allowed in const contexts.
1001    #[unstable(feature = "const_format_args", issue = "none")]
1002    #[allow_internal_unstable(fmt_internals, const_fmt_arguments_new)]
1003    #[rustc_builtin_macro]
1004    #[macro_export]
1005    macro_rules! const_format_args {
1006        ($fmt:expr) => {{ /* compiler built-in */ }};
1007        ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
1008    }
1009
1010    /// Same as [`format_args`], but adds a newline in the end.
1011    #[unstable(
1012        feature = "format_args_nl",
1013        issue = "none",
1014        reason = "`format_args_nl` is only for internal \
1015                  language use and is subject to change"
1016    )]
1017    #[allow_internal_unstable(fmt_internals)]
1018    #[rustc_builtin_macro]
1019    #[macro_export]
1020    macro_rules! format_args_nl {
1021        ($fmt:expr) => {{ /* compiler built-in */ }};
1022        ($fmt:expr, $($args:tt)*) => {{ /* compiler built-in */ }};
1023    }
1024
1025    /// Inspects an environment variable at compile time.
1026    ///
1027    /// This macro will expand to the value of the named environment variable at
1028    /// compile time, yielding an expression of type `&'static str`. Use
1029    /// [`std::env::var`] instead if you want to read the value at runtime.
1030    ///
1031    /// [`std::env::var`]: ../std/env/fn.var.html
1032    ///
1033    /// If the environment variable is not defined, then a compilation error
1034    /// will be emitted. To not emit a compile error, use the [`option_env!`]
1035    /// macro instead. A compilation error will also be emitted if the
1036    /// environment variable is not a valid Unicode string.
1037    ///
1038    /// # Examples
1039    ///
1040    /// ```
1041    /// let path: &'static str = env!("PATH");
1042    /// println!("the $PATH variable at the time of compiling was: {path}");
1043    /// ```
1044    ///
1045    /// You can customize the error message by passing a string as the second
1046    /// parameter:
1047    ///
1048    /// ```compile_fail
1049    /// let doc: &'static str = env!("documentation", "what's that?!");
1050    /// ```
1051    ///
1052    /// If the `documentation` environment variable is not defined, you'll get
1053    /// the following error:
1054    ///
1055    /// ```text
1056    /// error: what's that?!
1057    /// ```
1058    #[stable(feature = "rust1", since = "1.0.0")]
1059    #[rustc_builtin_macro]
1060    #[macro_export]
1061    #[rustc_diagnostic_item = "env_macro"] // useful for external lints
1062    macro_rules! env {
1063        ($name:expr $(,)?) => {{ /* compiler built-in */ }};
1064        ($name:expr, $error_msg:expr $(,)?) => {{ /* compiler built-in */ }};
1065    }
1066
1067    /// Optionally inspects an environment variable at compile time.
1068    ///
1069    /// If the named environment variable is present at compile time, this will
1070    /// expand into an expression of type `Option<&'static str>` whose value is
1071    /// `Some` of the value of the environment variable (a compilation error
1072    /// will be emitted if the environment variable is not a valid Unicode
1073    /// string). If the environment variable is not present, then this will
1074    /// expand to `None`. See [`Option<T>`][Option] for more information on this
1075    /// type.  Use [`std::env::var`] instead if you want to read the value at
1076    /// runtime.
1077    ///
1078    /// [`std::env::var`]: ../std/env/fn.var.html
1079    ///
1080    /// A compile time error is only emitted when using this macro if the
1081    /// environment variable exists and is not a valid Unicode string. To also
1082    /// emit a compile error if the environment variable is not present, use the
1083    /// [`env!`] macro instead.
1084    ///
1085    /// # Examples
1086    ///
1087    /// ```
1088    /// let key: Option<&'static str> = option_env!("SECRET_KEY");
1089    /// println!("the secret key might be: {key:?}");
1090    /// ```
1091    #[stable(feature = "rust1", since = "1.0.0")]
1092    #[rustc_builtin_macro]
1093    #[macro_export]
1094    #[rustc_diagnostic_item = "option_env_macro"] // useful for external lints
1095    macro_rules! option_env {
1096        ($name:expr $(,)?) => {{ /* compiler built-in */ }};
1097    }
1098
1099    /// Concatenates literals into a byte slice.
1100    ///
1101    /// This macro takes any number of comma-separated literals, and concatenates them all into
1102    /// one, yielding an expression of type `&[u8; _]`, which represents all of the literals
1103    /// concatenated left-to-right. The literals passed can be any combination of:
1104    ///
1105    /// - byte literals (`b'r'`)
1106    /// - byte strings (`b"Rust"`)
1107    /// - arrays of bytes/numbers (`[b'A', 66, b'C']`)
1108    ///
1109    /// # Examples
1110    ///
1111    /// ```
1112    /// #![feature(concat_bytes)]
1113    ///
1114    /// # fn main() {
1115    /// let s: &[u8; 6] = concat_bytes!(b'A', b"BC", [68, b'E', 70]);
1116    /// assert_eq!(s, b"ABCDEF");
1117    /// # }
1118    /// ```
1119    #[unstable(feature = "concat_bytes", issue = "87555")]
1120    #[rustc_builtin_macro]
1121    #[macro_export]
1122    macro_rules! concat_bytes {
1123        ($($e:literal),+ $(,)?) => {{ /* compiler built-in */ }};
1124    }
1125
1126    /// Concatenates literals into a static string slice.
1127    ///
1128    /// This macro takes any number of comma-separated literals, yielding an
1129    /// expression of type `&'static str` which represents all of the literals
1130    /// concatenated left-to-right.
1131    ///
1132    /// Integer and floating point literals are [stringified](core::stringify) in order to be
1133    /// concatenated.
1134    ///
1135    /// # Examples
1136    ///
1137    /// ```
1138    /// let s = concat!("test", 10, 'b', true);
1139    /// assert_eq!(s, "test10btrue");
1140    /// ```
1141    #[stable(feature = "rust1", since = "1.0.0")]
1142    #[rustc_builtin_macro]
1143    #[rustc_diagnostic_item = "macro_concat"]
1144    #[macro_export]
1145    macro_rules! concat {
1146        ($($e:expr),* $(,)?) => {{ /* compiler built-in */ }};
1147    }
1148
1149    /// Expands to the line number on which it was invoked.
1150    ///
1151    /// With [`column!`] and [`file!`], these macros provide debugging information for
1152    /// developers about the location within the source.
1153    ///
1154    /// The expanded expression has type `u32` and is 1-based, so the first line
1155    /// in each file evaluates to 1, the second to 2, etc. This is consistent
1156    /// with error messages by common compilers or popular editors.
1157    /// The returned line is *not necessarily* the line of the `line!` invocation itself,
1158    /// but rather the first macro invocation leading up to the invocation
1159    /// of the `line!` macro.
1160    ///
1161    /// # Examples
1162    ///
1163    /// ```
1164    /// let current_line = line!();
1165    /// println!("defined on line: {current_line}");
1166    /// ```
1167    #[stable(feature = "rust1", since = "1.0.0")]
1168    #[rustc_builtin_macro]
1169    #[macro_export]
1170    macro_rules! line {
1171        () => {
1172            /* compiler built-in */
1173        };
1174    }
1175
1176    /// Expands to the column number at which it was invoked.
1177    ///
1178    /// With [`line!`] and [`file!`], these macros provide debugging information for
1179    /// developers about the location within the source.
1180    ///
1181    /// The expanded expression has type `u32` and is 1-based, so the first column
1182    /// in each line evaluates to 1, the second to 2, etc. This is consistent
1183    /// with error messages by common compilers or popular editors.
1184    /// The returned column is *not necessarily* the line of the `column!` invocation itself,
1185    /// but rather the first macro invocation leading up to the invocation
1186    /// of the `column!` macro.
1187    ///
1188    /// # Examples
1189    ///
1190    /// ```
1191    /// let current_col = column!();
1192    /// println!("defined on column: {current_col}");
1193    /// ```
1194    ///
1195    /// `column!` counts Unicode code points, not bytes or graphemes. As a result, the first two
1196    /// invocations return the same value, but the third does not.
1197    ///
1198    /// ```
1199    /// let a = ("foobar", column!()).1;
1200    /// let b = ("人之初性本善", column!()).1;
1201    /// let c = ("f̅o̅o̅b̅a̅r̅", column!()).1; // Uses combining overline (U+0305)
1202    ///
1203    /// assert_eq!(a, b);
1204    /// assert_ne!(b, c);
1205    /// ```
1206    #[stable(feature = "rust1", since = "1.0.0")]
1207    #[rustc_builtin_macro]
1208    #[macro_export]
1209    macro_rules! column {
1210        () => {
1211            /* compiler built-in */
1212        };
1213    }
1214
1215    /// Expands to the file name in which it was invoked.
1216    ///
1217    /// With [`line!`] and [`column!`], these macros provide debugging information for
1218    /// developers about the location within the source.
1219    ///
1220    /// The expanded expression has type `&'static str`, and the returned file
1221    /// is not the invocation of the `file!` macro itself, but rather the
1222    /// first macro invocation leading up to the invocation of the `file!`
1223    /// macro.
1224    ///
1225    /// The file name is derived from the crate root's source path passed to the Rust compiler
1226    /// and the sequence the compiler takes to get from the crate root to the
1227    /// module containing `file!`, modified by any flags passed to the Rust compiler (e.g.
1228    /// `--remap-path-prefix`).  If the crate's source path is relative, the initial base
1229    /// directory will be the working directory of the Rust compiler.  For example, if the source
1230    /// path passed to the compiler is `./src/lib.rs` which has a `mod foo;` with a source path of
1231    /// `src/foo/mod.rs`, then calling `file!` inside `mod foo;` will return `./src/foo/mod.rs`.
1232    ///
1233    /// Future compiler options might make further changes to the behavior of `file!`,
1234    /// including potentially making it entirely empty. Code (e.g. test libraries)
1235    /// relying on `file!` producing an openable file path would be incompatible
1236    /// with such options, and might wish to recommend not using those options.
1237    ///
1238    /// # Examples
1239    ///
1240    /// ```
1241    /// let this_file = file!();
1242    /// println!("defined in file: {this_file}");
1243    /// ```
1244    #[stable(feature = "rust1", since = "1.0.0")]
1245    #[rustc_builtin_macro]
1246    #[macro_export]
1247    macro_rules! file {
1248        () => {
1249            /* compiler built-in */
1250        };
1251    }
1252
1253    /// Stringifies its arguments.
1254    ///
1255    /// This macro will yield an expression of type `&'static str` which is the
1256    /// stringification of all the tokens passed to the macro. No restrictions
1257    /// are placed on the syntax of the macro invocation itself.
1258    ///
1259    /// Note that the expanded results of the input tokens may change in the
1260    /// future. You should be careful if you rely on the output.
1261    ///
1262    /// # Examples
1263    ///
1264    /// ```
1265    /// let one_plus_one = stringify!(1 + 1);
1266    /// assert_eq!(one_plus_one, "1 + 1");
1267    /// ```
1268    #[stable(feature = "rust1", since = "1.0.0")]
1269    #[rustc_builtin_macro]
1270    #[macro_export]
1271    macro_rules! stringify {
1272        ($($t:tt)*) => {
1273            /* compiler built-in */
1274        };
1275    }
1276
1277    /// Includes a UTF-8 encoded file as a string.
1278    ///
1279    /// The file is located relative to the current file (similarly to how
1280    /// modules are found). The provided path is interpreted in a platform-specific
1281    /// way at compile time. So, for instance, an invocation with a Windows path
1282    /// containing backslashes `\` would not compile correctly on Unix.
1283    ///
1284    /// This macro will yield an expression of type `&'static str` which is the
1285    /// contents of the file.
1286    ///
1287    /// # Examples
1288    ///
1289    /// Assume there are two files in the same directory with the following
1290    /// contents:
1291    ///
1292    /// File 'spanish.in':
1293    ///
1294    /// ```text
1295    /// adiós
1296    /// ```
1297    ///
1298    /// File 'main.rs':
1299    ///
1300    /// ```ignore (cannot-doctest-external-file-dependency)
1301    /// fn main() {
1302    ///     let my_str = include_str!("spanish.in");
1303    ///     assert_eq!(my_str, "adiós\n");
1304    ///     print!("{my_str}");
1305    /// }
1306    /// ```
1307    ///
1308    /// Compiling 'main.rs' and running the resulting binary will print "adiós".
1309    #[stable(feature = "rust1", since = "1.0.0")]
1310    #[rustc_builtin_macro]
1311    #[macro_export]
1312    #[rustc_diagnostic_item = "include_str_macro"]
1313    macro_rules! include_str {
1314        ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1315    }
1316
1317    /// Includes a file as a reference to a byte array.
1318    ///
1319    /// The file is located relative to the current file (similarly to how
1320    /// modules are found). The provided path is interpreted in a platform-specific
1321    /// way at compile time. So, for instance, an invocation with a Windows path
1322    /// containing backslashes `\` would not compile correctly on Unix.
1323    ///
1324    /// This macro will yield an expression of type `&'static [u8; N]` which is
1325    /// the contents of the file.
1326    ///
1327    /// # Examples
1328    ///
1329    /// Assume there are two files in the same directory with the following
1330    /// contents:
1331    ///
1332    /// File 'spanish.in':
1333    ///
1334    /// ```text
1335    /// adiós
1336    /// ```
1337    ///
1338    /// File 'main.rs':
1339    ///
1340    /// ```ignore (cannot-doctest-external-file-dependency)
1341    /// fn main() {
1342    ///     let bytes = include_bytes!("spanish.in");
1343    ///     assert_eq!(bytes, b"adi\xc3\xb3s\n");
1344    ///     print!("{}", String::from_utf8_lossy(bytes));
1345    /// }
1346    /// ```
1347    ///
1348    /// Compiling 'main.rs' and running the resulting binary will print "adiós".
1349    #[stable(feature = "rust1", since = "1.0.0")]
1350    #[rustc_builtin_macro]
1351    #[macro_export]
1352    #[rustc_diagnostic_item = "include_bytes_macro"]
1353    macro_rules! include_bytes {
1354        ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1355    }
1356
1357    /// Expands to a string that represents the current module path.
1358    ///
1359    /// The current module path can be thought of as the hierarchy of modules
1360    /// leading back up to the crate root. The first component of the path
1361    /// returned is the name of the crate currently being compiled.
1362    ///
1363    /// # Examples
1364    ///
1365    /// ```
1366    /// mod test {
1367    ///     pub fn foo() {
1368    ///         assert!(module_path!().ends_with("test"));
1369    ///     }
1370    /// }
1371    ///
1372    /// test::foo();
1373    /// ```
1374    #[stable(feature = "rust1", since = "1.0.0")]
1375    #[rustc_builtin_macro]
1376    #[macro_export]
1377    macro_rules! module_path {
1378        () => {
1379            /* compiler built-in */
1380        };
1381    }
1382
1383    /// Evaluates boolean combinations of configuration flags at compile-time.
1384    ///
1385    /// In addition to the `#[cfg]` attribute, this macro is provided to allow
1386    /// boolean expression evaluation of configuration flags. This frequently
1387    /// leads to less duplicated code.
1388    ///
1389    /// The syntax given to this macro is the same syntax as the [`cfg`]
1390    /// attribute.
1391    ///
1392    /// `cfg!`, unlike `#[cfg]`, does not remove any code and only evaluates to true or false. For
1393    /// example, all blocks in an if/else expression need to be valid when `cfg!` is used for
1394    /// the condition, regardless of what `cfg!` is evaluating.
1395    ///
1396    /// [`cfg`]: ../reference/conditional-compilation.html#the-cfg-attribute
1397    ///
1398    /// # Examples
1399    ///
1400    /// ```
1401    /// let my_directory = if cfg!(windows) {
1402    ///     "windows-specific-directory"
1403    /// } else {
1404    ///     "unix-directory"
1405    /// };
1406    /// ```
1407    #[stable(feature = "rust1", since = "1.0.0")]
1408    #[rustc_builtin_macro]
1409    #[macro_export]
1410    macro_rules! cfg {
1411        ($($cfg:tt)*) => {
1412            /* compiler built-in */
1413        };
1414    }
1415
1416    /// Parses a file as an expression or an item according to the context.
1417    ///
1418    /// **Warning**: For multi-file Rust projects, the `include!` macro is probably not what you
1419    /// are looking for. Usually, multi-file Rust projects use
1420    /// [modules](https://doc.rust-lang.org/reference/items/modules.html). Multi-file projects and
1421    /// modules are explained in the Rust-by-Example book
1422    /// [here](https://doc.rust-lang.org/rust-by-example/mod/split.html) and the module system is
1423    /// explained in the Rust Book
1424    /// [here](https://doc.rust-lang.org/book/ch07-02-defining-modules-to-control-scope-and-privacy.html).
1425    ///
1426    /// The included file is placed in the surrounding code
1427    /// [unhygienically](https://doc.rust-lang.org/reference/macros-by-example.html#hygiene). If
1428    /// the included file is parsed as an expression and variables or functions share names across
1429    /// both files, it could result in variables or functions being different from what the
1430    /// included file expected.
1431    ///
1432    /// The included file is located relative to the current file (similarly to how modules are
1433    /// found). The provided path is interpreted in a platform-specific way at compile time. So,
1434    /// for instance, an invocation with a Windows path containing backslashes `\` would not
1435    /// compile correctly on Unix.
1436    ///
1437    /// # Uses
1438    ///
1439    /// The `include!` macro is primarily used for two purposes. It is used to include
1440    /// documentation that is written in a separate file and it is used to include [build artifacts
1441    /// usually as a result from the `build.rs`
1442    /// script](https://doc.rust-lang.org/cargo/reference/build-scripts.html#outputs-of-the-build-script).
1443    ///
1444    /// When using the `include` macro to include stretches of documentation, remember that the
1445    /// included file still needs to be a valid Rust syntax. It is also possible to
1446    /// use the [`include_str`] macro as `#![doc = include_str!("...")]` (at the module level) or
1447    /// `#[doc = include_str!("...")]` (at the item level) to include documentation from a plain
1448    /// text or markdown file.
1449    ///
1450    /// # Examples
1451    ///
1452    /// Assume there are two files in the same directory with the following contents:
1453    ///
1454    /// File 'monkeys.in':
1455    ///
1456    /// ```ignore (only-for-syntax-highlight)
1457    /// ['🙈', '🙊', '🙉']
1458    ///     .iter()
1459    ///     .cycle()
1460    ///     .take(6)
1461    ///     .collect::<String>()
1462    /// ```
1463    ///
1464    /// File 'main.rs':
1465    ///
1466    /// ```ignore (cannot-doctest-external-file-dependency)
1467    /// fn main() {
1468    ///     let my_string = include!("monkeys.in");
1469    ///     assert_eq!("🙈🙊🙉🙈🙊🙉", my_string);
1470    ///     println!("{my_string}");
1471    /// }
1472    /// ```
1473    ///
1474    /// Compiling 'main.rs' and running the resulting binary will print
1475    /// "🙈🙊🙉🙈🙊🙉".
1476    #[stable(feature = "rust1", since = "1.0.0")]
1477    #[rustc_builtin_macro]
1478    #[macro_export]
1479    #[rustc_diagnostic_item = "include_macro"] // useful for external lints
1480    macro_rules! include {
1481        ($file:expr $(,)?) => {{ /* compiler built-in */ }};
1482    }
1483
1484    /// This macro uses forward-mode automatic differentiation to generate a new function.
1485    /// It may only be applied to a function. The new function will compute the derivative
1486    /// of the function to which the macro was applied.
1487    ///
1488    /// The expected usage syntax is:
1489    /// `#[autodiff_forward(NAME, INPUT_ACTIVITIES, OUTPUT_ACTIVITY)]`
1490    ///
1491    /// - `NAME`: A string that represents a valid function name.
1492    /// - `INPUT_ACTIVITIES`: Specifies one valid activity for each input parameter.
1493    /// - `OUTPUT_ACTIVITY`: Must not be set if the function implicitly returns nothing
1494    ///   (or explicitly returns `-> ()`). Otherwise, it must be set to one of the allowed activities.
1495    #[unstable(feature = "autodiff", issue = "124509")]
1496    #[allow_internal_unstable(rustc_attrs)]
1497    #[rustc_builtin_macro]
1498    pub macro autodiff_forward($item:item) {
1499        /* compiler built-in */
1500    }
1501
1502    /// This macro uses reverse-mode automatic differentiation to generate a new function.
1503    /// It may only be applied to a function. The new function will compute the derivative
1504    /// of the function to which the macro was applied.
1505    ///
1506    /// The expected usage syntax is:
1507    /// `#[autodiff_reverse(NAME, INPUT_ACTIVITIES, OUTPUT_ACTIVITY)]`
1508    ///
1509    /// - `NAME`: A string that represents a valid function name.
1510    /// - `INPUT_ACTIVITIES`: Specifies one valid activity for each input parameter.
1511    /// - `OUTPUT_ACTIVITY`: Must not be set if the function implicitly returns nothing
1512    ///   (or explicitly returns `-> ()`). Otherwise, it must be set to one of the allowed activities.
1513    #[unstable(feature = "autodiff", issue = "124509")]
1514    #[allow_internal_unstable(rustc_attrs)]
1515    #[rustc_builtin_macro]
1516    pub macro autodiff_reverse($item:item) {
1517        /* compiler built-in */
1518    }
1519
1520    /// Asserts that a boolean expression is `true` at runtime.
1521    ///
1522    /// This will invoke the [`panic!`] macro if the provided expression cannot be
1523    /// evaluated to `true` at runtime.
1524    ///
1525    /// # Uses
1526    ///
1527    /// Assertions are always checked in both debug and release builds, and cannot
1528    /// be disabled. See [`debug_assert!`] for assertions that are not enabled in
1529    /// release builds by default.
1530    ///
1531    /// Unsafe code may rely on `assert!` to enforce run-time invariants that, if
1532    /// violated could lead to unsafety.
1533    ///
1534    /// Other use-cases of `assert!` include testing and enforcing run-time
1535    /// invariants in safe code (whose violation cannot result in unsafety).
1536    ///
1537    /// # Custom Messages
1538    ///
1539    /// This macro has a second form, where a custom panic message can
1540    /// be provided with or without arguments for formatting. See [`std::fmt`]
1541    /// for syntax for this form. Expressions used as format arguments will only
1542    /// be evaluated if the assertion fails.
1543    ///
1544    /// [`std::fmt`]: ../std/fmt/index.html
1545    ///
1546    /// # Examples
1547    ///
1548    /// ```
1549    /// // the panic message for these assertions is the stringified value of the
1550    /// // expression given.
1551    /// assert!(true);
1552    ///
1553    /// fn some_computation() -> bool {
1554    ///     // Some expensive computation here
1555    ///     true
1556    /// }
1557    ///
1558    /// assert!(some_computation());
1559    ///
1560    /// // assert with a custom message
1561    /// let x = true;
1562    /// assert!(x, "x wasn't true!");
1563    ///
1564    /// let a = 3; let b = 27;
1565    /// assert!(a + b == 30, "a = {}, b = {}", a, b);
1566    /// ```
1567    #[stable(feature = "rust1", since = "1.0.0")]
1568    #[rustc_builtin_macro]
1569    #[macro_export]
1570    #[rustc_diagnostic_item = "assert_macro"]
1571    #[allow_internal_unstable(
1572        core_intrinsics,
1573        panic_internals,
1574        edition_panic,
1575        generic_assert_internals
1576    )]
1577    macro_rules! assert {
1578        ($cond:expr $(,)?) => {{ /* compiler built-in */ }};
1579        ($cond:expr, $($arg:tt)+) => {{ /* compiler built-in */ }};
1580    }
1581
1582    /// Prints passed tokens into the standard output.
1583    #[unstable(
1584        feature = "log_syntax",
1585        issue = "29598",
1586        reason = "`log_syntax!` is not stable enough for use and is subject to change"
1587    )]
1588    #[rustc_builtin_macro]
1589    #[macro_export]
1590    macro_rules! log_syntax {
1591        ($($arg:tt)*) => {
1592            /* compiler built-in */
1593        };
1594    }
1595
1596    /// Enables or disables tracing functionality used for debugging other macros.
1597    #[unstable(
1598        feature = "trace_macros",
1599        issue = "29598",
1600        reason = "`trace_macros` is not stable enough for use and is subject to change"
1601    )]
1602    #[rustc_builtin_macro]
1603    #[macro_export]
1604    macro_rules! trace_macros {
1605        (true) => {{ /* compiler built-in */ }};
1606        (false) => {{ /* compiler built-in */ }};
1607    }
1608
1609    /// Attribute macro used to apply derive macros.
1610    ///
1611    /// See [the reference] for more info.
1612    ///
1613    /// [the reference]: ../../../reference/attributes/derive.html
1614    #[stable(feature = "rust1", since = "1.0.0")]
1615    #[rustc_builtin_macro]
1616    pub macro derive($item:item) {
1617        /* compiler built-in */
1618    }
1619
1620    /// Attribute macro used to apply derive macros for implementing traits
1621    /// in a const context.
1622    ///
1623    /// See [the reference] for more info.
1624    ///
1625    /// [the reference]: ../../../reference/attributes/derive.html
1626    #[unstable(feature = "derive_const", issue = "118304")]
1627    #[rustc_builtin_macro]
1628    pub macro derive_const($item:item) {
1629        /* compiler built-in */
1630    }
1631
1632    /// Attribute macro applied to a function to turn it into a unit test.
1633    ///
1634    /// See [the reference] for more info.
1635    ///
1636    /// [the reference]: ../../../reference/attributes/testing.html#the-test-attribute
1637    #[stable(feature = "rust1", since = "1.0.0")]
1638    #[allow_internal_unstable(test, rustc_attrs, coverage_attribute)]
1639    #[rustc_builtin_macro]
1640    pub macro test($item:item) {
1641        /* compiler built-in */
1642    }
1643
1644    /// Attribute macro applied to a function to turn it into a benchmark test.
1645    #[unstable(
1646        feature = "test",
1647        issue = "50297",
1648        reason = "`bench` is a part of custom test frameworks which are unstable"
1649    )]
1650    #[allow_internal_unstable(test, rustc_attrs, coverage_attribute)]
1651    #[rustc_builtin_macro]
1652    pub macro bench($item:item) {
1653        /* compiler built-in */
1654    }
1655
1656    /// An implementation detail of the `#[test]` and `#[bench]` macros.
1657    #[unstable(
1658        feature = "custom_test_frameworks",
1659        issue = "50297",
1660        reason = "custom test frameworks are an unstable feature"
1661    )]
1662    #[allow_internal_unstable(test, rustc_attrs)]
1663    #[rustc_builtin_macro]
1664    pub macro test_case($item:item) {
1665        /* compiler built-in */
1666    }
1667
1668    /// Attribute macro applied to a static to register it as a global allocator.
1669    ///
1670    /// See also [`std::alloc::GlobalAlloc`](../../../std/alloc/trait.GlobalAlloc.html).
1671    #[stable(feature = "global_allocator", since = "1.28.0")]
1672    #[allow_internal_unstable(rustc_attrs)]
1673    #[rustc_builtin_macro]
1674    pub macro global_allocator($item:item) {
1675        /* compiler built-in */
1676    }
1677
1678    /// Attribute macro applied to a function to give it a post-condition.
1679    ///
1680    /// The attribute carries an argument token-tree which is
1681    /// eventually parsed as a unary closure expression that is
1682    /// invoked on a reference to the return value.
1683    #[unstable(feature = "contracts", issue = "128044")]
1684    #[allow_internal_unstable(contracts_internals)]
1685    #[rustc_builtin_macro]
1686    pub macro contracts_ensures($item:item) {
1687        /* compiler built-in */
1688    }
1689
1690    /// Attribute macro applied to a function to give it a precondition.
1691    ///
1692    /// The attribute carries an argument token-tree which is
1693    /// eventually parsed as an boolean expression with access to the
1694    /// function's formal parameters
1695    #[unstable(feature = "contracts", issue = "128044")]
1696    #[allow_internal_unstable(contracts_internals)]
1697    #[rustc_builtin_macro]
1698    pub macro contracts_requires($item:item) {
1699        /* compiler built-in */
1700    }
1701
1702    /// Attribute macro applied to a function to register it as a handler for allocation failure.
1703    ///
1704    /// See also [`std::alloc::handle_alloc_error`](../../../std/alloc/fn.handle_alloc_error.html).
1705    #[unstable(feature = "alloc_error_handler", issue = "51540")]
1706    #[allow_internal_unstable(rustc_attrs)]
1707    #[rustc_builtin_macro]
1708    pub macro alloc_error_handler($item:item) {
1709        /* compiler built-in */
1710    }
1711
1712    /// Keeps the item it's applied to if the passed path is accessible, and removes it otherwise.
1713    #[unstable(
1714        feature = "cfg_accessible",
1715        issue = "64797",
1716        reason = "`cfg_accessible` is not fully implemented"
1717    )]
1718    #[rustc_builtin_macro]
1719    pub macro cfg_accessible($item:item) {
1720        /* compiler built-in */
1721    }
1722
1723    /// Expands all `#[cfg]` and `#[cfg_attr]` attributes in the code fragment it's applied to.
1724    #[unstable(
1725        feature = "cfg_eval",
1726        issue = "82679",
1727        reason = "`cfg_eval` is a recently implemented feature"
1728    )]
1729    #[rustc_builtin_macro]
1730    pub macro cfg_eval($($tt:tt)*) {
1731        /* compiler built-in */
1732    }
1733
1734    /// Provide a list of type aliases and other opaque-type-containing type definitions
1735    /// to an item with a body. This list will be used in that body to define opaque
1736    /// types' hidden types.
1737    /// Can only be applied to things that have bodies.
1738    #[unstable(
1739        feature = "type_alias_impl_trait",
1740        issue = "63063",
1741        reason = "`type_alias_impl_trait` has open design concerns"
1742    )]
1743    #[rustc_builtin_macro]
1744    pub macro define_opaque($($tt:tt)*) {
1745        /* compiler built-in */
1746    }
1747
1748    /// Unstable placeholder for type ascription.
1749    #[allow_internal_unstable(builtin_syntax)]
1750    #[unstable(
1751        feature = "type_ascription",
1752        issue = "23416",
1753        reason = "placeholder syntax for type ascription"
1754    )]
1755    #[rustfmt::skip]
1756    pub macro type_ascribe($expr:expr, $ty:ty) {
1757        builtin # type_ascribe($expr, $ty)
1758    }
1759
1760    /// Unstable placeholder for deref patterns.
1761    #[allow_internal_unstable(builtin_syntax)]
1762    #[unstable(
1763        feature = "deref_patterns",
1764        issue = "87121",
1765        reason = "placeholder syntax for deref patterns"
1766    )]
1767    pub macro deref($pat:pat) {
1768        builtin # deref($pat)
1769    }
1770}