alloc/vec/mod.rs
1//! A contiguous growable array type with heap-allocated contents, written
2//! `Vec<T>`.
3//!
4//! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
5//! *O*(1) pop (from the end).
6//!
7//! Vectors ensure they never allocate more than `isize::MAX` bytes.
8//!
9//! # Examples
10//!
11//! You can explicitly create a [`Vec`] with [`Vec::new`]:
12//!
13//! ```
14//! let v: Vec<i32> = Vec::new();
15//! ```
16//!
17//! ...or by using the [`vec!`] macro:
18//!
19//! ```
20//! let v: Vec<i32> = vec![];
21//!
22//! let v = vec![1, 2, 3, 4, 5];
23//!
24//! let v = vec![0; 10]; // ten zeroes
25//! ```
26//!
27//! You can [`push`] values onto the end of a vector (which will grow the vector
28//! as needed):
29//!
30//! ```
31//! let mut v = vec![1, 2];
32//!
33//! v.push(3);
34//! ```
35//!
36//! Popping values works in much the same way:
37//!
38//! ```
39//! let mut v = vec![1, 2];
40//!
41//! let two = v.pop();
42//! ```
43//!
44//! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
45//!
46//! ```
47//! let mut v = vec![1, 2, 3];
48//! let three = v[2];
49//! v[1] = v[1] + 5;
50//! ```
51//!
52//! # Memory layout
53//!
54//! When the type is non-zero-sized and the capacity is nonzero, [`Vec`] uses the [`Global`]
55//! allocator for its allocation. It is valid to convert both ways between such a [`Vec`] and a raw
56//! pointer allocated with the [`Global`] allocator, provided that the [`Layout`] used with the
57//! allocator is correct for a sequence of `capacity` elements of the type, and the first `len`
58//! values pointed to by the raw pointer are valid. More precisely, a `ptr: *mut T` that has been
59//! allocated with the [`Global`] allocator with [`Layout::array::<T>(capacity)`][Layout::array] may
60//! be converted into a vec using
61//! [`Vec::<T>::from_raw_parts(ptr, len, capacity)`](Vec::from_raw_parts). Conversely, the memory
62//! backing a `value: *mut T` obtained from [`Vec::<T>::as_mut_ptr`] may be deallocated using the
63//! [`Global`] allocator with the same layout.
64//!
65//! For zero-sized types (ZSTs), or when the capacity is zero, the `Vec` pointer must be non-null
66//! and sufficiently aligned. The recommended way to build a `Vec` of ZSTs if [`vec!`] cannot be
67//! used is to use [`ptr::NonNull::dangling`].
68//!
69//! [`push`]: Vec::push
70//! [`ptr::NonNull::dangling`]: NonNull::dangling
71//! [`Layout`]: crate::alloc::Layout
72//! [Layout::array]: crate::alloc::Layout::array
73
74#![stable(feature = "rust1", since = "1.0.0")]
75
76#[cfg(not(no_global_oom_handling))]
77use core::clone::TrivialClone;
78#[cfg(not(no_global_oom_handling))]
79use core::cmp;
80use core::cmp::Ordering;
81use core::hash::{Hash, Hasher};
82#[cfg(not(no_global_oom_handling))]
83use core::iter;
84use core::marker::PhantomData;
85use core::mem::{self, Assume, ManuallyDrop, MaybeUninit, SizedTypeProperties, TransmuteFrom};
86use core::ops::{self, Index, IndexMut, Range, RangeBounds};
87use core::ptr::{self, NonNull};
88use core::slice::{self, SliceIndex};
89use core::{fmt, intrinsics, ub_checks};
90
91#[stable(feature = "extract_if", since = "1.87.0")]
92pub use self::extract_if::ExtractIf;
93use crate::alloc::{Allocator, Global};
94use crate::borrow::{Cow, ToOwned};
95use crate::boxed::Box;
96use crate::collections::TryReserveError;
97use crate::raw_vec::RawVec;
98
99mod extract_if;
100
101#[cfg(not(no_global_oom_handling))]
102#[stable(feature = "vec_splice", since = "1.21.0")]
103pub use self::splice::Splice;
104
105#[cfg(not(no_global_oom_handling))]
106mod splice;
107
108#[stable(feature = "drain", since = "1.6.0")]
109pub use self::drain::Drain;
110
111mod drain;
112
113#[cfg(not(no_global_oom_handling))]
114mod cow;
115
116#[cfg(not(no_global_oom_handling))]
117pub(crate) use self::in_place_collect::AsVecIntoIter;
118#[stable(feature = "rust1", since = "1.0.0")]
119pub use self::into_iter::IntoIter;
120
121mod into_iter;
122
123#[cfg(not(no_global_oom_handling))]
124use self::is_zero::IsZero;
125
126#[cfg(not(no_global_oom_handling))]
127mod is_zero;
128
129#[cfg(not(no_global_oom_handling))]
130mod in_place_collect;
131
132mod partial_eq;
133
134#[unstable(feature = "vec_peek_mut", issue = "122742")]
135pub use self::peek_mut::PeekMut;
136
137mod peek_mut;
138
139#[cfg(not(no_global_oom_handling))]
140use self::spec_from_elem::SpecFromElem;
141
142#[cfg(not(no_global_oom_handling))]
143mod spec_from_elem;
144
145#[cfg(not(no_global_oom_handling))]
146use self::set_len_on_drop::SetLenOnDrop;
147
148#[cfg(not(no_global_oom_handling))]
149mod set_len_on_drop;
150
151#[cfg(not(no_global_oom_handling))]
152use self::in_place_drop::{InPlaceDrop, InPlaceDstDataSrcBufDrop};
153
154#[cfg(not(no_global_oom_handling))]
155mod in_place_drop;
156
157#[cfg(not(no_global_oom_handling))]
158use self::spec_from_iter_nested::SpecFromIterNested;
159
160#[cfg(not(no_global_oom_handling))]
161mod spec_from_iter_nested;
162
163#[cfg(not(no_global_oom_handling))]
164use self::spec_from_iter::SpecFromIter;
165
166#[cfg(not(no_global_oom_handling))]
167mod spec_from_iter;
168
169#[cfg(not(no_global_oom_handling))]
170use self::spec_extend::SpecExtend;
171
172#[cfg(not(no_global_oom_handling))]
173mod spec_extend;
174
175/// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
176///
177/// # Examples
178///
179/// ```
180/// let mut vec = Vec::new();
181/// vec.push(1);
182/// vec.push(2);
183///
184/// assert_eq!(vec.len(), 2);
185/// assert_eq!(vec[0], 1);
186///
187/// assert_eq!(vec.pop(), Some(2));
188/// assert_eq!(vec.len(), 1);
189///
190/// vec[0] = 7;
191/// assert_eq!(vec[0], 7);
192///
193/// vec.extend([1, 2, 3]);
194///
195/// for x in &vec {
196/// println!("{x}");
197/// }
198/// assert_eq!(vec, [7, 1, 2, 3]);
199/// ```
200///
201/// The [`vec!`] macro is provided for convenient initialization:
202///
203/// ```
204/// let mut vec1 = vec![1, 2, 3];
205/// vec1.push(4);
206/// let vec2 = Vec::from([1, 2, 3, 4]);
207/// assert_eq!(vec1, vec2);
208/// ```
209///
210/// It can also initialize each element of a `Vec<T>` with a given value.
211/// This may be more efficient than performing allocation and initialization
212/// in separate steps, especially when initializing a vector of zeros:
213///
214/// ```
215/// let vec = vec![0; 5];
216/// assert_eq!(vec, [0, 0, 0, 0, 0]);
217///
218/// // The following is equivalent, but potentially slower:
219/// let mut vec = Vec::with_capacity(5);
220/// vec.resize(5, 0);
221/// assert_eq!(vec, [0, 0, 0, 0, 0]);
222/// ```
223///
224/// For more information, see
225/// [Capacity and Reallocation](#capacity-and-reallocation).
226///
227/// Use a `Vec<T>` as an efficient stack:
228///
229/// ```
230/// let mut stack = Vec::new();
231///
232/// stack.push(1);
233/// stack.push(2);
234/// stack.push(3);
235///
236/// while let Some(top) = stack.pop() {
237/// // Prints 3, 2, 1
238/// println!("{top}");
239/// }
240/// ```
241///
242/// # Indexing
243///
244/// The `Vec` type allows access to values by index, because it implements the
245/// [`Index`] trait. An example will be more explicit:
246///
247/// ```
248/// let v = vec![0, 2, 4, 6];
249/// println!("{}", v[1]); // it will display '2'
250/// ```
251///
252/// However be careful: if you try to access an index which isn't in the `Vec`,
253/// your software will panic! You cannot do this:
254///
255/// ```should_panic
256/// let v = vec![0, 2, 4, 6];
257/// println!("{}", v[6]); // it will panic!
258/// ```
259///
260/// Use [`get`] and [`get_mut`] if you want to check whether the index is in
261/// the `Vec`.
262///
263/// # Slicing
264///
265/// A `Vec` can be mutable. On the other hand, slices are read-only objects.
266/// To get a [slice][prim@slice], use [`&`]. Example:
267///
268/// ```
269/// fn read_slice(slice: &[usize]) {
270/// // ...
271/// }
272///
273/// let v = vec![0, 1];
274/// read_slice(&v);
275///
276/// // ... and that's all!
277/// // you can also do it like this:
278/// let u: &[usize] = &v;
279/// // or like this:
280/// let u: &[_] = &v;
281/// ```
282///
283/// In Rust, it's more common to pass slices as arguments rather than vectors
284/// when you just want to provide read access. The same goes for [`String`] and
285/// [`&str`].
286///
287/// # Capacity and reallocation
288///
289/// The capacity of a vector is the amount of space allocated for any future
290/// elements that will be added onto the vector. This is not to be confused with
291/// the *length* of a vector, which specifies the number of actual elements
292/// within the vector. If a vector's length exceeds its capacity, its capacity
293/// will automatically be increased, but its elements will have to be
294/// reallocated.
295///
296/// For example, a vector with capacity 10 and length 0 would be an empty vector
297/// with space for 10 more elements. Pushing 10 or fewer elements onto the
298/// vector will not change its capacity or cause reallocation to occur. However,
299/// if the vector's length is increased to 11, it will have to reallocate, which
300/// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
301/// whenever possible to specify how big the vector is expected to get.
302///
303/// # Guarantees
304///
305/// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
306/// about its design. This ensures that it's as low-overhead as possible in
307/// the general case, and can be correctly manipulated in primitive ways
308/// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
309/// If additional type parameters are added (e.g., to support custom allocators),
310/// overriding their defaults may change the behavior.
311///
312/// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
313/// triplet. No more, no less. The order of these fields is completely
314/// unspecified, and you should use the appropriate methods to modify these.
315/// The pointer will never be null, so this type is null-pointer-optimized.
316///
317/// However, the pointer might not actually point to allocated memory. In particular,
318/// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
319/// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
320/// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
321/// types inside a `Vec`, it will not allocate space for them. *Note that in this case
322/// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
323/// if <code>[size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
324/// details are very subtle --- if you intend to allocate memory using a `Vec`
325/// and use it for something else (either to pass to unsafe code, or to build your
326/// own memory-backed collection), be sure to deallocate this memory by using
327/// `from_raw_parts` to recover the `Vec` and then dropping it.
328///
329/// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
330/// (as defined by the allocator Rust is configured to use by default), and its
331/// pointer points to [`len`] initialized, contiguous elements in order (what
332/// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
333/// logically uninitialized, contiguous elements.
334///
335/// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
336/// visualized as below. The top part is the `Vec` struct, it contains a
337/// pointer to the head of the allocation in the heap, length and capacity.
338/// The bottom part is the allocation on the heap, a contiguous memory block.
339///
340/// ```text
341/// ptr len capacity
342/// +--------+--------+--------+
343/// | 0x0123 | 2 | 4 |
344/// +--------+--------+--------+
345/// |
346/// v
347/// Heap +--------+--------+--------+--------+
348/// | 'a' | 'b' | uninit | uninit |
349/// +--------+--------+--------+--------+
350/// ```
351///
352/// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
353/// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
354/// layout (including the order of fields).
355///
356/// `Vec` will never perform a "small optimization" where elements are actually
357/// stored on the stack for two reasons:
358///
359/// * It would make it more difficult for unsafe code to correctly manipulate
360/// a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
361/// only moved, and it would be more difficult to determine if a `Vec` had
362/// actually allocated memory.
363///
364/// * It would penalize the general case, incurring an additional branch
365/// on every access.
366///
367/// `Vec` will never automatically shrink itself, even if completely empty. This
368/// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
369/// and then filling it back up to the same [`len`] should incur no calls to
370/// the allocator. If you wish to free up unused memory, use
371/// [`shrink_to_fit`] or [`shrink_to`].
372///
373/// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
374/// sufficient. [`push`] and [`insert`] *will* (re)allocate if
375/// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
376/// accurate, and can be relied on. It can even be used to manually free the memory
377/// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
378/// when not necessary.
379///
380/// `Vec` does not guarantee any particular growth strategy when reallocating
381/// when full, nor when [`reserve`] is called. The current strategy is basic
382/// and it may prove desirable to use a non-constant growth factor. Whatever
383/// strategy is used will of course guarantee *O*(1) amortized [`push`].
384///
385/// It is guaranteed, in order to respect the intentions of the programmer, that
386/// all of `vec![e_1, e_2, ..., e_n]`, `vec![x; n]`, and [`Vec::with_capacity(n)`] produce a `Vec`
387/// that requests an allocation of the exact size needed for precisely `n` elements from the allocator,
388/// and no other size (such as, for example: a size rounded up to the nearest power of 2).
389/// The allocator will return an allocation that is at least as large as requested, but it may be larger.
390///
391/// It is guaranteed that the [`Vec::capacity`] method returns a value that is at least the requested capacity
392/// and not more than the allocated capacity.
393///
394/// The method [`Vec::shrink_to_fit`] will attempt to discard excess capacity an allocator has given to a `Vec`.
395/// If <code>[len] == [capacity]</code>, then a `Vec<T>` can be converted
396/// to and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
397/// `Vec` exploits this fact as much as reasonable when implementing common conversions
398/// such as [`into_boxed_slice`].
399///
400/// `Vec` will not specifically overwrite any data that is removed from it,
401/// but also won't specifically preserve it. Its uninitialized memory is
402/// scratch space that it may use however it wants. It will generally just do
403/// whatever is most efficient or otherwise easy to implement. Do not rely on
404/// removed data to be erased for security purposes. Even if you drop a `Vec`, its
405/// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
406/// first, that might not actually happen because the optimizer does not consider
407/// this a side-effect that must be preserved. There is one case which we will
408/// not break, however: using `unsafe` code to write to the excess capacity,
409/// and then increasing the length to match, is always valid.
410///
411/// Currently, `Vec` does not guarantee the order in which elements are dropped.
412/// The order has changed in the past and may change again.
413///
414/// [`get`]: slice::get
415/// [`get_mut`]: slice::get_mut
416/// [`String`]: crate::string::String
417/// [`&str`]: type@str
418/// [`shrink_to_fit`]: Vec::shrink_to_fit
419/// [`shrink_to`]: Vec::shrink_to
420/// [capacity]: Vec::capacity
421/// [`capacity`]: Vec::capacity
422/// [`Vec::capacity`]: Vec::capacity
423/// [size_of::\<T>]: size_of
424/// [len]: Vec::len
425/// [`len`]: Vec::len
426/// [`push`]: Vec::push
427/// [`insert`]: Vec::insert
428/// [`reserve`]: Vec::reserve
429/// [`Vec::with_capacity(n)`]: Vec::with_capacity
430/// [`MaybeUninit`]: core::mem::MaybeUninit
431/// [owned slice]: Box
432/// [`into_boxed_slice`]: Vec::into_boxed_slice
433#[stable(feature = "rust1", since = "1.0.0")]
434#[rustc_diagnostic_item = "Vec"]
435#[rustc_insignificant_dtor]
436pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
437 buf: RawVec<T, A>,
438 len: usize,
439}
440
441////////////////////////////////////////////////////////////////////////////////
442// Inherent methods
443////////////////////////////////////////////////////////////////////////////////
444
445impl<T> Vec<T> {
446 /// Constructs a new, empty `Vec<T>`.
447 ///
448 /// The vector will not allocate until elements are pushed onto it.
449 ///
450 /// # Examples
451 ///
452 /// ```
453 /// # #![allow(unused_mut)]
454 /// let mut vec: Vec<i32> = Vec::new();
455 /// ```
456 #[inline]
457 #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
458 #[rustc_diagnostic_item = "vec_new"]
459 #[stable(feature = "rust1", since = "1.0.0")]
460 #[must_use]
461 pub const fn new() -> Self {
462 Vec { buf: RawVec::new(), len: 0 }
463 }
464
465 /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
466 ///
467 /// The vector will be able to hold at least `capacity` elements without
468 /// reallocating. This method is allowed to allocate for more elements than
469 /// `capacity`. If `capacity` is zero, the vector will not allocate.
470 ///
471 /// It is important to note that although the returned vector has the
472 /// minimum *capacity* specified, the vector will have a zero *length*. For
473 /// an explanation of the difference between length and capacity, see
474 /// *[Capacity and reallocation]*.
475 ///
476 /// If it is important to know the exact allocated capacity of a `Vec`,
477 /// always use the [`capacity`] method after construction.
478 ///
479 /// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation
480 /// and the capacity will always be `usize::MAX`.
481 ///
482 /// [Capacity and reallocation]: #capacity-and-reallocation
483 /// [`capacity`]: Vec::capacity
484 ///
485 /// # Panics
486 ///
487 /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
488 ///
489 /// # Examples
490 ///
491 /// ```
492 /// let mut vec = Vec::with_capacity(10);
493 ///
494 /// // The vector contains no items, even though it has capacity for more
495 /// assert_eq!(vec.len(), 0);
496 /// assert!(vec.capacity() >= 10);
497 ///
498 /// // These are all done without reallocating...
499 /// for i in 0..10 {
500 /// vec.push(i);
501 /// }
502 /// assert_eq!(vec.len(), 10);
503 /// assert!(vec.capacity() >= 10);
504 ///
505 /// // ...but this may make the vector reallocate
506 /// vec.push(11);
507 /// assert_eq!(vec.len(), 11);
508 /// assert!(vec.capacity() >= 11);
509 ///
510 /// // A vector of a zero-sized type will always over-allocate, since no
511 /// // allocation is necessary
512 /// let vec_units = Vec::<()>::with_capacity(10);
513 /// assert_eq!(vec_units.capacity(), usize::MAX);
514 /// ```
515 #[cfg(not(no_global_oom_handling))]
516 #[inline]
517 #[stable(feature = "rust1", since = "1.0.0")]
518 #[must_use]
519 #[rustc_diagnostic_item = "vec_with_capacity"]
520 pub fn with_capacity(capacity: usize) -> Self {
521 Self::with_capacity_in(capacity, Global)
522 }
523
524 /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
525 ///
526 /// The vector will be able to hold at least `capacity` elements without
527 /// reallocating. This method is allowed to allocate for more elements than
528 /// `capacity`. If `capacity` is zero, the vector will not allocate.
529 ///
530 /// # Errors
531 ///
532 /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
533 /// or if the allocator reports allocation failure.
534 #[inline]
535 #[unstable(feature = "try_with_capacity", issue = "91913")]
536 pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> {
537 Self::try_with_capacity_in(capacity, Global)
538 }
539
540 /// Creates a `Vec<T>` directly from a pointer, a length, and a capacity.
541 ///
542 /// # Safety
543 ///
544 /// This is highly unsafe, due to the number of invariants that aren't
545 /// checked:
546 ///
547 /// * If `T` is not a zero-sized type and the capacity is nonzero, `ptr` must have
548 /// been allocated using the global allocator, such as via the [`alloc::alloc`]
549 /// function. If `T` is a zero-sized type or the capacity is zero, `ptr` need
550 /// only be non-null and aligned.
551 /// * `T` needs to have the same alignment as what `ptr` was allocated with,
552 /// if the pointer is required to be allocated.
553 /// (`T` having a less strict alignment is not sufficient, the alignment really
554 /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
555 /// allocated and deallocated with the same layout.)
556 /// * The size of `T` times the `capacity` (ie. the allocated size in bytes), if
557 /// nonzero, needs to be the same size as the pointer was allocated with.
558 /// (Because similar to alignment, [`dealloc`] must be called with the same
559 /// layout `size`.)
560 /// * `length` needs to be less than or equal to `capacity`.
561 /// * The first `length` values must be properly initialized values of type `T`.
562 /// * `capacity` needs to be the capacity that the pointer was allocated with,
563 /// if the pointer is required to be allocated.
564 /// * The allocated size in bytes must be no larger than `isize::MAX`.
565 /// See the safety documentation of [`pointer::offset`].
566 ///
567 /// These requirements are always upheld by any `ptr` that has been allocated
568 /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
569 /// upheld.
570 ///
571 /// Violating these may cause problems like corrupting the allocator's
572 /// internal data structures. For example it is normally **not** safe
573 /// to build a `Vec<u8>` from a pointer to a C `char` array with length
574 /// `size_t`, doing so is only safe if the array was initially allocated by
575 /// a `Vec` or `String`.
576 /// It's also not safe to build one from a `Vec<u16>` and its length, because
577 /// the allocator cares about the alignment, and these two types have different
578 /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
579 /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
580 /// these issues, it is often preferable to do casting/transmuting using
581 /// [`slice::from_raw_parts`] instead.
582 ///
583 /// The ownership of `ptr` is effectively transferred to the
584 /// `Vec<T>` which may then deallocate, reallocate or change the
585 /// contents of memory pointed to by the pointer at will. Ensure
586 /// that nothing else uses the pointer after calling this
587 /// function.
588 ///
589 /// [`String`]: crate::string::String
590 /// [`alloc::alloc`]: crate::alloc::alloc
591 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
592 ///
593 /// # Examples
594 ///
595 /// ```
596 /// use std::ptr;
597 ///
598 /// let v = vec![1, 2, 3];
599 ///
600 /// // Deconstruct the vector into parts.
601 /// let (p, len, cap) = v.into_raw_parts();
602 ///
603 /// unsafe {
604 /// // Overwrite memory with 4, 5, 6
605 /// for i in 0..len {
606 /// ptr::write(p.add(i), 4 + i);
607 /// }
608 ///
609 /// // Put everything back together into a Vec
610 /// let rebuilt = Vec::from_raw_parts(p, len, cap);
611 /// assert_eq!(rebuilt, [4, 5, 6]);
612 /// }
613 /// ```
614 ///
615 /// Using memory that was allocated elsewhere:
616 ///
617 /// ```rust
618 /// use std::alloc::{alloc, Layout};
619 ///
620 /// fn main() {
621 /// let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
622 ///
623 /// let vec = unsafe {
624 /// let mem = alloc(layout).cast::<u32>();
625 /// if mem.is_null() {
626 /// return;
627 /// }
628 ///
629 /// mem.write(1_000_000);
630 ///
631 /// Vec::from_raw_parts(mem, 1, 16)
632 /// };
633 ///
634 /// assert_eq!(vec, &[1_000_000]);
635 /// assert_eq!(vec.capacity(), 16);
636 /// }
637 /// ```
638 #[inline]
639 #[stable(feature = "rust1", since = "1.0.0")]
640 pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
641 unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
642 }
643
644 #[doc(alias = "from_non_null_parts")]
645 /// Creates a `Vec<T>` directly from a `NonNull` pointer, a length, and a capacity.
646 ///
647 /// # Safety
648 ///
649 /// This is highly unsafe, due to the number of invariants that aren't
650 /// checked:
651 ///
652 /// * `ptr` must have been allocated using the global allocator, such as via
653 /// the [`alloc::alloc`] function.
654 /// * `T` needs to have the same alignment as what `ptr` was allocated with.
655 /// (`T` having a less strict alignment is not sufficient, the alignment really
656 /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
657 /// allocated and deallocated with the same layout.)
658 /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
659 /// to be the same size as the pointer was allocated with. (Because similar to
660 /// alignment, [`dealloc`] must be called with the same layout `size`.)
661 /// * `length` needs to be less than or equal to `capacity`.
662 /// * The first `length` values must be properly initialized values of type `T`.
663 /// * `capacity` needs to be the capacity that the pointer was allocated with.
664 /// * The allocated size in bytes must be no larger than `isize::MAX`.
665 /// See the safety documentation of [`pointer::offset`].
666 ///
667 /// These requirements are always upheld by any `ptr` that has been allocated
668 /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
669 /// upheld.
670 ///
671 /// Violating these may cause problems like corrupting the allocator's
672 /// internal data structures. For example it is normally **not** safe
673 /// to build a `Vec<u8>` from a pointer to a C `char` array with length
674 /// `size_t`, doing so is only safe if the array was initially allocated by
675 /// a `Vec` or `String`.
676 /// It's also not safe to build one from a `Vec<u16>` and its length, because
677 /// the allocator cares about the alignment, and these two types have different
678 /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
679 /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
680 /// these issues, it is often preferable to do casting/transmuting using
681 /// [`NonNull::slice_from_raw_parts`] instead.
682 ///
683 /// The ownership of `ptr` is effectively transferred to the
684 /// `Vec<T>` which may then deallocate, reallocate or change the
685 /// contents of memory pointed to by the pointer at will. Ensure
686 /// that nothing else uses the pointer after calling this
687 /// function.
688 ///
689 /// [`String`]: crate::string::String
690 /// [`alloc::alloc`]: crate::alloc::alloc
691 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
692 ///
693 /// # Examples
694 ///
695 /// ```
696 /// #![feature(box_vec_non_null)]
697 ///
698 /// let v = vec![1, 2, 3];
699 ///
700 /// // Deconstruct the vector into parts.
701 /// let (p, len, cap) = v.into_parts();
702 ///
703 /// unsafe {
704 /// // Overwrite memory with 4, 5, 6
705 /// for i in 0..len {
706 /// p.add(i).write(4 + i);
707 /// }
708 ///
709 /// // Put everything back together into a Vec
710 /// let rebuilt = Vec::from_parts(p, len, cap);
711 /// assert_eq!(rebuilt, [4, 5, 6]);
712 /// }
713 /// ```
714 ///
715 /// Using memory that was allocated elsewhere:
716 ///
717 /// ```rust
718 /// #![feature(box_vec_non_null)]
719 ///
720 /// use std::alloc::{alloc, Layout};
721 /// use std::ptr::NonNull;
722 ///
723 /// fn main() {
724 /// let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
725 ///
726 /// let vec = unsafe {
727 /// let Some(mem) = NonNull::new(alloc(layout).cast::<u32>()) else {
728 /// return;
729 /// };
730 ///
731 /// mem.write(1_000_000);
732 ///
733 /// Vec::from_parts(mem, 1, 16)
734 /// };
735 ///
736 /// assert_eq!(vec, &[1_000_000]);
737 /// assert_eq!(vec.capacity(), 16);
738 /// }
739 /// ```
740 #[inline]
741 #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
742 pub unsafe fn from_parts(ptr: NonNull<T>, length: usize, capacity: usize) -> Self {
743 unsafe { Self::from_parts_in(ptr, length, capacity, Global) }
744 }
745
746 /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity)`.
747 ///
748 /// Returns the raw pointer to the underlying data, the length of
749 /// the vector (in elements), and the allocated capacity of the
750 /// data (in elements). These are the same arguments in the same
751 /// order as the arguments to [`from_raw_parts`].
752 ///
753 /// After calling this function, the caller is responsible for the
754 /// memory previously managed by the `Vec`. Most often, one does
755 /// this by converting the raw pointer, length, and capacity back
756 /// into a `Vec` with the [`from_raw_parts`] function; more generally,
757 /// if `T` is non-zero-sized and the capacity is nonzero, one may use
758 /// any method that calls [`dealloc`] with a layout of
759 /// `Layout::array::<T>(capacity)`; if `T` is zero-sized or the
760 /// capacity is zero, nothing needs to be done.
761 ///
762 /// [`from_raw_parts`]: Vec::from_raw_parts
763 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
764 ///
765 /// # Examples
766 ///
767 /// ```
768 /// let v: Vec<i32> = vec![-1, 0, 1];
769 ///
770 /// let (ptr, len, cap) = v.into_raw_parts();
771 ///
772 /// let rebuilt = unsafe {
773 /// // We can now make changes to the components, such as
774 /// // transmuting the raw pointer to a compatible type.
775 /// let ptr = ptr as *mut u32;
776 ///
777 /// Vec::from_raw_parts(ptr, len, cap)
778 /// };
779 /// assert_eq!(rebuilt, [4294967295, 0, 1]);
780 /// ```
781 #[must_use = "losing the pointer will leak memory"]
782 #[stable(feature = "vec_into_raw_parts", since = "CURRENT_RUSTC_VERSION")]
783 pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
784 let mut me = ManuallyDrop::new(self);
785 (me.as_mut_ptr(), me.len(), me.capacity())
786 }
787
788 #[doc(alias = "into_non_null_parts")]
789 /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity)`.
790 ///
791 /// Returns the `NonNull` pointer to the underlying data, the length of
792 /// the vector (in elements), and the allocated capacity of the
793 /// data (in elements). These are the same arguments in the same
794 /// order as the arguments to [`from_parts`].
795 ///
796 /// After calling this function, the caller is responsible for the
797 /// memory previously managed by the `Vec`. The only way to do
798 /// this is to convert the `NonNull` pointer, length, and capacity back
799 /// into a `Vec` with the [`from_parts`] function, allowing
800 /// the destructor to perform the cleanup.
801 ///
802 /// [`from_parts`]: Vec::from_parts
803 ///
804 /// # Examples
805 ///
806 /// ```
807 /// #![feature(box_vec_non_null)]
808 ///
809 /// let v: Vec<i32> = vec![-1, 0, 1];
810 ///
811 /// let (ptr, len, cap) = v.into_parts();
812 ///
813 /// let rebuilt = unsafe {
814 /// // We can now make changes to the components, such as
815 /// // transmuting the raw pointer to a compatible type.
816 /// let ptr = ptr.cast::<u32>();
817 ///
818 /// Vec::from_parts(ptr, len, cap)
819 /// };
820 /// assert_eq!(rebuilt, [4294967295, 0, 1]);
821 /// ```
822 #[must_use = "losing the pointer will leak memory"]
823 #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
824 pub fn into_parts(self) -> (NonNull<T>, usize, usize) {
825 let (ptr, len, capacity) = self.into_raw_parts();
826 // SAFETY: A `Vec` always has a non-null pointer.
827 (unsafe { NonNull::new_unchecked(ptr) }, len, capacity)
828 }
829}
830
831impl<T, A: Allocator> Vec<T, A> {
832 /// Constructs a new, empty `Vec<T, A>`.
833 ///
834 /// The vector will not allocate until elements are pushed onto it.
835 ///
836 /// # Examples
837 ///
838 /// ```
839 /// #![feature(allocator_api)]
840 ///
841 /// use std::alloc::System;
842 ///
843 /// # #[allow(unused_mut)]
844 /// let mut vec: Vec<i32, _> = Vec::new_in(System);
845 /// ```
846 #[inline]
847 #[unstable(feature = "allocator_api", issue = "32838")]
848 pub const fn new_in(alloc: A) -> Self {
849 Vec { buf: RawVec::new_in(alloc), len: 0 }
850 }
851
852 /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
853 /// with the provided allocator.
854 ///
855 /// The vector will be able to hold at least `capacity` elements without
856 /// reallocating. This method is allowed to allocate for more elements than
857 /// `capacity`. If `capacity` is zero, the vector will not allocate.
858 ///
859 /// It is important to note that although the returned vector has the
860 /// minimum *capacity* specified, the vector will have a zero *length*. For
861 /// an explanation of the difference between length and capacity, see
862 /// *[Capacity and reallocation]*.
863 ///
864 /// If it is important to know the exact allocated capacity of a `Vec`,
865 /// always use the [`capacity`] method after construction.
866 ///
867 /// For `Vec<T, A>` where `T` is a zero-sized type, there will be no allocation
868 /// and the capacity will always be `usize::MAX`.
869 ///
870 /// [Capacity and reallocation]: #capacity-and-reallocation
871 /// [`capacity`]: Vec::capacity
872 ///
873 /// # Panics
874 ///
875 /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
876 ///
877 /// # Examples
878 ///
879 /// ```
880 /// #![feature(allocator_api)]
881 ///
882 /// use std::alloc::System;
883 ///
884 /// let mut vec = Vec::with_capacity_in(10, System);
885 ///
886 /// // The vector contains no items, even though it has capacity for more
887 /// assert_eq!(vec.len(), 0);
888 /// assert!(vec.capacity() >= 10);
889 ///
890 /// // These are all done without reallocating...
891 /// for i in 0..10 {
892 /// vec.push(i);
893 /// }
894 /// assert_eq!(vec.len(), 10);
895 /// assert!(vec.capacity() >= 10);
896 ///
897 /// // ...but this may make the vector reallocate
898 /// vec.push(11);
899 /// assert_eq!(vec.len(), 11);
900 /// assert!(vec.capacity() >= 11);
901 ///
902 /// // A vector of a zero-sized type will always over-allocate, since no
903 /// // allocation is necessary
904 /// let vec_units = Vec::<(), System>::with_capacity_in(10, System);
905 /// assert_eq!(vec_units.capacity(), usize::MAX);
906 /// ```
907 #[cfg(not(no_global_oom_handling))]
908 #[inline]
909 #[unstable(feature = "allocator_api", issue = "32838")]
910 pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
911 Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
912 }
913
914 /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
915 /// with the provided allocator.
916 ///
917 /// The vector will be able to hold at least `capacity` elements without
918 /// reallocating. This method is allowed to allocate for more elements than
919 /// `capacity`. If `capacity` is zero, the vector will not allocate.
920 ///
921 /// # Errors
922 ///
923 /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
924 /// or if the allocator reports allocation failure.
925 #[inline]
926 #[unstable(feature = "allocator_api", issue = "32838")]
927 // #[unstable(feature = "try_with_capacity", issue = "91913")]
928 pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
929 Ok(Vec { buf: RawVec::try_with_capacity_in(capacity, alloc)?, len: 0 })
930 }
931
932 /// Creates a `Vec<T, A>` directly from a pointer, a length, a capacity,
933 /// and an allocator.
934 ///
935 /// # Safety
936 ///
937 /// This is highly unsafe, due to the number of invariants that aren't
938 /// checked:
939 ///
940 /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
941 /// * `T` needs to have the same alignment as what `ptr` was allocated with.
942 /// (`T` having a less strict alignment is not sufficient, the alignment really
943 /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
944 /// allocated and deallocated with the same layout.)
945 /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
946 /// to be the same size as the pointer was allocated with. (Because similar to
947 /// alignment, [`dealloc`] must be called with the same layout `size`.)
948 /// * `length` needs to be less than or equal to `capacity`.
949 /// * The first `length` values must be properly initialized values of type `T`.
950 /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
951 /// * The allocated size in bytes must be no larger than `isize::MAX`.
952 /// See the safety documentation of [`pointer::offset`].
953 ///
954 /// These requirements are always upheld by any `ptr` that has been allocated
955 /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
956 /// upheld.
957 ///
958 /// Violating these may cause problems like corrupting the allocator's
959 /// internal data structures. For example it is **not** safe
960 /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
961 /// It's also not safe to build one from a `Vec<u16>` and its length, because
962 /// the allocator cares about the alignment, and these two types have different
963 /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
964 /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
965 ///
966 /// The ownership of `ptr` is effectively transferred to the
967 /// `Vec<T>` which may then deallocate, reallocate or change the
968 /// contents of memory pointed to by the pointer at will. Ensure
969 /// that nothing else uses the pointer after calling this
970 /// function.
971 ///
972 /// [`String`]: crate::string::String
973 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
974 /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
975 /// [*fit*]: crate::alloc::Allocator#memory-fitting
976 ///
977 /// # Examples
978 ///
979 /// ```
980 /// #![feature(allocator_api)]
981 ///
982 /// use std::alloc::System;
983 ///
984 /// use std::ptr;
985 ///
986 /// let mut v = Vec::with_capacity_in(3, System);
987 /// v.push(1);
988 /// v.push(2);
989 /// v.push(3);
990 ///
991 /// // Deconstruct the vector into parts.
992 /// let (p, len, cap, alloc) = v.into_raw_parts_with_alloc();
993 ///
994 /// unsafe {
995 /// // Overwrite memory with 4, 5, 6
996 /// for i in 0..len {
997 /// ptr::write(p.add(i), 4 + i);
998 /// }
999 ///
1000 /// // Put everything back together into a Vec
1001 /// let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
1002 /// assert_eq!(rebuilt, [4, 5, 6]);
1003 /// }
1004 /// ```
1005 ///
1006 /// Using memory that was allocated elsewhere:
1007 ///
1008 /// ```rust
1009 /// #![feature(allocator_api)]
1010 ///
1011 /// use std::alloc::{AllocError, Allocator, Global, Layout};
1012 ///
1013 /// fn main() {
1014 /// let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
1015 ///
1016 /// let vec = unsafe {
1017 /// let mem = match Global.allocate(layout) {
1018 /// Ok(mem) => mem.cast::<u32>().as_ptr(),
1019 /// Err(AllocError) => return,
1020 /// };
1021 ///
1022 /// mem.write(1_000_000);
1023 ///
1024 /// Vec::from_raw_parts_in(mem, 1, 16, Global)
1025 /// };
1026 ///
1027 /// assert_eq!(vec, &[1_000_000]);
1028 /// assert_eq!(vec.capacity(), 16);
1029 /// }
1030 /// ```
1031 #[inline]
1032 #[unstable(feature = "allocator_api", issue = "32838")]
1033 pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
1034 ub_checks::assert_unsafe_precondition!(
1035 check_library_ub,
1036 "Vec::from_raw_parts_in requires that length <= capacity",
1037 (length: usize = length, capacity: usize = capacity) => length <= capacity
1038 );
1039 unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
1040 }
1041
1042 #[doc(alias = "from_non_null_parts_in")]
1043 /// Creates a `Vec<T, A>` directly from a `NonNull` pointer, a length, a capacity,
1044 /// and an allocator.
1045 ///
1046 /// # Safety
1047 ///
1048 /// This is highly unsafe, due to the number of invariants that aren't
1049 /// checked:
1050 ///
1051 /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
1052 /// * `T` needs to have the same alignment as what `ptr` was allocated with.
1053 /// (`T` having a less strict alignment is not sufficient, the alignment really
1054 /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
1055 /// allocated and deallocated with the same layout.)
1056 /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
1057 /// to be the same size as the pointer was allocated with. (Because similar to
1058 /// alignment, [`dealloc`] must be called with the same layout `size`.)
1059 /// * `length` needs to be less than or equal to `capacity`.
1060 /// * The first `length` values must be properly initialized values of type `T`.
1061 /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
1062 /// * The allocated size in bytes must be no larger than `isize::MAX`.
1063 /// See the safety documentation of [`pointer::offset`].
1064 ///
1065 /// These requirements are always upheld by any `ptr` that has been allocated
1066 /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
1067 /// upheld.
1068 ///
1069 /// Violating these may cause problems like corrupting the allocator's
1070 /// internal data structures. For example it is **not** safe
1071 /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
1072 /// It's also not safe to build one from a `Vec<u16>` and its length, because
1073 /// the allocator cares about the alignment, and these two types have different
1074 /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
1075 /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
1076 ///
1077 /// The ownership of `ptr` is effectively transferred to the
1078 /// `Vec<T>` which may then deallocate, reallocate or change the
1079 /// contents of memory pointed to by the pointer at will. Ensure
1080 /// that nothing else uses the pointer after calling this
1081 /// function.
1082 ///
1083 /// [`String`]: crate::string::String
1084 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1085 /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
1086 /// [*fit*]: crate::alloc::Allocator#memory-fitting
1087 ///
1088 /// # Examples
1089 ///
1090 /// ```
1091 /// #![feature(allocator_api, box_vec_non_null)]
1092 ///
1093 /// use std::alloc::System;
1094 ///
1095 /// let mut v = Vec::with_capacity_in(3, System);
1096 /// v.push(1);
1097 /// v.push(2);
1098 /// v.push(3);
1099 ///
1100 /// // Deconstruct the vector into parts.
1101 /// let (p, len, cap, alloc) = v.into_parts_with_alloc();
1102 ///
1103 /// unsafe {
1104 /// // Overwrite memory with 4, 5, 6
1105 /// for i in 0..len {
1106 /// p.add(i).write(4 + i);
1107 /// }
1108 ///
1109 /// // Put everything back together into a Vec
1110 /// let rebuilt = Vec::from_parts_in(p, len, cap, alloc.clone());
1111 /// assert_eq!(rebuilt, [4, 5, 6]);
1112 /// }
1113 /// ```
1114 ///
1115 /// Using memory that was allocated elsewhere:
1116 ///
1117 /// ```rust
1118 /// #![feature(allocator_api, box_vec_non_null)]
1119 ///
1120 /// use std::alloc::{AllocError, Allocator, Global, Layout};
1121 ///
1122 /// fn main() {
1123 /// let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
1124 ///
1125 /// let vec = unsafe {
1126 /// let mem = match Global.allocate(layout) {
1127 /// Ok(mem) => mem.cast::<u32>(),
1128 /// Err(AllocError) => return,
1129 /// };
1130 ///
1131 /// mem.write(1_000_000);
1132 ///
1133 /// Vec::from_parts_in(mem, 1, 16, Global)
1134 /// };
1135 ///
1136 /// assert_eq!(vec, &[1_000_000]);
1137 /// assert_eq!(vec.capacity(), 16);
1138 /// }
1139 /// ```
1140 #[inline]
1141 #[unstable(feature = "allocator_api", reason = "new API", issue = "32838")]
1142 // #[unstable(feature = "box_vec_non_null", issue = "130364")]
1143 pub unsafe fn from_parts_in(ptr: NonNull<T>, length: usize, capacity: usize, alloc: A) -> Self {
1144 ub_checks::assert_unsafe_precondition!(
1145 check_library_ub,
1146 "Vec::from_parts_in requires that length <= capacity",
1147 (length: usize = length, capacity: usize = capacity) => length <= capacity
1148 );
1149 unsafe { Vec { buf: RawVec::from_nonnull_in(ptr, capacity, alloc), len: length } }
1150 }
1151
1152 /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity, allocator)`.
1153 ///
1154 /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
1155 /// the allocated capacity of the data (in elements), and the allocator. These are the same
1156 /// arguments in the same order as the arguments to [`from_raw_parts_in`].
1157 ///
1158 /// After calling this function, the caller is responsible for the
1159 /// memory previously managed by the `Vec`. The only way to do
1160 /// this is to convert the raw pointer, length, and capacity back
1161 /// into a `Vec` with the [`from_raw_parts_in`] function, allowing
1162 /// the destructor to perform the cleanup.
1163 ///
1164 /// [`from_raw_parts_in`]: Vec::from_raw_parts_in
1165 ///
1166 /// # Examples
1167 ///
1168 /// ```
1169 /// #![feature(allocator_api)]
1170 ///
1171 /// use std::alloc::System;
1172 ///
1173 /// let mut v: Vec<i32, System> = Vec::new_in(System);
1174 /// v.push(-1);
1175 /// v.push(0);
1176 /// v.push(1);
1177 ///
1178 /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
1179 ///
1180 /// let rebuilt = unsafe {
1181 /// // We can now make changes to the components, such as
1182 /// // transmuting the raw pointer to a compatible type.
1183 /// let ptr = ptr as *mut u32;
1184 ///
1185 /// Vec::from_raw_parts_in(ptr, len, cap, alloc)
1186 /// };
1187 /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1188 /// ```
1189 #[must_use = "losing the pointer will leak memory"]
1190 #[unstable(feature = "allocator_api", issue = "32838")]
1191 pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
1192 let mut me = ManuallyDrop::new(self);
1193 let len = me.len();
1194 let capacity = me.capacity();
1195 let ptr = me.as_mut_ptr();
1196 let alloc = unsafe { ptr::read(me.allocator()) };
1197 (ptr, len, capacity, alloc)
1198 }
1199
1200 #[doc(alias = "into_non_null_parts_with_alloc")]
1201 /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity, allocator)`.
1202 ///
1203 /// Returns the `NonNull` pointer to the underlying data, the length of the vector (in elements),
1204 /// the allocated capacity of the data (in elements), and the allocator. These are the same
1205 /// arguments in the same order as the arguments to [`from_parts_in`].
1206 ///
1207 /// After calling this function, the caller is responsible for the
1208 /// memory previously managed by the `Vec`. The only way to do
1209 /// this is to convert the `NonNull` pointer, length, and capacity back
1210 /// into a `Vec` with the [`from_parts_in`] function, allowing
1211 /// the destructor to perform the cleanup.
1212 ///
1213 /// [`from_parts_in`]: Vec::from_parts_in
1214 ///
1215 /// # Examples
1216 ///
1217 /// ```
1218 /// #![feature(allocator_api, box_vec_non_null)]
1219 ///
1220 /// use std::alloc::System;
1221 ///
1222 /// let mut v: Vec<i32, System> = Vec::new_in(System);
1223 /// v.push(-1);
1224 /// v.push(0);
1225 /// v.push(1);
1226 ///
1227 /// let (ptr, len, cap, alloc) = v.into_parts_with_alloc();
1228 ///
1229 /// let rebuilt = unsafe {
1230 /// // We can now make changes to the components, such as
1231 /// // transmuting the raw pointer to a compatible type.
1232 /// let ptr = ptr.cast::<u32>();
1233 ///
1234 /// Vec::from_parts_in(ptr, len, cap, alloc)
1235 /// };
1236 /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1237 /// ```
1238 #[must_use = "losing the pointer will leak memory"]
1239 #[unstable(feature = "allocator_api", issue = "32838")]
1240 // #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1241 pub fn into_parts_with_alloc(self) -> (NonNull<T>, usize, usize, A) {
1242 let (ptr, len, capacity, alloc) = self.into_raw_parts_with_alloc();
1243 // SAFETY: A `Vec` always has a non-null pointer.
1244 (unsafe { NonNull::new_unchecked(ptr) }, len, capacity, alloc)
1245 }
1246
1247 /// Returns the total number of elements the vector can hold without
1248 /// reallocating.
1249 ///
1250 /// # Examples
1251 ///
1252 /// ```
1253 /// let mut vec: Vec<i32> = Vec::with_capacity(10);
1254 /// vec.push(42);
1255 /// assert!(vec.capacity() >= 10);
1256 /// ```
1257 ///
1258 /// A vector with zero-sized elements will always have a capacity of usize::MAX:
1259 ///
1260 /// ```
1261 /// #[derive(Clone)]
1262 /// struct ZeroSized;
1263 ///
1264 /// fn main() {
1265 /// assert_eq!(std::mem::size_of::<ZeroSized>(), 0);
1266 /// let v = vec![ZeroSized; 0];
1267 /// assert_eq!(v.capacity(), usize::MAX);
1268 /// }
1269 /// ```
1270 #[inline]
1271 #[stable(feature = "rust1", since = "1.0.0")]
1272 #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1273 pub const fn capacity(&self) -> usize {
1274 self.buf.capacity()
1275 }
1276
1277 /// Reserves capacity for at least `additional` more elements to be inserted
1278 /// in the given `Vec<T>`. The collection may reserve more space to
1279 /// speculatively avoid frequent reallocations. After calling `reserve`,
1280 /// capacity will be greater than or equal to `self.len() + additional`.
1281 /// Does nothing if capacity is already sufficient.
1282 ///
1283 /// # Panics
1284 ///
1285 /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1286 ///
1287 /// # Examples
1288 ///
1289 /// ```
1290 /// let mut vec = vec![1];
1291 /// vec.reserve(10);
1292 /// assert!(vec.capacity() >= 11);
1293 /// ```
1294 #[cfg(not(no_global_oom_handling))]
1295 #[stable(feature = "rust1", since = "1.0.0")]
1296 #[rustc_diagnostic_item = "vec_reserve"]
1297 pub fn reserve(&mut self, additional: usize) {
1298 self.buf.reserve(self.len, additional);
1299 }
1300
1301 /// Reserves the minimum capacity for at least `additional` more elements to
1302 /// be inserted in the given `Vec<T>`. Unlike [`reserve`], this will not
1303 /// deliberately over-allocate to speculatively avoid frequent allocations.
1304 /// After calling `reserve_exact`, capacity will be greater than or equal to
1305 /// `self.len() + additional`. Does nothing if the capacity is already
1306 /// sufficient.
1307 ///
1308 /// Note that the allocator may give the collection more space than it
1309 /// requests. Therefore, capacity can not be relied upon to be precisely
1310 /// minimal. Prefer [`reserve`] if future insertions are expected.
1311 ///
1312 /// [`reserve`]: Vec::reserve
1313 ///
1314 /// # Panics
1315 ///
1316 /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1317 ///
1318 /// # Examples
1319 ///
1320 /// ```
1321 /// let mut vec = vec![1];
1322 /// vec.reserve_exact(10);
1323 /// assert!(vec.capacity() >= 11);
1324 /// ```
1325 #[cfg(not(no_global_oom_handling))]
1326 #[stable(feature = "rust1", since = "1.0.0")]
1327 pub fn reserve_exact(&mut self, additional: usize) {
1328 self.buf.reserve_exact(self.len, additional);
1329 }
1330
1331 /// Tries to reserve capacity for at least `additional` more elements to be inserted
1332 /// in the given `Vec<T>`. The collection may reserve more space to speculatively avoid
1333 /// frequent reallocations. After calling `try_reserve`, capacity will be
1334 /// greater than or equal to `self.len() + additional` if it returns
1335 /// `Ok(())`. Does nothing if capacity is already sufficient. This method
1336 /// preserves the contents even if an error occurs.
1337 ///
1338 /// # Errors
1339 ///
1340 /// If the capacity overflows, or the allocator reports a failure, then an error
1341 /// is returned.
1342 ///
1343 /// # Examples
1344 ///
1345 /// ```
1346 /// use std::collections::TryReserveError;
1347 ///
1348 /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1349 /// let mut output = Vec::new();
1350 ///
1351 /// // Pre-reserve the memory, exiting if we can't
1352 /// output.try_reserve(data.len())?;
1353 ///
1354 /// // Now we know this can't OOM in the middle of our complex work
1355 /// output.extend(data.iter().map(|&val| {
1356 /// val * 2 + 5 // very complicated
1357 /// }));
1358 ///
1359 /// Ok(output)
1360 /// }
1361 /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1362 /// ```
1363 #[stable(feature = "try_reserve", since = "1.57.0")]
1364 pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1365 self.buf.try_reserve(self.len, additional)
1366 }
1367
1368 /// Tries to reserve the minimum capacity for at least `additional`
1369 /// elements to be inserted in the given `Vec<T>`. Unlike [`try_reserve`],
1370 /// this will not deliberately over-allocate to speculatively avoid frequent
1371 /// allocations. After calling `try_reserve_exact`, capacity will be greater
1372 /// than or equal to `self.len() + additional` if it returns `Ok(())`.
1373 /// Does nothing if the capacity is already sufficient.
1374 ///
1375 /// Note that the allocator may give the collection more space than it
1376 /// requests. Therefore, capacity can not be relied upon to be precisely
1377 /// minimal. Prefer [`try_reserve`] if future insertions are expected.
1378 ///
1379 /// [`try_reserve`]: Vec::try_reserve
1380 ///
1381 /// # Errors
1382 ///
1383 /// If the capacity overflows, or the allocator reports a failure, then an error
1384 /// is returned.
1385 ///
1386 /// # Examples
1387 ///
1388 /// ```
1389 /// use std::collections::TryReserveError;
1390 ///
1391 /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1392 /// let mut output = Vec::new();
1393 ///
1394 /// // Pre-reserve the memory, exiting if we can't
1395 /// output.try_reserve_exact(data.len())?;
1396 ///
1397 /// // Now we know this can't OOM in the middle of our complex work
1398 /// output.extend(data.iter().map(|&val| {
1399 /// val * 2 + 5 // very complicated
1400 /// }));
1401 ///
1402 /// Ok(output)
1403 /// }
1404 /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1405 /// ```
1406 #[stable(feature = "try_reserve", since = "1.57.0")]
1407 pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1408 self.buf.try_reserve_exact(self.len, additional)
1409 }
1410
1411 /// Shrinks the capacity of the vector as much as possible.
1412 ///
1413 /// The behavior of this method depends on the allocator, which may either shrink the vector
1414 /// in-place or reallocate. The resulting vector might still have some excess capacity, just as
1415 /// is the case for [`with_capacity`]. See [`Allocator::shrink`] for more details.
1416 ///
1417 /// [`with_capacity`]: Vec::with_capacity
1418 ///
1419 /// # Examples
1420 ///
1421 /// ```
1422 /// let mut vec = Vec::with_capacity(10);
1423 /// vec.extend([1, 2, 3]);
1424 /// assert!(vec.capacity() >= 10);
1425 /// vec.shrink_to_fit();
1426 /// assert!(vec.capacity() >= 3);
1427 /// ```
1428 #[cfg(not(no_global_oom_handling))]
1429 #[stable(feature = "rust1", since = "1.0.0")]
1430 #[inline]
1431 pub fn shrink_to_fit(&mut self) {
1432 // The capacity is never less than the length, and there's nothing to do when
1433 // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
1434 // by only calling it with a greater capacity.
1435 if self.capacity() > self.len {
1436 self.buf.shrink_to_fit(self.len);
1437 }
1438 }
1439
1440 /// Shrinks the capacity of the vector with a lower bound.
1441 ///
1442 /// The capacity will remain at least as large as both the length
1443 /// and the supplied value.
1444 ///
1445 /// If the current capacity is less than the lower limit, this is a no-op.
1446 ///
1447 /// # Examples
1448 ///
1449 /// ```
1450 /// let mut vec = Vec::with_capacity(10);
1451 /// vec.extend([1, 2, 3]);
1452 /// assert!(vec.capacity() >= 10);
1453 /// vec.shrink_to(4);
1454 /// assert!(vec.capacity() >= 4);
1455 /// vec.shrink_to(0);
1456 /// assert!(vec.capacity() >= 3);
1457 /// ```
1458 #[cfg(not(no_global_oom_handling))]
1459 #[stable(feature = "shrink_to", since = "1.56.0")]
1460 pub fn shrink_to(&mut self, min_capacity: usize) {
1461 if self.capacity() > min_capacity {
1462 self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
1463 }
1464 }
1465
1466 /// Converts the vector into [`Box<[T]>`][owned slice].
1467 ///
1468 /// Before doing the conversion, this method discards excess capacity like [`shrink_to_fit`].
1469 ///
1470 /// [owned slice]: Box
1471 /// [`shrink_to_fit`]: Vec::shrink_to_fit
1472 ///
1473 /// # Examples
1474 ///
1475 /// ```
1476 /// let v = vec![1, 2, 3];
1477 ///
1478 /// let slice = v.into_boxed_slice();
1479 /// ```
1480 ///
1481 /// Any excess capacity is removed:
1482 ///
1483 /// ```
1484 /// let mut vec = Vec::with_capacity(10);
1485 /// vec.extend([1, 2, 3]);
1486 ///
1487 /// assert!(vec.capacity() >= 10);
1488 /// let slice = vec.into_boxed_slice();
1489 /// assert_eq!(slice.into_vec().capacity(), 3);
1490 /// ```
1491 #[cfg(not(no_global_oom_handling))]
1492 #[stable(feature = "rust1", since = "1.0.0")]
1493 pub fn into_boxed_slice(mut self) -> Box<[T], A> {
1494 unsafe {
1495 self.shrink_to_fit();
1496 let me = ManuallyDrop::new(self);
1497 let buf = ptr::read(&me.buf);
1498 let len = me.len();
1499 buf.into_box(len).assume_init()
1500 }
1501 }
1502
1503 /// Shortens the vector, keeping the first `len` elements and dropping
1504 /// the rest.
1505 ///
1506 /// If `len` is greater or equal to the vector's current length, this has
1507 /// no effect.
1508 ///
1509 /// The [`drain`] method can emulate `truncate`, but causes the excess
1510 /// elements to be returned instead of dropped.
1511 ///
1512 /// Note that this method has no effect on the allocated capacity
1513 /// of the vector.
1514 ///
1515 /// # Examples
1516 ///
1517 /// Truncating a five element vector to two elements:
1518 ///
1519 /// ```
1520 /// let mut vec = vec![1, 2, 3, 4, 5];
1521 /// vec.truncate(2);
1522 /// assert_eq!(vec, [1, 2]);
1523 /// ```
1524 ///
1525 /// No truncation occurs when `len` is greater than the vector's current
1526 /// length:
1527 ///
1528 /// ```
1529 /// let mut vec = vec![1, 2, 3];
1530 /// vec.truncate(8);
1531 /// assert_eq!(vec, [1, 2, 3]);
1532 /// ```
1533 ///
1534 /// Truncating when `len == 0` is equivalent to calling the [`clear`]
1535 /// method.
1536 ///
1537 /// ```
1538 /// let mut vec = vec![1, 2, 3];
1539 /// vec.truncate(0);
1540 /// assert_eq!(vec, []);
1541 /// ```
1542 ///
1543 /// [`clear`]: Vec::clear
1544 /// [`drain`]: Vec::drain
1545 #[stable(feature = "rust1", since = "1.0.0")]
1546 pub fn truncate(&mut self, len: usize) {
1547 // This is safe because:
1548 //
1549 // * the slice passed to `drop_in_place` is valid; the `len > self.len`
1550 // case avoids creating an invalid slice, and
1551 // * the `len` of the vector is shrunk before calling `drop_in_place`,
1552 // such that no value will be dropped twice in case `drop_in_place`
1553 // were to panic once (if it panics twice, the program aborts).
1554 unsafe {
1555 // Note: It's intentional that this is `>` and not `>=`.
1556 // Changing it to `>=` has negative performance
1557 // implications in some cases. See #78884 for more.
1558 if len > self.len {
1559 return;
1560 }
1561 let remaining_len = self.len - len;
1562 let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
1563 self.len = len;
1564 ptr::drop_in_place(s);
1565 }
1566 }
1567
1568 /// Extracts a slice containing the entire vector.
1569 ///
1570 /// Equivalent to `&s[..]`.
1571 ///
1572 /// # Examples
1573 ///
1574 /// ```
1575 /// use std::io::{self, Write};
1576 /// let buffer = vec![1, 2, 3, 5, 8];
1577 /// io::sink().write(buffer.as_slice()).unwrap();
1578 /// ```
1579 #[inline]
1580 #[stable(feature = "vec_as_slice", since = "1.7.0")]
1581 #[rustc_diagnostic_item = "vec_as_slice"]
1582 #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1583 pub const fn as_slice(&self) -> &[T] {
1584 // SAFETY: `slice::from_raw_parts` requires pointee is a contiguous, aligned buffer of size
1585 // `len` containing properly-initialized `T`s. Data must not be mutated for the returned
1586 // lifetime. Further, `len * size_of::<T>` <= `isize::MAX`, and allocation does not
1587 // "wrap" through overflowing memory addresses.
1588 //
1589 // * Vec API guarantees that self.buf:
1590 // * contains only properly-initialized items within 0..len
1591 // * is aligned, contiguous, and valid for `len` reads
1592 // * obeys size and address-wrapping constraints
1593 //
1594 // * We only construct `&mut` references to `self.buf` through `&mut self` methods; borrow-
1595 // check ensures that it is not possible to mutably alias `self.buf` within the
1596 // returned lifetime.
1597 unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
1598 }
1599
1600 /// Extracts a mutable slice of the entire vector.
1601 ///
1602 /// Equivalent to `&mut s[..]`.
1603 ///
1604 /// # Examples
1605 ///
1606 /// ```
1607 /// use std::io::{self, Read};
1608 /// let mut buffer = vec![0; 3];
1609 /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
1610 /// ```
1611 #[inline]
1612 #[stable(feature = "vec_as_slice", since = "1.7.0")]
1613 #[rustc_diagnostic_item = "vec_as_mut_slice"]
1614 #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1615 pub const fn as_mut_slice(&mut self) -> &mut [T] {
1616 // SAFETY: `slice::from_raw_parts_mut` requires pointee is a contiguous, aligned buffer of
1617 // size `len` containing properly-initialized `T`s. Data must not be accessed through any
1618 // other pointer for the returned lifetime. Further, `len * size_of::<T>` <=
1619 // `ISIZE::MAX` and allocation does not "wrap" through overflowing memory addresses.
1620 //
1621 // * Vec API guarantees that self.buf:
1622 // * contains only properly-initialized items within 0..len
1623 // * is aligned, contiguous, and valid for `len` reads
1624 // * obeys size and address-wrapping constraints
1625 //
1626 // * We only construct references to `self.buf` through `&self` and `&mut self` methods;
1627 // borrow-check ensures that it is not possible to construct a reference to `self.buf`
1628 // within the returned lifetime.
1629 unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
1630 }
1631
1632 /// Returns a raw pointer to the vector's buffer, or a dangling raw pointer
1633 /// valid for zero sized reads if the vector didn't allocate.
1634 ///
1635 /// The caller must ensure that the vector outlives the pointer this
1636 /// function returns, or else it will end up dangling.
1637 /// Modifying the vector may cause its buffer to be reallocated,
1638 /// which would also make any pointers to it invalid.
1639 ///
1640 /// The caller must also ensure that the memory the pointer (non-transitively) points to
1641 /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
1642 /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
1643 ///
1644 /// This method guarantees that for the purpose of the aliasing model, this method
1645 /// does not materialize a reference to the underlying slice, and thus the returned pointer
1646 /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1647 /// and [`as_non_null`].
1648 /// Note that calling other methods that materialize mutable references to the slice,
1649 /// or mutable references to specific elements you are planning on accessing through this pointer,
1650 /// as well as writing to those elements, may still invalidate this pointer.
1651 /// See the second example below for how this guarantee can be used.
1652 ///
1653 ///
1654 /// # Examples
1655 ///
1656 /// ```
1657 /// let x = vec![1, 2, 4];
1658 /// let x_ptr = x.as_ptr();
1659 ///
1660 /// unsafe {
1661 /// for i in 0..x.len() {
1662 /// assert_eq!(*x_ptr.add(i), 1 << i);
1663 /// }
1664 /// }
1665 /// ```
1666 ///
1667 /// Due to the aliasing guarantee, the following code is legal:
1668 ///
1669 /// ```rust
1670 /// unsafe {
1671 /// let mut v = vec![0, 1, 2];
1672 /// let ptr1 = v.as_ptr();
1673 /// let _ = ptr1.read();
1674 /// let ptr2 = v.as_mut_ptr().offset(2);
1675 /// ptr2.write(2);
1676 /// // Notably, the write to `ptr2` did *not* invalidate `ptr1`
1677 /// // because it mutated a different element:
1678 /// let _ = ptr1.read();
1679 /// }
1680 /// ```
1681 ///
1682 /// [`as_mut_ptr`]: Vec::as_mut_ptr
1683 /// [`as_ptr`]: Vec::as_ptr
1684 /// [`as_non_null`]: Vec::as_non_null
1685 #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1686 #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1687 #[rustc_never_returns_null_ptr]
1688 #[rustc_as_ptr]
1689 #[inline]
1690 pub const fn as_ptr(&self) -> *const T {
1691 // We shadow the slice method of the same name to avoid going through
1692 // `deref`, which creates an intermediate reference.
1693 self.buf.ptr()
1694 }
1695
1696 /// Returns a raw mutable pointer to the vector's buffer, or a dangling
1697 /// raw pointer valid for zero sized reads if the vector didn't allocate.
1698 ///
1699 /// The caller must ensure that the vector outlives the pointer this
1700 /// function returns, or else it will end up dangling.
1701 /// Modifying the vector may cause its buffer to be reallocated,
1702 /// which would also make any pointers to it invalid.
1703 ///
1704 /// This method guarantees that for the purpose of the aliasing model, this method
1705 /// does not materialize a reference to the underlying slice, and thus the returned pointer
1706 /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1707 /// and [`as_non_null`].
1708 /// Note that calling other methods that materialize references to the slice,
1709 /// or references to specific elements you are planning on accessing through this pointer,
1710 /// may still invalidate this pointer.
1711 /// See the second example below for how this guarantee can be used.
1712 ///
1713 /// The method also guarantees that, as long as `T` is not zero-sized and the capacity is
1714 /// nonzero, the pointer may be passed into [`dealloc`] with a layout of
1715 /// `Layout::array::<T>(capacity)` in order to deallocate the backing memory. If this is done,
1716 /// be careful not to run the destructor of the `Vec`, as dropping it will result in
1717 /// double-frees. Wrapping the `Vec` in a [`ManuallyDrop`] is the typical way to achieve this.
1718 ///
1719 /// # Examples
1720 ///
1721 /// ```
1722 /// // Allocate vector big enough for 4 elements.
1723 /// let size = 4;
1724 /// let mut x: Vec<i32> = Vec::with_capacity(size);
1725 /// let x_ptr = x.as_mut_ptr();
1726 ///
1727 /// // Initialize elements via raw pointer writes, then set length.
1728 /// unsafe {
1729 /// for i in 0..size {
1730 /// *x_ptr.add(i) = i as i32;
1731 /// }
1732 /// x.set_len(size);
1733 /// }
1734 /// assert_eq!(&*x, &[0, 1, 2, 3]);
1735 /// ```
1736 ///
1737 /// Due to the aliasing guarantee, the following code is legal:
1738 ///
1739 /// ```rust
1740 /// unsafe {
1741 /// let mut v = vec![0];
1742 /// let ptr1 = v.as_mut_ptr();
1743 /// ptr1.write(1);
1744 /// let ptr2 = v.as_mut_ptr();
1745 /// ptr2.write(2);
1746 /// // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1747 /// ptr1.write(3);
1748 /// }
1749 /// ```
1750 ///
1751 /// Deallocating a vector using [`Box`] (which uses [`dealloc`] internally):
1752 ///
1753 /// ```
1754 /// use std::mem::{ManuallyDrop, MaybeUninit};
1755 ///
1756 /// let mut v = ManuallyDrop::new(vec![0, 1, 2]);
1757 /// let ptr = v.as_mut_ptr();
1758 /// let capacity = v.capacity();
1759 /// let slice_ptr: *mut [MaybeUninit<i32>] =
1760 /// std::ptr::slice_from_raw_parts_mut(ptr.cast(), capacity);
1761 /// drop(unsafe { Box::from_raw(slice_ptr) });
1762 /// ```
1763 ///
1764 /// [`as_mut_ptr`]: Vec::as_mut_ptr
1765 /// [`as_ptr`]: Vec::as_ptr
1766 /// [`as_non_null`]: Vec::as_non_null
1767 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1768 /// [`ManuallyDrop`]: core::mem::ManuallyDrop
1769 #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1770 #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1771 #[rustc_never_returns_null_ptr]
1772 #[rustc_as_ptr]
1773 #[inline]
1774 pub const fn as_mut_ptr(&mut self) -> *mut T {
1775 // We shadow the slice method of the same name to avoid going through
1776 // `deref_mut`, which creates an intermediate reference.
1777 self.buf.ptr()
1778 }
1779
1780 /// Returns a `NonNull` pointer to the vector's buffer, or a dangling
1781 /// `NonNull` pointer valid for zero sized reads if the vector didn't allocate.
1782 ///
1783 /// The caller must ensure that the vector outlives the pointer this
1784 /// function returns, or else it will end up dangling.
1785 /// Modifying the vector may cause its buffer to be reallocated,
1786 /// which would also make any pointers to it invalid.
1787 ///
1788 /// This method guarantees that for the purpose of the aliasing model, this method
1789 /// does not materialize a reference to the underlying slice, and thus the returned pointer
1790 /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1791 /// and [`as_non_null`].
1792 /// Note that calling other methods that materialize references to the slice,
1793 /// or references to specific elements you are planning on accessing through this pointer,
1794 /// may still invalidate this pointer.
1795 /// See the second example below for how this guarantee can be used.
1796 ///
1797 /// # Examples
1798 ///
1799 /// ```
1800 /// #![feature(box_vec_non_null)]
1801 ///
1802 /// // Allocate vector big enough for 4 elements.
1803 /// let size = 4;
1804 /// let mut x: Vec<i32> = Vec::with_capacity(size);
1805 /// let x_ptr = x.as_non_null();
1806 ///
1807 /// // Initialize elements via raw pointer writes, then set length.
1808 /// unsafe {
1809 /// for i in 0..size {
1810 /// x_ptr.add(i).write(i as i32);
1811 /// }
1812 /// x.set_len(size);
1813 /// }
1814 /// assert_eq!(&*x, &[0, 1, 2, 3]);
1815 /// ```
1816 ///
1817 /// Due to the aliasing guarantee, the following code is legal:
1818 ///
1819 /// ```rust
1820 /// #![feature(box_vec_non_null)]
1821 ///
1822 /// unsafe {
1823 /// let mut v = vec![0];
1824 /// let ptr1 = v.as_non_null();
1825 /// ptr1.write(1);
1826 /// let ptr2 = v.as_non_null();
1827 /// ptr2.write(2);
1828 /// // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1829 /// ptr1.write(3);
1830 /// }
1831 /// ```
1832 ///
1833 /// [`as_mut_ptr`]: Vec::as_mut_ptr
1834 /// [`as_ptr`]: Vec::as_ptr
1835 /// [`as_non_null`]: Vec::as_non_null
1836 #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1837 #[rustc_const_unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1838 #[inline]
1839 pub const fn as_non_null(&mut self) -> NonNull<T> {
1840 self.buf.non_null()
1841 }
1842
1843 /// Returns a reference to the underlying allocator.
1844 #[unstable(feature = "allocator_api", issue = "32838")]
1845 #[inline]
1846 pub fn allocator(&self) -> &A {
1847 self.buf.allocator()
1848 }
1849
1850 /// Forces the length of the vector to `new_len`.
1851 ///
1852 /// This is a low-level operation that maintains none of the normal
1853 /// invariants of the type. Normally changing the length of a vector
1854 /// is done using one of the safe operations instead, such as
1855 /// [`truncate`], [`resize`], [`extend`], or [`clear`].
1856 ///
1857 /// [`truncate`]: Vec::truncate
1858 /// [`resize`]: Vec::resize
1859 /// [`extend`]: Extend::extend
1860 /// [`clear`]: Vec::clear
1861 ///
1862 /// # Safety
1863 ///
1864 /// - `new_len` must be less than or equal to [`capacity()`].
1865 /// - The elements at `old_len..new_len` must be initialized.
1866 ///
1867 /// [`capacity()`]: Vec::capacity
1868 ///
1869 /// # Examples
1870 ///
1871 /// See [`spare_capacity_mut()`] for an example with safe
1872 /// initialization of capacity elements and use of this method.
1873 ///
1874 /// `set_len()` can be useful for situations in which the vector
1875 /// is serving as a buffer for other code, particularly over FFI:
1876 ///
1877 /// ```no_run
1878 /// # #![allow(dead_code)]
1879 /// # // This is just a minimal skeleton for the doc example;
1880 /// # // don't use this as a starting point for a real library.
1881 /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
1882 /// # const Z_OK: i32 = 0;
1883 /// # unsafe extern "C" {
1884 /// # fn deflateGetDictionary(
1885 /// # strm: *mut std::ffi::c_void,
1886 /// # dictionary: *mut u8,
1887 /// # dictLength: *mut usize,
1888 /// # ) -> i32;
1889 /// # }
1890 /// # impl StreamWrapper {
1891 /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
1892 /// // Per the FFI method's docs, "32768 bytes is always enough".
1893 /// let mut dict = Vec::with_capacity(32_768);
1894 /// let mut dict_length = 0;
1895 /// // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
1896 /// // 1. `dict_length` elements were initialized.
1897 /// // 2. `dict_length` <= the capacity (32_768)
1898 /// // which makes `set_len` safe to call.
1899 /// unsafe {
1900 /// // Make the FFI call...
1901 /// let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
1902 /// if r == Z_OK {
1903 /// // ...and update the length to what was initialized.
1904 /// dict.set_len(dict_length);
1905 /// Some(dict)
1906 /// } else {
1907 /// None
1908 /// }
1909 /// }
1910 /// }
1911 /// # }
1912 /// ```
1913 ///
1914 /// While the following example is sound, there is a memory leak since
1915 /// the inner vectors were not freed prior to the `set_len` call:
1916 ///
1917 /// ```
1918 /// let mut vec = vec![vec![1, 0, 0],
1919 /// vec![0, 1, 0],
1920 /// vec![0, 0, 1]];
1921 /// // SAFETY:
1922 /// // 1. `old_len..0` is empty so no elements need to be initialized.
1923 /// // 2. `0 <= capacity` always holds whatever `capacity` is.
1924 /// unsafe {
1925 /// vec.set_len(0);
1926 /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
1927 /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
1928 /// # vec.set_len(3);
1929 /// }
1930 /// ```
1931 ///
1932 /// Normally, here, one would use [`clear`] instead to correctly drop
1933 /// the contents and thus not leak memory.
1934 ///
1935 /// [`spare_capacity_mut()`]: Vec::spare_capacity_mut
1936 #[inline]
1937 #[stable(feature = "rust1", since = "1.0.0")]
1938 pub unsafe fn set_len(&mut self, new_len: usize) {
1939 ub_checks::assert_unsafe_precondition!(
1940 check_library_ub,
1941 "Vec::set_len requires that new_len <= capacity()",
1942 (new_len: usize = new_len, capacity: usize = self.capacity()) => new_len <= capacity
1943 );
1944
1945 self.len = new_len;
1946 }
1947
1948 /// Removes an element from the vector and returns it.
1949 ///
1950 /// The removed element is replaced by the last element of the vector.
1951 ///
1952 /// This does not preserve ordering of the remaining elements, but is *O*(1).
1953 /// If you need to preserve the element order, use [`remove`] instead.
1954 ///
1955 /// [`remove`]: Vec::remove
1956 ///
1957 /// # Panics
1958 ///
1959 /// Panics if `index` is out of bounds.
1960 ///
1961 /// # Examples
1962 ///
1963 /// ```
1964 /// let mut v = vec!["foo", "bar", "baz", "qux"];
1965 ///
1966 /// assert_eq!(v.swap_remove(1), "bar");
1967 /// assert_eq!(v, ["foo", "qux", "baz"]);
1968 ///
1969 /// assert_eq!(v.swap_remove(0), "foo");
1970 /// assert_eq!(v, ["baz", "qux"]);
1971 /// ```
1972 #[inline]
1973 #[stable(feature = "rust1", since = "1.0.0")]
1974 pub fn swap_remove(&mut self, index: usize) -> T {
1975 #[cold]
1976 #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
1977 #[optimize(size)]
1978 fn assert_failed(index: usize, len: usize) -> ! {
1979 panic!("swap_remove index (is {index}) should be < len (is {len})");
1980 }
1981
1982 let len = self.len();
1983 if index >= len {
1984 assert_failed(index, len);
1985 }
1986 unsafe {
1987 // We replace self[index] with the last element. Note that if the
1988 // bounds check above succeeds there must be a last element (which
1989 // can be self[index] itself).
1990 let value = ptr::read(self.as_ptr().add(index));
1991 let base_ptr = self.as_mut_ptr();
1992 ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
1993 self.set_len(len - 1);
1994 value
1995 }
1996 }
1997
1998 /// Inserts an element at position `index` within the vector, shifting all
1999 /// elements after it to the right.
2000 ///
2001 /// # Panics
2002 ///
2003 /// Panics if `index > len`.
2004 ///
2005 /// # Examples
2006 ///
2007 /// ```
2008 /// let mut vec = vec!['a', 'b', 'c'];
2009 /// vec.insert(1, 'd');
2010 /// assert_eq!(vec, ['a', 'd', 'b', 'c']);
2011 /// vec.insert(4, 'e');
2012 /// assert_eq!(vec, ['a', 'd', 'b', 'c', 'e']);
2013 /// ```
2014 ///
2015 /// # Time complexity
2016 ///
2017 /// Takes *O*([`Vec::len`]) time. All items after the insertion index must be
2018 /// shifted to the right. In the worst case, all elements are shifted when
2019 /// the insertion index is 0.
2020 #[cfg(not(no_global_oom_handling))]
2021 #[stable(feature = "rust1", since = "1.0.0")]
2022 #[track_caller]
2023 pub fn insert(&mut self, index: usize, element: T) {
2024 let _ = self.insert_mut(index, element);
2025 }
2026
2027 /// Inserts an element at position `index` within the vector, shifting all
2028 /// elements after it to the right, and returning a reference to the new
2029 /// element.
2030 ///
2031 /// # Panics
2032 ///
2033 /// Panics if `index > len`.
2034 ///
2035 /// # Examples
2036 ///
2037 /// ```
2038 /// #![feature(push_mut)]
2039 /// let mut vec = vec![1, 3, 5, 9];
2040 /// let x = vec.insert_mut(3, 6);
2041 /// *x += 1;
2042 /// assert_eq!(vec, [1, 3, 5, 7, 9]);
2043 /// ```
2044 ///
2045 /// # Time complexity
2046 ///
2047 /// Takes *O*([`Vec::len`]) time. All items after the insertion index must be
2048 /// shifted to the right. In the worst case, all elements are shifted when
2049 /// the insertion index is 0.
2050 #[cfg(not(no_global_oom_handling))]
2051 #[inline]
2052 #[unstable(feature = "push_mut", issue = "135974")]
2053 #[track_caller]
2054 #[must_use = "if you don't need a reference to the value, use `Vec::insert` instead"]
2055 pub fn insert_mut(&mut self, index: usize, element: T) -> &mut T {
2056 #[cold]
2057 #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2058 #[track_caller]
2059 #[optimize(size)]
2060 fn assert_failed(index: usize, len: usize) -> ! {
2061 panic!("insertion index (is {index}) should be <= len (is {len})");
2062 }
2063
2064 let len = self.len();
2065 if index > len {
2066 assert_failed(index, len);
2067 }
2068
2069 // space for the new element
2070 if len == self.buf.capacity() {
2071 self.buf.grow_one();
2072 }
2073
2074 unsafe {
2075 // infallible
2076 // The spot to put the new value
2077 let p = self.as_mut_ptr().add(index);
2078 {
2079 if index < len {
2080 // Shift everything over to make space. (Duplicating the
2081 // `index`th element into two consecutive places.)
2082 ptr::copy(p, p.add(1), len - index);
2083 }
2084 // Write it in, overwriting the first copy of the `index`th
2085 // element.
2086 ptr::write(p, element);
2087 }
2088 self.set_len(len + 1);
2089 &mut *p
2090 }
2091 }
2092
2093 /// Removes and returns the element at position `index` within the vector,
2094 /// shifting all elements after it to the left.
2095 ///
2096 /// Note: Because this shifts over the remaining elements, it has a
2097 /// worst-case performance of *O*(*n*). If you don't need the order of elements
2098 /// to be preserved, use [`swap_remove`] instead. If you'd like to remove
2099 /// elements from the beginning of the `Vec`, consider using
2100 /// [`VecDeque::pop_front`] instead.
2101 ///
2102 /// [`swap_remove`]: Vec::swap_remove
2103 /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2104 ///
2105 /// # Panics
2106 ///
2107 /// Panics if `index` is out of bounds.
2108 ///
2109 /// # Examples
2110 ///
2111 /// ```
2112 /// let mut v = vec!['a', 'b', 'c'];
2113 /// assert_eq!(v.remove(1), 'b');
2114 /// assert_eq!(v, ['a', 'c']);
2115 /// ```
2116 #[stable(feature = "rust1", since = "1.0.0")]
2117 #[track_caller]
2118 #[rustc_confusables("delete", "take")]
2119 pub fn remove(&mut self, index: usize) -> T {
2120 #[cold]
2121 #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2122 #[track_caller]
2123 #[optimize(size)]
2124 fn assert_failed(index: usize, len: usize) -> ! {
2125 panic!("removal index (is {index}) should be < len (is {len})");
2126 }
2127
2128 match self.try_remove(index) {
2129 Some(elem) => elem,
2130 None => assert_failed(index, self.len()),
2131 }
2132 }
2133
2134 /// Remove and return the element at position `index` within the vector,
2135 /// shifting all elements after it to the left, or [`None`] if it does not
2136 /// exist.
2137 ///
2138 /// Note: Because this shifts over the remaining elements, it has a
2139 /// worst-case performance of *O*(*n*). If you'd like to remove
2140 /// elements from the beginning of the `Vec`, consider using
2141 /// [`VecDeque::pop_front`] instead.
2142 ///
2143 /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2144 ///
2145 /// # Examples
2146 ///
2147 /// ```
2148 /// #![feature(vec_try_remove)]
2149 /// let mut v = vec![1, 2, 3];
2150 /// assert_eq!(v.try_remove(0), Some(1));
2151 /// assert_eq!(v.try_remove(2), None);
2152 /// ```
2153 #[unstable(feature = "vec_try_remove", issue = "146954")]
2154 #[rustc_confusables("delete", "take", "remove")]
2155 pub fn try_remove(&mut self, index: usize) -> Option<T> {
2156 let len = self.len();
2157 if index >= len {
2158 return None;
2159 }
2160 unsafe {
2161 // infallible
2162 let ret;
2163 {
2164 // the place we are taking from.
2165 let ptr = self.as_mut_ptr().add(index);
2166 // copy it out, unsafely having a copy of the value on
2167 // the stack and in the vector at the same time.
2168 ret = ptr::read(ptr);
2169
2170 // Shift everything down to fill in that spot.
2171 ptr::copy(ptr.add(1), ptr, len - index - 1);
2172 }
2173 self.set_len(len - 1);
2174 Some(ret)
2175 }
2176 }
2177
2178 /// Retains only the elements specified by the predicate.
2179 ///
2180 /// In other words, remove all elements `e` for which `f(&e)` returns `false`.
2181 /// This method operates in place, visiting each element exactly once in the
2182 /// original order, and preserves the order of the retained elements.
2183 ///
2184 /// # Examples
2185 ///
2186 /// ```
2187 /// let mut vec = vec![1, 2, 3, 4];
2188 /// vec.retain(|&x| x % 2 == 0);
2189 /// assert_eq!(vec, [2, 4]);
2190 /// ```
2191 ///
2192 /// Because the elements are visited exactly once in the original order,
2193 /// external state may be used to decide which elements to keep.
2194 ///
2195 /// ```
2196 /// let mut vec = vec![1, 2, 3, 4, 5];
2197 /// let keep = [false, true, true, false, true];
2198 /// let mut iter = keep.iter();
2199 /// vec.retain(|_| *iter.next().unwrap());
2200 /// assert_eq!(vec, [2, 3, 5]);
2201 /// ```
2202 #[stable(feature = "rust1", since = "1.0.0")]
2203 pub fn retain<F>(&mut self, mut f: F)
2204 where
2205 F: FnMut(&T) -> bool,
2206 {
2207 self.retain_mut(|elem| f(elem));
2208 }
2209
2210 /// Retains only the elements specified by the predicate, passing a mutable reference to it.
2211 ///
2212 /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
2213 /// This method operates in place, visiting each element exactly once in the
2214 /// original order, and preserves the order of the retained elements.
2215 ///
2216 /// # Examples
2217 ///
2218 /// ```
2219 /// let mut vec = vec![1, 2, 3, 4];
2220 /// vec.retain_mut(|x| if *x <= 3 {
2221 /// *x += 1;
2222 /// true
2223 /// } else {
2224 /// false
2225 /// });
2226 /// assert_eq!(vec, [2, 3, 4]);
2227 /// ```
2228 #[stable(feature = "vec_retain_mut", since = "1.61.0")]
2229 pub fn retain_mut<F>(&mut self, mut f: F)
2230 where
2231 F: FnMut(&mut T) -> bool,
2232 {
2233 let original_len = self.len();
2234
2235 if original_len == 0 {
2236 // Empty case: explicit return allows better optimization, vs letting compiler infer it
2237 return;
2238 }
2239
2240 // Avoid double drop if the drop guard is not executed,
2241 // since we may make some holes during the process.
2242 unsafe { self.set_len(0) };
2243
2244 // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
2245 // |<- processed len ->| ^- next to check
2246 // |<- deleted cnt ->|
2247 // |<- original_len ->|
2248 // Kept: Elements which predicate returns true on.
2249 // Hole: Moved or dropped element slot.
2250 // Unchecked: Unchecked valid elements.
2251 //
2252 // This drop guard will be invoked when predicate or `drop` of element panicked.
2253 // It shifts unchecked elements to cover holes and `set_len` to the correct length.
2254 // In cases when predicate and `drop` never panick, it will be optimized out.
2255 struct BackshiftOnDrop<'a, T, A: Allocator> {
2256 v: &'a mut Vec<T, A>,
2257 processed_len: usize,
2258 deleted_cnt: usize,
2259 original_len: usize,
2260 }
2261
2262 impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> {
2263 fn drop(&mut self) {
2264 if self.deleted_cnt > 0 {
2265 // SAFETY: Trailing unchecked items must be valid since we never touch them.
2266 unsafe {
2267 ptr::copy(
2268 self.v.as_ptr().add(self.processed_len),
2269 self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
2270 self.original_len - self.processed_len,
2271 );
2272 }
2273 }
2274 // SAFETY: After filling holes, all items are in contiguous memory.
2275 unsafe {
2276 self.v.set_len(self.original_len - self.deleted_cnt);
2277 }
2278 }
2279 }
2280
2281 let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
2282
2283 fn process_loop<F, T, A: Allocator, const DELETED: bool>(
2284 original_len: usize,
2285 f: &mut F,
2286 g: &mut BackshiftOnDrop<'_, T, A>,
2287 ) where
2288 F: FnMut(&mut T) -> bool,
2289 {
2290 while g.processed_len != original_len {
2291 // SAFETY: Unchecked element must be valid.
2292 let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) };
2293 if !f(cur) {
2294 // Advance early to avoid double drop if `drop_in_place` panicked.
2295 g.processed_len += 1;
2296 g.deleted_cnt += 1;
2297 // SAFETY: We never touch this element again after dropped.
2298 unsafe { ptr::drop_in_place(cur) };
2299 // We already advanced the counter.
2300 if DELETED {
2301 continue;
2302 } else {
2303 break;
2304 }
2305 }
2306 if DELETED {
2307 // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
2308 // We use copy for move, and never touch this element again.
2309 unsafe {
2310 let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
2311 ptr::copy_nonoverlapping(cur, hole_slot, 1);
2312 }
2313 }
2314 g.processed_len += 1;
2315 }
2316 }
2317
2318 // Stage 1: Nothing was deleted.
2319 process_loop::<F, T, A, false>(original_len, &mut f, &mut g);
2320
2321 // Stage 2: Some elements were deleted.
2322 process_loop::<F, T, A, true>(original_len, &mut f, &mut g);
2323
2324 // All item are processed. This can be optimized to `set_len` by LLVM.
2325 drop(g);
2326 }
2327
2328 /// Removes all but the first of consecutive elements in the vector that resolve to the same
2329 /// key.
2330 ///
2331 /// If the vector is sorted, this removes all duplicates.
2332 ///
2333 /// # Examples
2334 ///
2335 /// ```
2336 /// let mut vec = vec![10, 20, 21, 30, 20];
2337 ///
2338 /// vec.dedup_by_key(|i| *i / 10);
2339 ///
2340 /// assert_eq!(vec, [10, 20, 30, 20]);
2341 /// ```
2342 #[stable(feature = "dedup_by", since = "1.16.0")]
2343 #[inline]
2344 pub fn dedup_by_key<F, K>(&mut self, mut key: F)
2345 where
2346 F: FnMut(&mut T) -> K,
2347 K: PartialEq,
2348 {
2349 self.dedup_by(|a, b| key(a) == key(b))
2350 }
2351
2352 /// Removes all but the first of consecutive elements in the vector satisfying a given equality
2353 /// relation.
2354 ///
2355 /// The `same_bucket` function is passed references to two elements from the vector and
2356 /// must determine if the elements compare equal. The elements are passed in opposite order
2357 /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
2358 ///
2359 /// If the vector is sorted, this removes all duplicates.
2360 ///
2361 /// # Examples
2362 ///
2363 /// ```
2364 /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
2365 ///
2366 /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
2367 ///
2368 /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
2369 /// ```
2370 #[stable(feature = "dedup_by", since = "1.16.0")]
2371 pub fn dedup_by<F>(&mut self, mut same_bucket: F)
2372 where
2373 F: FnMut(&mut T, &mut T) -> bool,
2374 {
2375 let len = self.len();
2376 if len <= 1 {
2377 return;
2378 }
2379
2380 // Check if we ever want to remove anything.
2381 // This allows to use copy_non_overlapping in next cycle.
2382 // And avoids any memory writes if we don't need to remove anything.
2383 let mut first_duplicate_idx: usize = 1;
2384 let start = self.as_mut_ptr();
2385 while first_duplicate_idx != len {
2386 let found_duplicate = unsafe {
2387 // SAFETY: first_duplicate always in range [1..len)
2388 // Note that we start iteration from 1 so we never overflow.
2389 let prev = start.add(first_duplicate_idx.wrapping_sub(1));
2390 let current = start.add(first_duplicate_idx);
2391 // We explicitly say in docs that references are reversed.
2392 same_bucket(&mut *current, &mut *prev)
2393 };
2394 if found_duplicate {
2395 break;
2396 }
2397 first_duplicate_idx += 1;
2398 }
2399 // Don't need to remove anything.
2400 // We cannot get bigger than len.
2401 if first_duplicate_idx == len {
2402 return;
2403 }
2404
2405 /* INVARIANT: vec.len() > read > write > write-1 >= 0 */
2406 struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
2407 /* Offset of the element we want to check if it is duplicate */
2408 read: usize,
2409
2410 /* Offset of the place where we want to place the non-duplicate
2411 * when we find it. */
2412 write: usize,
2413
2414 /* The Vec that would need correction if `same_bucket` panicked */
2415 vec: &'a mut Vec<T, A>,
2416 }
2417
2418 impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
2419 fn drop(&mut self) {
2420 /* This code gets executed when `same_bucket` panics */
2421
2422 /* SAFETY: invariant guarantees that `read - write`
2423 * and `len - read` never overflow and that the copy is always
2424 * in-bounds. */
2425 unsafe {
2426 let ptr = self.vec.as_mut_ptr();
2427 let len = self.vec.len();
2428
2429 /* How many items were left when `same_bucket` panicked.
2430 * Basically vec[read..].len() */
2431 let items_left = len.wrapping_sub(self.read);
2432
2433 /* Pointer to first item in vec[write..write+items_left] slice */
2434 let dropped_ptr = ptr.add(self.write);
2435 /* Pointer to first item in vec[read..] slice */
2436 let valid_ptr = ptr.add(self.read);
2437
2438 /* Copy `vec[read..]` to `vec[write..write+items_left]`.
2439 * The slices can overlap, so `copy_nonoverlapping` cannot be used */
2440 ptr::copy(valid_ptr, dropped_ptr, items_left);
2441
2442 /* How many items have been already dropped
2443 * Basically vec[read..write].len() */
2444 let dropped = self.read.wrapping_sub(self.write);
2445
2446 self.vec.set_len(len - dropped);
2447 }
2448 }
2449 }
2450
2451 /* Drop items while going through Vec, it should be more efficient than
2452 * doing slice partition_dedup + truncate */
2453
2454 // Construct gap first and then drop item to avoid memory corruption if `T::drop` panics.
2455 let mut gap =
2456 FillGapOnDrop { read: first_duplicate_idx + 1, write: first_duplicate_idx, vec: self };
2457 unsafe {
2458 // SAFETY: we checked that first_duplicate_idx in bounds before.
2459 // If drop panics, `gap` would remove this item without drop.
2460 ptr::drop_in_place(start.add(first_duplicate_idx));
2461 }
2462
2463 /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
2464 * are always in-bounds and read_ptr never aliases prev_ptr */
2465 unsafe {
2466 while gap.read < len {
2467 let read_ptr = start.add(gap.read);
2468 let prev_ptr = start.add(gap.write.wrapping_sub(1));
2469
2470 // We explicitly say in docs that references are reversed.
2471 let found_duplicate = same_bucket(&mut *read_ptr, &mut *prev_ptr);
2472 if found_duplicate {
2473 // Increase `gap.read` now since the drop may panic.
2474 gap.read += 1;
2475 /* We have found duplicate, drop it in-place */
2476 ptr::drop_in_place(read_ptr);
2477 } else {
2478 let write_ptr = start.add(gap.write);
2479
2480 /* read_ptr cannot be equal to write_ptr because at this point
2481 * we guaranteed to skip at least one element (before loop starts).
2482 */
2483 ptr::copy_nonoverlapping(read_ptr, write_ptr, 1);
2484
2485 /* We have filled that place, so go further */
2486 gap.write += 1;
2487 gap.read += 1;
2488 }
2489 }
2490
2491 /* Technically we could let `gap` clean up with its Drop, but
2492 * when `same_bucket` is guaranteed to not panic, this bloats a little
2493 * the codegen, so we just do it manually */
2494 gap.vec.set_len(gap.write);
2495 mem::forget(gap);
2496 }
2497 }
2498
2499 /// Appends an element to the back of a collection.
2500 ///
2501 /// # Panics
2502 ///
2503 /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2504 ///
2505 /// # Examples
2506 ///
2507 /// ```
2508 /// let mut vec = vec![1, 2];
2509 /// vec.push(3);
2510 /// assert_eq!(vec, [1, 2, 3]);
2511 /// ```
2512 ///
2513 /// # Time complexity
2514 ///
2515 /// Takes amortized *O*(1) time. If the vector's length would exceed its
2516 /// capacity after the push, *O*(*capacity*) time is taken to copy the
2517 /// vector's elements to a larger allocation. This expensive operation is
2518 /// offset by the *capacity* *O*(1) insertions it allows.
2519 #[cfg(not(no_global_oom_handling))]
2520 #[inline]
2521 #[stable(feature = "rust1", since = "1.0.0")]
2522 #[rustc_confusables("push_back", "put", "append")]
2523 pub fn push(&mut self, value: T) {
2524 let _ = self.push_mut(value);
2525 }
2526
2527 /// Appends an element and returns a reference to it if there is sufficient spare capacity,
2528 /// otherwise an error is returned with the element.
2529 ///
2530 /// Unlike [`push`] this method will not reallocate when there's insufficient capacity.
2531 /// The caller should use [`reserve`] or [`try_reserve`] to ensure that there is enough capacity.
2532 ///
2533 /// [`push`]: Vec::push
2534 /// [`reserve`]: Vec::reserve
2535 /// [`try_reserve`]: Vec::try_reserve
2536 ///
2537 /// # Examples
2538 ///
2539 /// A manual, panic-free alternative to [`FromIterator`]:
2540 ///
2541 /// ```
2542 /// #![feature(vec_push_within_capacity)]
2543 ///
2544 /// use std::collections::TryReserveError;
2545 /// fn from_iter_fallible<T>(iter: impl Iterator<Item=T>) -> Result<Vec<T>, TryReserveError> {
2546 /// let mut vec = Vec::new();
2547 /// for value in iter {
2548 /// if let Err(value) = vec.push_within_capacity(value) {
2549 /// vec.try_reserve(1)?;
2550 /// // this cannot fail, the previous line either returned or added at least 1 free slot
2551 /// let _ = vec.push_within_capacity(value);
2552 /// }
2553 /// }
2554 /// Ok(vec)
2555 /// }
2556 /// assert_eq!(from_iter_fallible(0..100), Ok(Vec::from_iter(0..100)));
2557 /// ```
2558 ///
2559 /// # Time complexity
2560 ///
2561 /// Takes *O*(1) time.
2562 #[inline]
2563 #[unstable(feature = "vec_push_within_capacity", issue = "100486")]
2564 // #[unstable(feature = "push_mut", issue = "135974")]
2565 pub fn push_within_capacity(&mut self, value: T) -> Result<&mut T, T> {
2566 if self.len == self.buf.capacity() {
2567 return Err(value);
2568 }
2569
2570 unsafe {
2571 let end = self.as_mut_ptr().add(self.len);
2572 ptr::write(end, value);
2573 self.len += 1;
2574
2575 // SAFETY: We just wrote a value to the pointer that will live the lifetime of the reference.
2576 Ok(&mut *end)
2577 }
2578 }
2579
2580 /// Appends an element to the back of a collection, returning a reference to it.
2581 ///
2582 /// # Panics
2583 ///
2584 /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2585 ///
2586 /// # Examples
2587 ///
2588 /// ```
2589 /// #![feature(push_mut)]
2590 ///
2591 ///
2592 /// let mut vec = vec![1, 2];
2593 /// let last = vec.push_mut(3);
2594 /// assert_eq!(*last, 3);
2595 /// assert_eq!(vec, [1, 2, 3]);
2596 ///
2597 /// let last = vec.push_mut(3);
2598 /// *last += 1;
2599 /// assert_eq!(vec, [1, 2, 3, 4]);
2600 /// ```
2601 ///
2602 /// # Time complexity
2603 ///
2604 /// Takes amortized *O*(1) time. If the vector's length would exceed its
2605 /// capacity after the push, *O*(*capacity*) time is taken to copy the
2606 /// vector's elements to a larger allocation. This expensive operation is
2607 /// offset by the *capacity* *O*(1) insertions it allows.
2608 #[cfg(not(no_global_oom_handling))]
2609 #[inline]
2610 #[unstable(feature = "push_mut", issue = "135974")]
2611 #[must_use = "if you don't need a reference to the value, use `Vec::push` instead"]
2612 pub fn push_mut(&mut self, value: T) -> &mut T {
2613 // Inform codegen that the length does not change across grow_one().
2614 let len = self.len;
2615 // This will panic or abort if we would allocate > isize::MAX bytes
2616 // or if the length increment would overflow for zero-sized types.
2617 if len == self.buf.capacity() {
2618 self.buf.grow_one();
2619 }
2620 unsafe {
2621 let end = self.as_mut_ptr().add(len);
2622 ptr::write(end, value);
2623 self.len = len + 1;
2624 // SAFETY: We just wrote a value to the pointer that will live the lifetime of the reference.
2625 &mut *end
2626 }
2627 }
2628
2629 /// Removes the last element from a vector and returns it, or [`None`] if it
2630 /// is empty.
2631 ///
2632 /// If you'd like to pop the first element, consider using
2633 /// [`VecDeque::pop_front`] instead.
2634 ///
2635 /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2636 ///
2637 /// # Examples
2638 ///
2639 /// ```
2640 /// let mut vec = vec![1, 2, 3];
2641 /// assert_eq!(vec.pop(), Some(3));
2642 /// assert_eq!(vec, [1, 2]);
2643 /// ```
2644 ///
2645 /// # Time complexity
2646 ///
2647 /// Takes *O*(1) time.
2648 #[inline]
2649 #[stable(feature = "rust1", since = "1.0.0")]
2650 #[rustc_diagnostic_item = "vec_pop"]
2651 pub fn pop(&mut self) -> Option<T> {
2652 if self.len == 0 {
2653 None
2654 } else {
2655 unsafe {
2656 self.len -= 1;
2657 core::hint::assert_unchecked(self.len < self.capacity());
2658 Some(ptr::read(self.as_ptr().add(self.len())))
2659 }
2660 }
2661 }
2662
2663 /// Removes and returns the last element from a vector if the predicate
2664 /// returns `true`, or [`None`] if the predicate returns false or the vector
2665 /// is empty (the predicate will not be called in that case).
2666 ///
2667 /// # Examples
2668 ///
2669 /// ```
2670 /// let mut vec = vec![1, 2, 3, 4];
2671 /// let pred = |x: &mut i32| *x % 2 == 0;
2672 ///
2673 /// assert_eq!(vec.pop_if(pred), Some(4));
2674 /// assert_eq!(vec, [1, 2, 3]);
2675 /// assert_eq!(vec.pop_if(pred), None);
2676 /// ```
2677 #[stable(feature = "vec_pop_if", since = "1.86.0")]
2678 pub fn pop_if(&mut self, predicate: impl FnOnce(&mut T) -> bool) -> Option<T> {
2679 let last = self.last_mut()?;
2680 if predicate(last) { self.pop() } else { None }
2681 }
2682
2683 /// Returns a mutable reference to the last item in the vector, or
2684 /// `None` if it is empty.
2685 ///
2686 /// # Examples
2687 ///
2688 /// Basic usage:
2689 ///
2690 /// ```
2691 /// #![feature(vec_peek_mut)]
2692 /// let mut vec = Vec::new();
2693 /// assert!(vec.peek_mut().is_none());
2694 ///
2695 /// vec.push(1);
2696 /// vec.push(5);
2697 /// vec.push(2);
2698 /// assert_eq!(vec.last(), Some(&2));
2699 /// if let Some(mut val) = vec.peek_mut() {
2700 /// *val = 0;
2701 /// }
2702 /// assert_eq!(vec.last(), Some(&0));
2703 /// ```
2704 #[inline]
2705 #[unstable(feature = "vec_peek_mut", issue = "122742")]
2706 pub fn peek_mut(&mut self) -> Option<PeekMut<'_, T, A>> {
2707 PeekMut::new(self)
2708 }
2709
2710 /// Moves all the elements of `other` into `self`, leaving `other` empty.
2711 ///
2712 /// # Panics
2713 ///
2714 /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2715 ///
2716 /// # Examples
2717 ///
2718 /// ```
2719 /// let mut vec = vec![1, 2, 3];
2720 /// let mut vec2 = vec![4, 5, 6];
2721 /// vec.append(&mut vec2);
2722 /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
2723 /// assert_eq!(vec2, []);
2724 /// ```
2725 #[cfg(not(no_global_oom_handling))]
2726 #[inline]
2727 #[stable(feature = "append", since = "1.4.0")]
2728 pub fn append(&mut self, other: &mut Self) {
2729 unsafe {
2730 self.append_elements(other.as_slice() as _);
2731 other.set_len(0);
2732 }
2733 }
2734
2735 /// Appends elements to `self` from other buffer.
2736 #[cfg(not(no_global_oom_handling))]
2737 #[inline]
2738 unsafe fn append_elements(&mut self, other: *const [T]) {
2739 let count = other.len();
2740 self.reserve(count);
2741 let len = self.len();
2742 unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
2743 self.len += count;
2744 }
2745
2746 /// Removes the subslice indicated by the given range from the vector,
2747 /// returning a double-ended iterator over the removed subslice.
2748 ///
2749 /// If the iterator is dropped before being fully consumed,
2750 /// it drops the remaining removed elements.
2751 ///
2752 /// The returned iterator keeps a mutable borrow on the vector to optimize
2753 /// its implementation.
2754 ///
2755 /// # Panics
2756 ///
2757 /// Panics if the range has `start_bound > end_bound`, or, if the range is
2758 /// bounded on either end and past the length of the vector.
2759 ///
2760 /// # Leaking
2761 ///
2762 /// If the returned iterator goes out of scope without being dropped (due to
2763 /// [`mem::forget`], for example), the vector may have lost and leaked
2764 /// elements arbitrarily, including elements outside the range.
2765 ///
2766 /// # Examples
2767 ///
2768 /// ```
2769 /// let mut v = vec![1, 2, 3];
2770 /// let u: Vec<_> = v.drain(1..).collect();
2771 /// assert_eq!(v, &[1]);
2772 /// assert_eq!(u, &[2, 3]);
2773 ///
2774 /// // A full range clears the vector, like `clear()` does
2775 /// v.drain(..);
2776 /// assert_eq!(v, &[]);
2777 /// ```
2778 #[stable(feature = "drain", since = "1.6.0")]
2779 pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
2780 where
2781 R: RangeBounds<usize>,
2782 {
2783 // Memory safety
2784 //
2785 // When the Drain is first created, it shortens the length of
2786 // the source vector to make sure no uninitialized or moved-from elements
2787 // are accessible at all if the Drain's destructor never gets to run.
2788 //
2789 // Drain will ptr::read out the values to remove.
2790 // When finished, remaining tail of the vec is copied back to cover
2791 // the hole, and the vector length is restored to the new length.
2792 //
2793 let len = self.len();
2794 let Range { start, end } = slice::range(range, ..len);
2795
2796 unsafe {
2797 // set self.vec length's to start, to be safe in case Drain is leaked
2798 self.set_len(start);
2799 let range_slice = slice::from_raw_parts(self.as_ptr().add(start), end - start);
2800 Drain {
2801 tail_start: end,
2802 tail_len: len - end,
2803 iter: range_slice.iter(),
2804 vec: NonNull::from(self),
2805 }
2806 }
2807 }
2808
2809 /// Clears the vector, removing all values.
2810 ///
2811 /// Note that this method has no effect on the allocated capacity
2812 /// of the vector.
2813 ///
2814 /// # Examples
2815 ///
2816 /// ```
2817 /// let mut v = vec![1, 2, 3];
2818 ///
2819 /// v.clear();
2820 ///
2821 /// assert!(v.is_empty());
2822 /// ```
2823 #[inline]
2824 #[stable(feature = "rust1", since = "1.0.0")]
2825 pub fn clear(&mut self) {
2826 let elems: *mut [T] = self.as_mut_slice();
2827
2828 // SAFETY:
2829 // - `elems` comes directly from `as_mut_slice` and is therefore valid.
2830 // - Setting `self.len` before calling `drop_in_place` means that,
2831 // if an element's `Drop` impl panics, the vector's `Drop` impl will
2832 // do nothing (leaking the rest of the elements) instead of dropping
2833 // some twice.
2834 unsafe {
2835 self.len = 0;
2836 ptr::drop_in_place(elems);
2837 }
2838 }
2839
2840 /// Returns the number of elements in the vector, also referred to
2841 /// as its 'length'.
2842 ///
2843 /// # Examples
2844 ///
2845 /// ```
2846 /// let a = vec![1, 2, 3];
2847 /// assert_eq!(a.len(), 3);
2848 /// ```
2849 #[inline]
2850 #[stable(feature = "rust1", since = "1.0.0")]
2851 #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
2852 #[rustc_confusables("length", "size")]
2853 pub const fn len(&self) -> usize {
2854 let len = self.len;
2855
2856 // SAFETY: The maximum capacity of `Vec<T>` is `isize::MAX` bytes, so the maximum value can
2857 // be returned is `usize::checked_div(size_of::<T>()).unwrap_or(usize::MAX)`, which
2858 // matches the definition of `T::MAX_SLICE_LEN`.
2859 unsafe { intrinsics::assume(len <= T::MAX_SLICE_LEN) };
2860
2861 len
2862 }
2863
2864 /// Returns `true` if the vector contains no elements.
2865 ///
2866 /// # Examples
2867 ///
2868 /// ```
2869 /// let mut v = Vec::new();
2870 /// assert!(v.is_empty());
2871 ///
2872 /// v.push(1);
2873 /// assert!(!v.is_empty());
2874 /// ```
2875 #[stable(feature = "rust1", since = "1.0.0")]
2876 #[rustc_diagnostic_item = "vec_is_empty"]
2877 #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
2878 pub const fn is_empty(&self) -> bool {
2879 self.len() == 0
2880 }
2881
2882 /// Splits the collection into two at the given index.
2883 ///
2884 /// Returns a newly allocated vector containing the elements in the range
2885 /// `[at, len)`. After the call, the original vector will be left containing
2886 /// the elements `[0, at)` with its previous capacity unchanged.
2887 ///
2888 /// - If you want to take ownership of the entire contents and capacity of
2889 /// the vector, see [`mem::take`] or [`mem::replace`].
2890 /// - If you don't need the returned vector at all, see [`Vec::truncate`].
2891 /// - If you want to take ownership of an arbitrary subslice, or you don't
2892 /// necessarily want to store the removed items in a vector, see [`Vec::drain`].
2893 ///
2894 /// # Panics
2895 ///
2896 /// Panics if `at > len`.
2897 ///
2898 /// # Examples
2899 ///
2900 /// ```
2901 /// let mut vec = vec!['a', 'b', 'c'];
2902 /// let vec2 = vec.split_off(1);
2903 /// assert_eq!(vec, ['a']);
2904 /// assert_eq!(vec2, ['b', 'c']);
2905 /// ```
2906 #[cfg(not(no_global_oom_handling))]
2907 #[inline]
2908 #[must_use = "use `.truncate()` if you don't need the other half"]
2909 #[stable(feature = "split_off", since = "1.4.0")]
2910 #[track_caller]
2911 pub fn split_off(&mut self, at: usize) -> Self
2912 where
2913 A: Clone,
2914 {
2915 #[cold]
2916 #[cfg_attr(not(panic = "immediate-abort"), inline(never))]
2917 #[track_caller]
2918 #[optimize(size)]
2919 fn assert_failed(at: usize, len: usize) -> ! {
2920 panic!("`at` split index (is {at}) should be <= len (is {len})");
2921 }
2922
2923 if at > self.len() {
2924 assert_failed(at, self.len());
2925 }
2926
2927 let other_len = self.len - at;
2928 let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
2929
2930 // Unsafely `set_len` and copy items to `other`.
2931 unsafe {
2932 self.set_len(at);
2933 other.set_len(other_len);
2934
2935 ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
2936 }
2937 other
2938 }
2939
2940 /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2941 ///
2942 /// If `new_len` is greater than `len`, the `Vec` is extended by the
2943 /// difference, with each additional slot filled with the result of
2944 /// calling the closure `f`. The return values from `f` will end up
2945 /// in the `Vec` in the order they have been generated.
2946 ///
2947 /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2948 ///
2949 /// This method uses a closure to create new values on every push. If
2950 /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
2951 /// want to use the [`Default`] trait to generate values, you can
2952 /// pass [`Default::default`] as the second argument.
2953 ///
2954 /// # Panics
2955 ///
2956 /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2957 ///
2958 /// # Examples
2959 ///
2960 /// ```
2961 /// let mut vec = vec![1, 2, 3];
2962 /// vec.resize_with(5, Default::default);
2963 /// assert_eq!(vec, [1, 2, 3, 0, 0]);
2964 ///
2965 /// let mut vec = vec![];
2966 /// let mut p = 1;
2967 /// vec.resize_with(4, || { p *= 2; p });
2968 /// assert_eq!(vec, [2, 4, 8, 16]);
2969 /// ```
2970 #[cfg(not(no_global_oom_handling))]
2971 #[stable(feature = "vec_resize_with", since = "1.33.0")]
2972 pub fn resize_with<F>(&mut self, new_len: usize, f: F)
2973 where
2974 F: FnMut() -> T,
2975 {
2976 let len = self.len();
2977 if new_len > len {
2978 self.extend_trusted(iter::repeat_with(f).take(new_len - len));
2979 } else {
2980 self.truncate(new_len);
2981 }
2982 }
2983
2984 /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
2985 /// `&'a mut [T]`.
2986 ///
2987 /// Note that the type `T` must outlive the chosen lifetime `'a`. If the type
2988 /// has only static references, or none at all, then this may be chosen to be
2989 /// `'static`.
2990 ///
2991 /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
2992 /// so the leaked allocation may include unused capacity that is not part
2993 /// of the returned slice.
2994 ///
2995 /// This function is mainly useful for data that lives for the remainder of
2996 /// the program's life. Dropping the returned reference will cause a memory
2997 /// leak.
2998 ///
2999 /// # Examples
3000 ///
3001 /// Simple usage:
3002 ///
3003 /// ```
3004 /// let x = vec![1, 2, 3];
3005 /// let static_ref: &'static mut [usize] = x.leak();
3006 /// static_ref[0] += 1;
3007 /// assert_eq!(static_ref, &[2, 2, 3]);
3008 /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
3009 /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
3010 /// # drop(unsafe { Box::from_raw(static_ref) });
3011 /// ```
3012 #[stable(feature = "vec_leak", since = "1.47.0")]
3013 #[inline]
3014 pub fn leak<'a>(self) -> &'a mut [T]
3015 where
3016 A: 'a,
3017 {
3018 let mut me = ManuallyDrop::new(self);
3019 unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
3020 }
3021
3022 /// Returns the remaining spare capacity of the vector as a slice of
3023 /// `MaybeUninit<T>`.
3024 ///
3025 /// The returned slice can be used to fill the vector with data (e.g. by
3026 /// reading from a file) before marking the data as initialized using the
3027 /// [`set_len`] method.
3028 ///
3029 /// [`set_len`]: Vec::set_len
3030 ///
3031 /// # Examples
3032 ///
3033 /// ```
3034 /// // Allocate vector big enough for 10 elements.
3035 /// let mut v = Vec::with_capacity(10);
3036 ///
3037 /// // Fill in the first 3 elements.
3038 /// let uninit = v.spare_capacity_mut();
3039 /// uninit[0].write(0);
3040 /// uninit[1].write(1);
3041 /// uninit[2].write(2);
3042 ///
3043 /// // Mark the first 3 elements of the vector as being initialized.
3044 /// unsafe {
3045 /// v.set_len(3);
3046 /// }
3047 ///
3048 /// assert_eq!(&v, &[0, 1, 2]);
3049 /// ```
3050 #[stable(feature = "vec_spare_capacity", since = "1.60.0")]
3051 #[inline]
3052 pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
3053 // Note:
3054 // This method is not implemented in terms of `split_at_spare_mut`,
3055 // to prevent invalidation of pointers to the buffer.
3056 unsafe {
3057 slice::from_raw_parts_mut(
3058 self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
3059 self.buf.capacity() - self.len,
3060 )
3061 }
3062 }
3063
3064 /// Returns vector content as a slice of `T`, along with the remaining spare
3065 /// capacity of the vector as a slice of `MaybeUninit<T>`.
3066 ///
3067 /// The returned spare capacity slice can be used to fill the vector with data
3068 /// (e.g. by reading from a file) before marking the data as initialized using
3069 /// the [`set_len`] method.
3070 ///
3071 /// [`set_len`]: Vec::set_len
3072 ///
3073 /// Note that this is a low-level API, which should be used with care for
3074 /// optimization purposes. If you need to append data to a `Vec`
3075 /// you can use [`push`], [`extend`], [`extend_from_slice`],
3076 /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
3077 /// [`resize_with`], depending on your exact needs.
3078 ///
3079 /// [`push`]: Vec::push
3080 /// [`extend`]: Vec::extend
3081 /// [`extend_from_slice`]: Vec::extend_from_slice
3082 /// [`extend_from_within`]: Vec::extend_from_within
3083 /// [`insert`]: Vec::insert
3084 /// [`append`]: Vec::append
3085 /// [`resize`]: Vec::resize
3086 /// [`resize_with`]: Vec::resize_with
3087 ///
3088 /// # Examples
3089 ///
3090 /// ```
3091 /// #![feature(vec_split_at_spare)]
3092 ///
3093 /// let mut v = vec![1, 1, 2];
3094 ///
3095 /// // Reserve additional space big enough for 10 elements.
3096 /// v.reserve(10);
3097 ///
3098 /// let (init, uninit) = v.split_at_spare_mut();
3099 /// let sum = init.iter().copied().sum::<u32>();
3100 ///
3101 /// // Fill in the next 4 elements.
3102 /// uninit[0].write(sum);
3103 /// uninit[1].write(sum * 2);
3104 /// uninit[2].write(sum * 3);
3105 /// uninit[3].write(sum * 4);
3106 ///
3107 /// // Mark the 4 elements of the vector as being initialized.
3108 /// unsafe {
3109 /// let len = v.len();
3110 /// v.set_len(len + 4);
3111 /// }
3112 ///
3113 /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
3114 /// ```
3115 #[unstable(feature = "vec_split_at_spare", issue = "81944")]
3116 #[inline]
3117 pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
3118 // SAFETY:
3119 // - len is ignored and so never changed
3120 let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
3121 (init, spare)
3122 }
3123
3124 /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
3125 ///
3126 /// This method provides unique access to all vec parts at once in `extend_from_within`.
3127 unsafe fn split_at_spare_mut_with_len(
3128 &mut self,
3129 ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
3130 let ptr = self.as_mut_ptr();
3131 // SAFETY:
3132 // - `ptr` is guaranteed to be valid for `self.len` elements
3133 // - but the allocation extends out to `self.buf.capacity()` elements, possibly
3134 // uninitialized
3135 let spare_ptr = unsafe { ptr.add(self.len) };
3136 let spare_ptr = spare_ptr.cast_uninit();
3137 let spare_len = self.buf.capacity() - self.len;
3138
3139 // SAFETY:
3140 // - `ptr` is guaranteed to be valid for `self.len` elements
3141 // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
3142 unsafe {
3143 let initialized = slice::from_raw_parts_mut(ptr, self.len);
3144 let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
3145
3146 (initialized, spare, &mut self.len)
3147 }
3148 }
3149
3150 /// Groups every `N` elements in the `Vec<T>` into chunks to produce a `Vec<[T; N]>`, dropping
3151 /// elements in the remainder. `N` must be greater than zero.
3152 ///
3153 /// If the capacity is not a multiple of the chunk size, the buffer will shrink down to the
3154 /// nearest multiple with a reallocation or deallocation.
3155 ///
3156 /// This function can be used to reverse [`Vec::into_flattened`].
3157 ///
3158 /// # Examples
3159 ///
3160 /// ```
3161 /// #![feature(vec_into_chunks)]
3162 ///
3163 /// let vec = vec![0, 1, 2, 3, 4, 5, 6, 7];
3164 /// assert_eq!(vec.into_chunks::<3>(), [[0, 1, 2], [3, 4, 5]]);
3165 ///
3166 /// let vec = vec![0, 1, 2, 3];
3167 /// let chunks: Vec<[u8; 10]> = vec.into_chunks();
3168 /// assert!(chunks.is_empty());
3169 ///
3170 /// let flat = vec![0; 8 * 8 * 8];
3171 /// let reshaped: Vec<[[[u8; 8]; 8]; 8]> = flat.into_chunks().into_chunks().into_chunks();
3172 /// assert_eq!(reshaped.len(), 1);
3173 /// ```
3174 #[cfg(not(no_global_oom_handling))]
3175 #[unstable(feature = "vec_into_chunks", issue = "142137")]
3176 pub fn into_chunks<const N: usize>(mut self) -> Vec<[T; N], A> {
3177 const {
3178 assert!(N != 0, "chunk size must be greater than zero");
3179 }
3180
3181 let (len, cap) = (self.len(), self.capacity());
3182
3183 let len_remainder = len % N;
3184 if len_remainder != 0 {
3185 self.truncate(len - len_remainder);
3186 }
3187
3188 let cap_remainder = cap % N;
3189 if !T::IS_ZST && cap_remainder != 0 {
3190 self.buf.shrink_to_fit(cap - cap_remainder);
3191 }
3192
3193 let (ptr, _, _, alloc) = self.into_raw_parts_with_alloc();
3194
3195 // SAFETY:
3196 // - `ptr` and `alloc` were just returned from `self.into_raw_parts_with_alloc()`
3197 // - `[T; N]` has the same alignment as `T`
3198 // - `size_of::<[T; N]>() * cap / N == size_of::<T>() * cap`
3199 // - `len / N <= cap / N` because `len <= cap`
3200 // - the allocated memory consists of `len / N` valid values of type `[T; N]`
3201 // - `cap / N` fits the size of the allocated memory after shrinking
3202 unsafe { Vec::from_raw_parts_in(ptr.cast(), len / N, cap / N, alloc) }
3203 }
3204
3205 /// This clears out this `Vec` and recycles the allocation into a new `Vec`.
3206 /// The item type of the resulting `Vec` needs to have the same size and
3207 /// alignment as the item type of the original `Vec`.
3208 ///
3209 /// # Examples
3210 ///
3211 /// ```
3212 /// #![feature(vec_recycle, transmutability)]
3213 /// let a: Vec<u8> = vec![0; 100];
3214 /// let capacity = a.capacity();
3215 /// let addr = a.as_ptr().addr();
3216 /// let b: Vec<i8> = a.recycle();
3217 /// assert_eq!(b.len(), 0);
3218 /// assert_eq!(b.capacity(), capacity);
3219 /// assert_eq!(b.as_ptr().addr(), addr);
3220 /// ```
3221 ///
3222 /// The `Recyclable` bound prevents this method from being called when `T` and `U` have different sizes; e.g.:
3223 ///
3224 /// ```compile_fail,E0277
3225 /// #![feature(vec_recycle, transmutability)]
3226 /// let vec: Vec<[u8; 2]> = Vec::new();
3227 /// let _: Vec<[u8; 1]> = vec.recycle();
3228 /// ```
3229 /// ...or different alignments:
3230 ///
3231 /// ```compile_fail,E0277
3232 /// #![feature(vec_recycle, transmutability)]
3233 /// let vec: Vec<[u16; 0]> = Vec::new();
3234 /// let _: Vec<[u8; 0]> = vec.recycle();
3235 /// ```
3236 ///
3237 /// However, due to temporary implementation limitations of `Recyclable`,
3238 /// this method is not yet callable when `T` or `U` are slices, trait objects,
3239 /// or other exotic types; e.g.:
3240 ///
3241 /// ```compile_fail,E0277
3242 /// #![feature(vec_recycle, transmutability)]
3243 /// # let inputs = ["a b c", "d e f"];
3244 /// # fn process(_: &[&str]) {}
3245 /// let mut storage: Vec<&[&str]> = Vec::new();
3246 ///
3247 /// for input in inputs {
3248 /// let mut buffer: Vec<&str> = storage.recycle();
3249 /// buffer.extend(input.split(" "));
3250 /// process(&buffer);
3251 /// storage = buffer.recycle();
3252 /// }
3253 /// ```
3254 #[unstable(feature = "vec_recycle", issue = "148227")]
3255 #[expect(private_bounds)]
3256 pub fn recycle<U>(mut self) -> Vec<U, A>
3257 where
3258 U: Recyclable<T>,
3259 {
3260 self.clear();
3261 const {
3262 // FIXME(const-hack, 146097): compare `Layout`s
3263 assert!(size_of::<T>() == size_of::<U>());
3264 assert!(align_of::<T>() == align_of::<U>());
3265 };
3266 let (ptr, length, capacity, alloc) = self.into_parts_with_alloc();
3267 debug_assert_eq!(length, 0);
3268 // SAFETY:
3269 // - `ptr` and `alloc` were just returned from `self.into_raw_parts_with_alloc()`
3270 // - `T` & `U` have the same layout, so `capacity` does not need to be changed and we can safely use `alloc.dealloc` later
3271 // - the original vector was cleared, so there is no problem with "transmuting" the stored values
3272 unsafe { Vec::from_parts_in(ptr.cast::<U>(), length, capacity, alloc) }
3273 }
3274}
3275
3276/// Denotes that an allocation of `From` can be recycled into an allocation of `Self`.
3277///
3278/// # Safety
3279///
3280/// `Self` is `Recyclable<From>` if `Layout::new::<Self>() == Layout::new::<From>()`.
3281unsafe trait Recyclable<From: Sized>: Sized {}
3282
3283#[unstable_feature_bound(transmutability)]
3284// SAFETY: enforced by `TransmuteFrom`
3285unsafe impl<From, To> Recyclable<From> for To
3286where
3287 for<'a> &'a MaybeUninit<To>: TransmuteFrom<&'a MaybeUninit<From>, { Assume::SAFETY }>,
3288 for<'a> &'a MaybeUninit<From>: TransmuteFrom<&'a MaybeUninit<To>, { Assume::SAFETY }>,
3289{
3290}
3291
3292impl<T: Clone, A: Allocator> Vec<T, A> {
3293 /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
3294 ///
3295 /// If `new_len` is greater than `len`, the `Vec` is extended by the
3296 /// difference, with each additional slot filled with `value`.
3297 /// If `new_len` is less than `len`, the `Vec` is simply truncated.
3298 ///
3299 /// This method requires `T` to implement [`Clone`],
3300 /// in order to be able to clone the passed value.
3301 /// If you need more flexibility (or want to rely on [`Default`] instead of
3302 /// [`Clone`]), use [`Vec::resize_with`].
3303 /// If you only need to resize to a smaller size, use [`Vec::truncate`].
3304 ///
3305 /// # Panics
3306 ///
3307 /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
3308 ///
3309 /// # Examples
3310 ///
3311 /// ```
3312 /// let mut vec = vec!["hello"];
3313 /// vec.resize(3, "world");
3314 /// assert_eq!(vec, ["hello", "world", "world"]);
3315 ///
3316 /// let mut vec = vec!['a', 'b', 'c', 'd'];
3317 /// vec.resize(2, '_');
3318 /// assert_eq!(vec, ['a', 'b']);
3319 /// ```
3320 #[cfg(not(no_global_oom_handling))]
3321 #[stable(feature = "vec_resize", since = "1.5.0")]
3322 pub fn resize(&mut self, new_len: usize, value: T) {
3323 let len = self.len();
3324
3325 if new_len > len {
3326 self.extend_with(new_len - len, value)
3327 } else {
3328 self.truncate(new_len);
3329 }
3330 }
3331
3332 /// Clones and appends all elements in a slice to the `Vec`.
3333 ///
3334 /// Iterates over the slice `other`, clones each element, and then appends
3335 /// it to this `Vec`. The `other` slice is traversed in-order.
3336 ///
3337 /// Note that this function is the same as [`extend`],
3338 /// except that it also works with slice elements that are Clone but not Copy.
3339 /// If Rust gets specialization this function may be deprecated.
3340 ///
3341 /// # Examples
3342 ///
3343 /// ```
3344 /// let mut vec = vec![1];
3345 /// vec.extend_from_slice(&[2, 3, 4]);
3346 /// assert_eq!(vec, [1, 2, 3, 4]);
3347 /// ```
3348 ///
3349 /// [`extend`]: Vec::extend
3350 #[cfg(not(no_global_oom_handling))]
3351 #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
3352 pub fn extend_from_slice(&mut self, other: &[T]) {
3353 self.spec_extend(other.iter())
3354 }
3355
3356 /// Given a range `src`, clones a slice of elements in that range and appends it to the end.
3357 ///
3358 /// `src` must be a range that can form a valid subslice of the `Vec`.
3359 ///
3360 /// # Panics
3361 ///
3362 /// Panics if starting index is greater than the end index
3363 /// or if the index is greater than the length of the vector.
3364 ///
3365 /// # Examples
3366 ///
3367 /// ```
3368 /// let mut characters = vec!['a', 'b', 'c', 'd', 'e'];
3369 /// characters.extend_from_within(2..);
3370 /// assert_eq!(characters, ['a', 'b', 'c', 'd', 'e', 'c', 'd', 'e']);
3371 ///
3372 /// let mut numbers = vec![0, 1, 2, 3, 4];
3373 /// numbers.extend_from_within(..2);
3374 /// assert_eq!(numbers, [0, 1, 2, 3, 4, 0, 1]);
3375 ///
3376 /// let mut strings = vec![String::from("hello"), String::from("world"), String::from("!")];
3377 /// strings.extend_from_within(1..=2);
3378 /// assert_eq!(strings, ["hello", "world", "!", "world", "!"]);
3379 /// ```
3380 #[cfg(not(no_global_oom_handling))]
3381 #[stable(feature = "vec_extend_from_within", since = "1.53.0")]
3382 pub fn extend_from_within<R>(&mut self, src: R)
3383 where
3384 R: RangeBounds<usize>,
3385 {
3386 let range = slice::range(src, ..self.len());
3387 self.reserve(range.len());
3388
3389 // SAFETY:
3390 // - `slice::range` guarantees that the given range is valid for indexing self
3391 unsafe {
3392 self.spec_extend_from_within(range);
3393 }
3394 }
3395}
3396
3397impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
3398 /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
3399 ///
3400 /// # Panics
3401 ///
3402 /// Panics if the length of the resulting vector would overflow a `usize`.
3403 ///
3404 /// This is only possible when flattening a vector of arrays of zero-sized
3405 /// types, and thus tends to be irrelevant in practice. If
3406 /// `size_of::<T>() > 0`, this will never panic.
3407 ///
3408 /// # Examples
3409 ///
3410 /// ```
3411 /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
3412 /// assert_eq!(vec.pop(), Some([7, 8, 9]));
3413 ///
3414 /// let mut flattened = vec.into_flattened();
3415 /// assert_eq!(flattened.pop(), Some(6));
3416 /// ```
3417 #[stable(feature = "slice_flatten", since = "1.80.0")]
3418 pub fn into_flattened(self) -> Vec<T, A> {
3419 let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
3420 let (new_len, new_cap) = if T::IS_ZST {
3421 (len.checked_mul(N).expect("vec len overflow"), usize::MAX)
3422 } else {
3423 // SAFETY:
3424 // - `cap * N` cannot overflow because the allocation is already in
3425 // the address space.
3426 // - Each `[T; N]` has `N` valid elements, so there are `len * N`
3427 // valid elements in the allocation.
3428 unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) }
3429 };
3430 // SAFETY:
3431 // - `ptr` was allocated by `self`
3432 // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
3433 // - `new_cap` refers to the same sized allocation as `cap` because
3434 // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
3435 // - `len` <= `cap`, so `len * N` <= `cap * N`.
3436 unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
3437 }
3438}
3439
3440impl<T: Clone, A: Allocator> Vec<T, A> {
3441 #[cfg(not(no_global_oom_handling))]
3442 /// Extend the vector by `n` clones of value.
3443 fn extend_with(&mut self, n: usize, value: T) {
3444 self.reserve(n);
3445
3446 unsafe {
3447 let mut ptr = self.as_mut_ptr().add(self.len());
3448 // Use SetLenOnDrop to work around bug where compiler
3449 // might not realize the store through `ptr` through self.set_len()
3450 // don't alias.
3451 let mut local_len = SetLenOnDrop::new(&mut self.len);
3452
3453 // Write all elements except the last one
3454 for _ in 1..n {
3455 ptr::write(ptr, value.clone());
3456 ptr = ptr.add(1);
3457 // Increment the length in every step in case clone() panics
3458 local_len.increment_len(1);
3459 }
3460
3461 if n > 0 {
3462 // We can write the last element directly without cloning needlessly
3463 ptr::write(ptr, value);
3464 local_len.increment_len(1);
3465 }
3466
3467 // len set by scope guard
3468 }
3469 }
3470}
3471
3472impl<T: PartialEq, A: Allocator> Vec<T, A> {
3473 /// Removes consecutive repeated elements in the vector according to the
3474 /// [`PartialEq`] trait implementation.
3475 ///
3476 /// If the vector is sorted, this removes all duplicates.
3477 ///
3478 /// # Examples
3479 ///
3480 /// ```
3481 /// let mut vec = vec![1, 2, 2, 3, 2];
3482 ///
3483 /// vec.dedup();
3484 ///
3485 /// assert_eq!(vec, [1, 2, 3, 2]);
3486 /// ```
3487 #[stable(feature = "rust1", since = "1.0.0")]
3488 #[inline]
3489 pub fn dedup(&mut self) {
3490 self.dedup_by(|a, b| a == b)
3491 }
3492}
3493
3494////////////////////////////////////////////////////////////////////////////////
3495// Internal methods and functions
3496////////////////////////////////////////////////////////////////////////////////
3497
3498#[doc(hidden)]
3499#[cfg(not(no_global_oom_handling))]
3500#[stable(feature = "rust1", since = "1.0.0")]
3501#[rustc_diagnostic_item = "vec_from_elem"]
3502pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
3503 <T as SpecFromElem>::from_elem(elem, n, Global)
3504}
3505
3506#[doc(hidden)]
3507#[cfg(not(no_global_oom_handling))]
3508#[unstable(feature = "allocator_api", issue = "32838")]
3509pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
3510 <T as SpecFromElem>::from_elem(elem, n, alloc)
3511}
3512
3513#[cfg(not(no_global_oom_handling))]
3514trait ExtendFromWithinSpec {
3515 /// # Safety
3516 ///
3517 /// - `src` needs to be valid index
3518 /// - `self.capacity() - self.len()` must be `>= src.len()`
3519 unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
3520}
3521
3522#[cfg(not(no_global_oom_handling))]
3523impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
3524 default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
3525 // SAFETY:
3526 // - len is increased only after initializing elements
3527 let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
3528
3529 // SAFETY:
3530 // - caller guarantees that src is a valid index
3531 let to_clone = unsafe { this.get_unchecked(src) };
3532
3533 iter::zip(to_clone, spare)
3534 .map(|(src, dst)| dst.write(src.clone()))
3535 // Note:
3536 // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
3537 // - len is increased after each element to prevent leaks (see issue #82533)
3538 .for_each(|_| *len += 1);
3539 }
3540}
3541
3542#[cfg(not(no_global_oom_handling))]
3543impl<T: TrivialClone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
3544 unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
3545 let count = src.len();
3546 {
3547 let (init, spare) = self.split_at_spare_mut();
3548
3549 // SAFETY:
3550 // - caller guarantees that `src` is a valid index
3551 let source = unsafe { init.get_unchecked(src) };
3552
3553 // SAFETY:
3554 // - Both pointers are created from unique slice references (`&mut [_]`)
3555 // so they are valid and do not overlap.
3556 // - Elements implement `TrivialClone` so this is equivalent to calling
3557 // `clone` on every one of them.
3558 // - `count` is equal to the len of `source`, so source is valid for
3559 // `count` reads
3560 // - `.reserve(count)` guarantees that `spare.len() >= count` so spare
3561 // is valid for `count` writes
3562 unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
3563 }
3564
3565 // SAFETY:
3566 // - The elements were just initialized by `copy_nonoverlapping`
3567 self.len += count;
3568 }
3569}
3570
3571////////////////////////////////////////////////////////////////////////////////
3572// Common trait implementations for Vec
3573////////////////////////////////////////////////////////////////////////////////
3574
3575#[stable(feature = "rust1", since = "1.0.0")]
3576impl<T, A: Allocator> ops::Deref for Vec<T, A> {
3577 type Target = [T];
3578
3579 #[inline]
3580 fn deref(&self) -> &[T] {
3581 self.as_slice()
3582 }
3583}
3584
3585#[stable(feature = "rust1", since = "1.0.0")]
3586impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
3587 #[inline]
3588 fn deref_mut(&mut self) -> &mut [T] {
3589 self.as_mut_slice()
3590 }
3591}
3592
3593#[unstable(feature = "deref_pure_trait", issue = "87121")]
3594unsafe impl<T, A: Allocator> ops::DerefPure for Vec<T, A> {}
3595
3596#[cfg(not(no_global_oom_handling))]
3597#[stable(feature = "rust1", since = "1.0.0")]
3598impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
3599 fn clone(&self) -> Self {
3600 let alloc = self.allocator().clone();
3601 <[T]>::to_vec_in(&**self, alloc)
3602 }
3603
3604 /// Overwrites the contents of `self` with a clone of the contents of `source`.
3605 ///
3606 /// This method is preferred over simply assigning `source.clone()` to `self`,
3607 /// as it avoids reallocation if possible. Additionally, if the element type
3608 /// `T` overrides `clone_from()`, this will reuse the resources of `self`'s
3609 /// elements as well.
3610 ///
3611 /// # Examples
3612 ///
3613 /// ```
3614 /// let x = vec![5, 6, 7];
3615 /// let mut y = vec![8, 9, 10];
3616 /// let yp: *const i32 = y.as_ptr();
3617 ///
3618 /// y.clone_from(&x);
3619 ///
3620 /// // The value is the same
3621 /// assert_eq!(x, y);
3622 ///
3623 /// // And no reallocation occurred
3624 /// assert_eq!(yp, y.as_ptr());
3625 /// ```
3626 fn clone_from(&mut self, source: &Self) {
3627 crate::slice::SpecCloneIntoVec::clone_into(source.as_slice(), self);
3628 }
3629}
3630
3631/// The hash of a vector is the same as that of the corresponding slice,
3632/// as required by the `core::borrow::Borrow` implementation.
3633///
3634/// ```
3635/// use std::hash::BuildHasher;
3636///
3637/// let b = std::hash::RandomState::new();
3638/// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
3639/// let s: &[u8] = &[0xa8, 0x3c, 0x09];
3640/// assert_eq!(b.hash_one(v), b.hash_one(s));
3641/// ```
3642#[stable(feature = "rust1", since = "1.0.0")]
3643impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
3644 #[inline]
3645 fn hash<H: Hasher>(&self, state: &mut H) {
3646 Hash::hash(&**self, state)
3647 }
3648}
3649
3650#[stable(feature = "rust1", since = "1.0.0")]
3651impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
3652 type Output = I::Output;
3653
3654 #[inline]
3655 fn index(&self, index: I) -> &Self::Output {
3656 Index::index(&**self, index)
3657 }
3658}
3659
3660#[stable(feature = "rust1", since = "1.0.0")]
3661impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
3662 #[inline]
3663 fn index_mut(&mut self, index: I) -> &mut Self::Output {
3664 IndexMut::index_mut(&mut **self, index)
3665 }
3666}
3667
3668/// Collects an iterator into a Vec, commonly called via [`Iterator::collect()`]
3669///
3670/// # Allocation behavior
3671///
3672/// In general `Vec` does not guarantee any particular growth or allocation strategy.
3673/// That also applies to this trait impl.
3674///
3675/// **Note:** This section covers implementation details and is therefore exempt from
3676/// stability guarantees.
3677///
3678/// Vec may use any or none of the following strategies,
3679/// depending on the supplied iterator:
3680///
3681/// * preallocate based on [`Iterator::size_hint()`]
3682/// * and panic if the number of items is outside the provided lower/upper bounds
3683/// * use an amortized growth strategy similar to `pushing` one item at a time
3684/// * perform the iteration in-place on the original allocation backing the iterator
3685///
3686/// The last case warrants some attention. It is an optimization that in many cases reduces peak memory
3687/// consumption and improves cache locality. But when big, short-lived allocations are created,
3688/// only a small fraction of their items get collected, no further use is made of the spare capacity
3689/// and the resulting `Vec` is moved into a longer-lived structure, then this can lead to the large
3690/// allocations having their lifetimes unnecessarily extended which can result in increased memory
3691/// footprint.
3692///
3693/// In cases where this is an issue, the excess capacity can be discarded with [`Vec::shrink_to()`],
3694/// [`Vec::shrink_to_fit()`] or by collecting into [`Box<[T]>`][owned slice] instead, which additionally reduces
3695/// the size of the long-lived struct.
3696///
3697/// [owned slice]: Box
3698///
3699/// ```rust
3700/// # use std::sync::Mutex;
3701/// static LONG_LIVED: Mutex<Vec<Vec<u16>>> = Mutex::new(Vec::new());
3702///
3703/// for i in 0..10 {
3704/// let big_temporary: Vec<u16> = (0..1024).collect();
3705/// // discard most items
3706/// let mut result: Vec<_> = big_temporary.into_iter().filter(|i| i % 100 == 0).collect();
3707/// // without this a lot of unused capacity might be moved into the global
3708/// result.shrink_to_fit();
3709/// LONG_LIVED.lock().unwrap().push(result);
3710/// }
3711/// ```
3712#[cfg(not(no_global_oom_handling))]
3713#[stable(feature = "rust1", since = "1.0.0")]
3714impl<T> FromIterator<T> for Vec<T> {
3715 #[inline]
3716 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
3717 <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
3718 }
3719}
3720
3721#[stable(feature = "rust1", since = "1.0.0")]
3722impl<T, A: Allocator> IntoIterator for Vec<T, A> {
3723 type Item = T;
3724 type IntoIter = IntoIter<T, A>;
3725
3726 /// Creates a consuming iterator, that is, one that moves each value out of
3727 /// the vector (from start to end). The vector cannot be used after calling
3728 /// this.
3729 ///
3730 /// # Examples
3731 ///
3732 /// ```
3733 /// let v = vec!["a".to_string(), "b".to_string()];
3734 /// let mut v_iter = v.into_iter();
3735 ///
3736 /// let first_element: Option<String> = v_iter.next();
3737 ///
3738 /// assert_eq!(first_element, Some("a".to_string()));
3739 /// assert_eq!(v_iter.next(), Some("b".to_string()));
3740 /// assert_eq!(v_iter.next(), None);
3741 /// ```
3742 #[inline]
3743 fn into_iter(self) -> Self::IntoIter {
3744 unsafe {
3745 let me = ManuallyDrop::new(self);
3746 let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
3747 let buf = me.buf.non_null();
3748 let begin = buf.as_ptr();
3749 let end = if T::IS_ZST {
3750 begin.wrapping_byte_add(me.len())
3751 } else {
3752 begin.add(me.len()) as *const T
3753 };
3754 let cap = me.buf.capacity();
3755 IntoIter { buf, phantom: PhantomData, cap, alloc, ptr: buf, end }
3756 }
3757 }
3758}
3759
3760#[stable(feature = "rust1", since = "1.0.0")]
3761impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
3762 type Item = &'a T;
3763 type IntoIter = slice::Iter<'a, T>;
3764
3765 fn into_iter(self) -> Self::IntoIter {
3766 self.iter()
3767 }
3768}
3769
3770#[stable(feature = "rust1", since = "1.0.0")]
3771impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
3772 type Item = &'a mut T;
3773 type IntoIter = slice::IterMut<'a, T>;
3774
3775 fn into_iter(self) -> Self::IntoIter {
3776 self.iter_mut()
3777 }
3778}
3779
3780#[cfg(not(no_global_oom_handling))]
3781#[stable(feature = "rust1", since = "1.0.0")]
3782impl<T, A: Allocator> Extend<T> for Vec<T, A> {
3783 #[inline]
3784 fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
3785 <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
3786 }
3787
3788 #[inline]
3789 fn extend_one(&mut self, item: T) {
3790 self.push(item);
3791 }
3792
3793 #[inline]
3794 fn extend_reserve(&mut self, additional: usize) {
3795 self.reserve(additional);
3796 }
3797
3798 #[inline]
3799 unsafe fn extend_one_unchecked(&mut self, item: T) {
3800 // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
3801 unsafe {
3802 let len = self.len();
3803 ptr::write(self.as_mut_ptr().add(len), item);
3804 self.set_len(len + 1);
3805 }
3806 }
3807}
3808
3809impl<T, A: Allocator> Vec<T, A> {
3810 // leaf method to which various SpecFrom/SpecExtend implementations delegate when
3811 // they have no further optimizations to apply
3812 #[cfg(not(no_global_oom_handling))]
3813 fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
3814 // This is the case for a general iterator.
3815 //
3816 // This function should be the moral equivalent of:
3817 //
3818 // for item in iterator {
3819 // self.push(item);
3820 // }
3821 while let Some(element) = iterator.next() {
3822 let len = self.len();
3823 if len == self.capacity() {
3824 let (lower, _) = iterator.size_hint();
3825 self.reserve(lower.saturating_add(1));
3826 }
3827 unsafe {
3828 ptr::write(self.as_mut_ptr().add(len), element);
3829 // Since next() executes user code which can panic we have to bump the length
3830 // after each step.
3831 // NB can't overflow since we would have had to alloc the address space
3832 self.set_len(len + 1);
3833 }
3834 }
3835 }
3836
3837 // specific extend for `TrustedLen` iterators, called both by the specializations
3838 // and internal places where resolving specialization makes compilation slower
3839 #[cfg(not(no_global_oom_handling))]
3840 fn extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) {
3841 let (low, high) = iterator.size_hint();
3842 if let Some(additional) = high {
3843 debug_assert_eq!(
3844 low,
3845 additional,
3846 "TrustedLen iterator's size hint is not exact: {:?}",
3847 (low, high)
3848 );
3849 self.reserve(additional);
3850 unsafe {
3851 let ptr = self.as_mut_ptr();
3852 let mut local_len = SetLenOnDrop::new(&mut self.len);
3853 iterator.for_each(move |element| {
3854 ptr::write(ptr.add(local_len.current_len()), element);
3855 // Since the loop executes user code which can panic we have to update
3856 // the length every step to correctly drop what we've written.
3857 // NB can't overflow since we would have had to alloc the address space
3858 local_len.increment_len(1);
3859 });
3860 }
3861 } else {
3862 // Per TrustedLen contract a `None` upper bound means that the iterator length
3863 // truly exceeds usize::MAX, which would eventually lead to a capacity overflow anyway.
3864 // Since the other branch already panics eagerly (via `reserve()`) we do the same here.
3865 // This avoids additional codegen for a fallback code path which would eventually
3866 // panic anyway.
3867 panic!("capacity overflow");
3868 }
3869 }
3870
3871 /// Creates a splicing iterator that replaces the specified range in the vector
3872 /// with the given `replace_with` iterator and yields the removed items.
3873 /// `replace_with` does not need to be the same length as `range`.
3874 ///
3875 /// `range` is removed even if the `Splice` iterator is not consumed before it is dropped.
3876 ///
3877 /// It is unspecified how many elements are removed from the vector
3878 /// if the `Splice` value is leaked.
3879 ///
3880 /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
3881 ///
3882 /// This is optimal if:
3883 ///
3884 /// * The tail (elements in the vector after `range`) is empty,
3885 /// * or `replace_with` yields fewer or equal elements than `range`'s length
3886 /// * or the lower bound of its `size_hint()` is exact.
3887 ///
3888 /// Otherwise, a temporary vector is allocated and the tail is moved twice.
3889 ///
3890 /// # Panics
3891 ///
3892 /// Panics if the range has `start_bound > end_bound`, or, if the range is
3893 /// bounded on either end and past the length of the vector.
3894 ///
3895 /// # Examples
3896 ///
3897 /// ```
3898 /// let mut v = vec![1, 2, 3, 4];
3899 /// let new = [7, 8, 9];
3900 /// let u: Vec<_> = v.splice(1..3, new).collect();
3901 /// assert_eq!(v, [1, 7, 8, 9, 4]);
3902 /// assert_eq!(u, [2, 3]);
3903 /// ```
3904 ///
3905 /// Using `splice` to insert new items into a vector efficiently at a specific position
3906 /// indicated by an empty range:
3907 ///
3908 /// ```
3909 /// let mut v = vec![1, 5];
3910 /// let new = [2, 3, 4];
3911 /// v.splice(1..1, new);
3912 /// assert_eq!(v, [1, 2, 3, 4, 5]);
3913 /// ```
3914 #[cfg(not(no_global_oom_handling))]
3915 #[inline]
3916 #[stable(feature = "vec_splice", since = "1.21.0")]
3917 pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
3918 where
3919 R: RangeBounds<usize>,
3920 I: IntoIterator<Item = T>,
3921 {
3922 Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
3923 }
3924
3925 /// Creates an iterator which uses a closure to determine if an element in the range should be removed.
3926 ///
3927 /// If the closure returns `true`, the element is removed from the vector
3928 /// and yielded. If the closure returns `false`, or panics, the element
3929 /// remains in the vector and will not be yielded.
3930 ///
3931 /// Only elements that fall in the provided range are considered for extraction, but any elements
3932 /// after the range will still have to be moved if any element has been extracted.
3933 ///
3934 /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
3935 /// or the iteration short-circuits, then the remaining elements will be retained.
3936 /// Use `extract_if().for_each(drop)` if you do not need the returned iterator,
3937 /// or [`retain_mut`] with a negated predicate if you also do not need to restrict the range.
3938 ///
3939 /// [`retain_mut`]: Vec::retain_mut
3940 ///
3941 /// Using this method is equivalent to the following code:
3942 ///
3943 /// ```
3944 /// # let some_predicate = |x: &mut i32| { *x % 2 == 1 };
3945 /// # let mut vec = vec![0, 1, 2, 3, 4, 5, 6];
3946 /// # let mut vec2 = vec.clone();
3947 /// # let range = 1..5;
3948 /// let mut i = range.start;
3949 /// let end_items = vec.len() - range.end;
3950 /// # let mut extracted = vec![];
3951 ///
3952 /// while i < vec.len() - end_items {
3953 /// if some_predicate(&mut vec[i]) {
3954 /// let val = vec.remove(i);
3955 /// // your code here
3956 /// # extracted.push(val);
3957 /// } else {
3958 /// i += 1;
3959 /// }
3960 /// }
3961 ///
3962 /// # let extracted2: Vec<_> = vec2.extract_if(range, some_predicate).collect();
3963 /// # assert_eq!(vec, vec2);
3964 /// # assert_eq!(extracted, extracted2);
3965 /// ```
3966 ///
3967 /// But `extract_if` is easier to use. `extract_if` is also more efficient,
3968 /// because it can backshift the elements of the array in bulk.
3969 ///
3970 /// The iterator also lets you mutate the value of each element in the
3971 /// closure, regardless of whether you choose to keep or remove it.
3972 ///
3973 /// # Panics
3974 ///
3975 /// If `range` is out of bounds.
3976 ///
3977 /// # Examples
3978 ///
3979 /// Splitting a vector into even and odd values, reusing the original vector:
3980 ///
3981 /// ```
3982 /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
3983 ///
3984 /// let evens = numbers.extract_if(.., |x| *x % 2 == 0).collect::<Vec<_>>();
3985 /// let odds = numbers;
3986 ///
3987 /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
3988 /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
3989 /// ```
3990 ///
3991 /// Using the range argument to only process a part of the vector:
3992 ///
3993 /// ```
3994 /// let mut items = vec![0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 2];
3995 /// let ones = items.extract_if(7.., |x| *x == 1).collect::<Vec<_>>();
3996 /// assert_eq!(items, vec![0, 0, 0, 0, 0, 0, 0, 2, 2, 2]);
3997 /// assert_eq!(ones.len(), 3);
3998 /// ```
3999 #[stable(feature = "extract_if", since = "1.87.0")]
4000 pub fn extract_if<F, R>(&mut self, range: R, filter: F) -> ExtractIf<'_, T, F, A>
4001 where
4002 F: FnMut(&mut T) -> bool,
4003 R: RangeBounds<usize>,
4004 {
4005 ExtractIf::new(self, filter, range)
4006 }
4007}
4008
4009/// Extend implementation that copies elements out of references before pushing them onto the Vec.
4010///
4011/// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
4012/// append the entire slice at once.
4013///
4014/// [`copy_from_slice`]: slice::copy_from_slice
4015#[cfg(not(no_global_oom_handling))]
4016#[stable(feature = "extend_ref", since = "1.2.0")]
4017impl<'a, T: Copy + 'a, A: Allocator> Extend<&'a T> for Vec<T, A> {
4018 fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
4019 self.spec_extend(iter.into_iter())
4020 }
4021
4022 #[inline]
4023 fn extend_one(&mut self, &item: &'a T) {
4024 self.push(item);
4025 }
4026
4027 #[inline]
4028 fn extend_reserve(&mut self, additional: usize) {
4029 self.reserve(additional);
4030 }
4031
4032 #[inline]
4033 unsafe fn extend_one_unchecked(&mut self, &item: &'a T) {
4034 // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
4035 unsafe {
4036 let len = self.len();
4037 ptr::write(self.as_mut_ptr().add(len), item);
4038 self.set_len(len + 1);
4039 }
4040 }
4041}
4042
4043/// Implements comparison of vectors, [lexicographically](Ord#lexicographical-comparison).
4044#[stable(feature = "rust1", since = "1.0.0")]
4045impl<T, A1, A2> PartialOrd<Vec<T, A2>> for Vec<T, A1>
4046where
4047 T: PartialOrd,
4048 A1: Allocator,
4049 A2: Allocator,
4050{
4051 #[inline]
4052 fn partial_cmp(&self, other: &Vec<T, A2>) -> Option<Ordering> {
4053 PartialOrd::partial_cmp(&**self, &**other)
4054 }
4055}
4056
4057#[stable(feature = "rust1", since = "1.0.0")]
4058impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
4059
4060/// Implements ordering of vectors, [lexicographically](Ord#lexicographical-comparison).
4061#[stable(feature = "rust1", since = "1.0.0")]
4062impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
4063 #[inline]
4064 fn cmp(&self, other: &Self) -> Ordering {
4065 Ord::cmp(&**self, &**other)
4066 }
4067}
4068
4069#[stable(feature = "rust1", since = "1.0.0")]
4070unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
4071 fn drop(&mut self) {
4072 unsafe {
4073 // use drop for [T]
4074 // use a raw slice to refer to the elements of the vector as weakest necessary type;
4075 // could avoid questions of validity in certain cases
4076 ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
4077 }
4078 // RawVec handles deallocation
4079 }
4080}
4081
4082#[stable(feature = "rust1", since = "1.0.0")]
4083#[rustc_const_unstable(feature = "const_default", issue = "143894")]
4084impl<T> const Default for Vec<T> {
4085 /// Creates an empty `Vec<T>`.
4086 ///
4087 /// The vector will not allocate until elements are pushed onto it.
4088 fn default() -> Vec<T> {
4089 Vec::new()
4090 }
4091}
4092
4093#[stable(feature = "rust1", since = "1.0.0")]
4094impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
4095 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4096 fmt::Debug::fmt(&**self, f)
4097 }
4098}
4099
4100#[stable(feature = "rust1", since = "1.0.0")]
4101impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
4102 fn as_ref(&self) -> &Vec<T, A> {
4103 self
4104 }
4105}
4106
4107#[stable(feature = "vec_as_mut", since = "1.5.0")]
4108impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
4109 fn as_mut(&mut self) -> &mut Vec<T, A> {
4110 self
4111 }
4112}
4113
4114#[stable(feature = "rust1", since = "1.0.0")]
4115impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
4116 fn as_ref(&self) -> &[T] {
4117 self
4118 }
4119}
4120
4121#[stable(feature = "vec_as_mut", since = "1.5.0")]
4122impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
4123 fn as_mut(&mut self) -> &mut [T] {
4124 self
4125 }
4126}
4127
4128#[cfg(not(no_global_oom_handling))]
4129#[stable(feature = "rust1", since = "1.0.0")]
4130impl<T: Clone> From<&[T]> for Vec<T> {
4131 /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4132 ///
4133 /// # Examples
4134 ///
4135 /// ```
4136 /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
4137 /// ```
4138 fn from(s: &[T]) -> Vec<T> {
4139 s.to_vec()
4140 }
4141}
4142
4143#[cfg(not(no_global_oom_handling))]
4144#[stable(feature = "vec_from_mut", since = "1.19.0")]
4145impl<T: Clone> From<&mut [T]> for Vec<T> {
4146 /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4147 ///
4148 /// # Examples
4149 ///
4150 /// ```
4151 /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
4152 /// ```
4153 fn from(s: &mut [T]) -> Vec<T> {
4154 s.to_vec()
4155 }
4156}
4157
4158#[cfg(not(no_global_oom_handling))]
4159#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
4160impl<T: Clone, const N: usize> From<&[T; N]> for Vec<T> {
4161 /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4162 ///
4163 /// # Examples
4164 ///
4165 /// ```
4166 /// assert_eq!(Vec::from(&[1, 2, 3]), vec![1, 2, 3]);
4167 /// ```
4168 fn from(s: &[T; N]) -> Vec<T> {
4169 Self::from(s.as_slice())
4170 }
4171}
4172
4173#[cfg(not(no_global_oom_handling))]
4174#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
4175impl<T: Clone, const N: usize> From<&mut [T; N]> for Vec<T> {
4176 /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4177 ///
4178 /// # Examples
4179 ///
4180 /// ```
4181 /// assert_eq!(Vec::from(&mut [1, 2, 3]), vec![1, 2, 3]);
4182 /// ```
4183 fn from(s: &mut [T; N]) -> Vec<T> {
4184 Self::from(s.as_mut_slice())
4185 }
4186}
4187
4188#[cfg(not(no_global_oom_handling))]
4189#[stable(feature = "vec_from_array", since = "1.44.0")]
4190impl<T, const N: usize> From<[T; N]> for Vec<T> {
4191 /// Allocates a `Vec<T>` and moves `s`'s items into it.
4192 ///
4193 /// # Examples
4194 ///
4195 /// ```
4196 /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
4197 /// ```
4198 fn from(s: [T; N]) -> Vec<T> {
4199 <[T]>::into_vec(Box::new(s))
4200 }
4201}
4202
4203#[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
4204impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
4205where
4206 [T]: ToOwned<Owned = Vec<T>>,
4207{
4208 /// Converts a clone-on-write slice into a vector.
4209 ///
4210 /// If `s` already owns a `Vec<T>`, it will be returned directly.
4211 /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
4212 /// filled by cloning `s`'s items into it.
4213 ///
4214 /// # Examples
4215 ///
4216 /// ```
4217 /// # use std::borrow::Cow;
4218 /// let o: Cow<'_, [i32]> = Cow::Owned(vec![1, 2, 3]);
4219 /// let b: Cow<'_, [i32]> = Cow::Borrowed(&[1, 2, 3]);
4220 /// assert_eq!(Vec::from(o), Vec::from(b));
4221 /// ```
4222 fn from(s: Cow<'a, [T]>) -> Vec<T> {
4223 s.into_owned()
4224 }
4225}
4226
4227// note: test pulls in std, which causes errors here
4228#[stable(feature = "vec_from_box", since = "1.18.0")]
4229impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
4230 /// Converts a boxed slice into a vector by transferring ownership of
4231 /// the existing heap allocation.
4232 ///
4233 /// # Examples
4234 ///
4235 /// ```
4236 /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
4237 /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
4238 /// ```
4239 fn from(s: Box<[T], A>) -> Self {
4240 s.into_vec()
4241 }
4242}
4243
4244// note: test pulls in std, which causes errors here
4245#[cfg(not(no_global_oom_handling))]
4246#[stable(feature = "box_from_vec", since = "1.20.0")]
4247impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
4248 /// Converts a vector into a boxed slice.
4249 ///
4250 /// Before doing the conversion, this method discards excess capacity like [`Vec::shrink_to_fit`].
4251 ///
4252 /// [owned slice]: Box
4253 /// [`Vec::shrink_to_fit`]: Vec::shrink_to_fit
4254 ///
4255 /// # Examples
4256 ///
4257 /// ```
4258 /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
4259 /// ```
4260 ///
4261 /// Any excess capacity is removed:
4262 /// ```
4263 /// let mut vec = Vec::with_capacity(10);
4264 /// vec.extend([1, 2, 3]);
4265 ///
4266 /// assert_eq!(Box::from(vec), vec![1, 2, 3].into_boxed_slice());
4267 /// ```
4268 fn from(v: Vec<T, A>) -> Self {
4269 v.into_boxed_slice()
4270 }
4271}
4272
4273#[cfg(not(no_global_oom_handling))]
4274#[stable(feature = "rust1", since = "1.0.0")]
4275impl From<&str> for Vec<u8> {
4276 /// Allocates a `Vec<u8>` and fills it with a UTF-8 string.
4277 ///
4278 /// # Examples
4279 ///
4280 /// ```
4281 /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
4282 /// ```
4283 fn from(s: &str) -> Vec<u8> {
4284 From::from(s.as_bytes())
4285 }
4286}
4287
4288#[stable(feature = "array_try_from_vec", since = "1.48.0")]
4289impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
4290 type Error = Vec<T, A>;
4291
4292 /// Gets the entire contents of the `Vec<T>` as an array,
4293 /// if its size exactly matches that of the requested array.
4294 ///
4295 /// # Examples
4296 ///
4297 /// ```
4298 /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
4299 /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
4300 /// ```
4301 ///
4302 /// If the length doesn't match, the input comes back in `Err`:
4303 /// ```
4304 /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
4305 /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
4306 /// ```
4307 ///
4308 /// If you're fine with just getting a prefix of the `Vec<T>`,
4309 /// you can call [`.truncate(N)`](Vec::truncate) first.
4310 /// ```
4311 /// let mut v = String::from("hello world").into_bytes();
4312 /// v.sort();
4313 /// v.truncate(2);
4314 /// let [a, b]: [_; 2] = v.try_into().unwrap();
4315 /// assert_eq!(a, b' ');
4316 /// assert_eq!(b, b'd');
4317 /// ```
4318 fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
4319 if vec.len() != N {
4320 return Err(vec);
4321 }
4322
4323 // SAFETY: `.set_len(0)` is always sound.
4324 unsafe { vec.set_len(0) };
4325
4326 // SAFETY: A `Vec`'s pointer is always aligned properly, and
4327 // the alignment the array needs is the same as the items.
4328 // We checked earlier that we have sufficient items.
4329 // The items will not double-drop as the `set_len`
4330 // tells the `Vec` not to also drop them.
4331 let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
4332 Ok(array)
4333 }
4334}