alloc/
slice.rs

1//! Utilities for the slice primitive type.
2//!
3//! *[See also the slice primitive type](slice).*
4//!
5//! Most of the structs in this module are iterator types which can only be created
6//! using a certain function. For example, `slice.iter()` yields an [`Iter`].
7//!
8//! A few functions are provided to create a slice from a value reference
9//! or from a raw pointer.
10#![stable(feature = "rust1", since = "1.0.0")]
11
12use core::borrow::{Borrow, BorrowMut};
13#[cfg(not(no_global_oom_handling))]
14use core::cmp::Ordering::{self, Less};
15#[cfg(not(no_global_oom_handling))]
16use core::mem::MaybeUninit;
17#[cfg(not(no_global_oom_handling))]
18use core::ptr;
19#[unstable(feature = "array_windows", issue = "75027")]
20pub use core::slice::ArrayWindows;
21#[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
22pub use core::slice::EscapeAscii;
23#[stable(feature = "get_many_mut", since = "1.86.0")]
24pub use core::slice::GetDisjointMutError;
25#[stable(feature = "slice_get_slice", since = "1.28.0")]
26pub use core::slice::SliceIndex;
27#[cfg(not(no_global_oom_handling))]
28use core::slice::sort;
29#[stable(feature = "slice_group_by", since = "1.77.0")]
30pub use core::slice::{ChunkBy, ChunkByMut};
31#[stable(feature = "rust1", since = "1.0.0")]
32pub use core::slice::{Chunks, Windows};
33#[stable(feature = "chunks_exact", since = "1.31.0")]
34pub use core::slice::{ChunksExact, ChunksExactMut};
35#[stable(feature = "rust1", since = "1.0.0")]
36pub use core::slice::{ChunksMut, Split, SplitMut};
37#[stable(feature = "rust1", since = "1.0.0")]
38pub use core::slice::{Iter, IterMut};
39#[stable(feature = "rchunks", since = "1.31.0")]
40pub use core::slice::{RChunks, RChunksExact, RChunksExactMut, RChunksMut};
41#[stable(feature = "slice_rsplit", since = "1.27.0")]
42pub use core::slice::{RSplit, RSplitMut};
43#[stable(feature = "rust1", since = "1.0.0")]
44pub use core::slice::{RSplitN, RSplitNMut, SplitN, SplitNMut};
45#[stable(feature = "split_inclusive", since = "1.51.0")]
46pub use core::slice::{SplitInclusive, SplitInclusiveMut};
47#[stable(feature = "from_ref", since = "1.28.0")]
48pub use core::slice::{from_mut, from_ref};
49#[unstable(feature = "slice_from_ptr_range", issue = "89792")]
50pub use core::slice::{from_mut_ptr_range, from_ptr_range};
51#[stable(feature = "rust1", since = "1.0.0")]
52pub use core::slice::{from_raw_parts, from_raw_parts_mut};
53#[unstable(feature = "slice_range", issue = "76393")]
54pub use core::slice::{range, try_range};
55
56////////////////////////////////////////////////////////////////////////////////
57// Basic slice extension methods
58////////////////////////////////////////////////////////////////////////////////
59use crate::alloc::Allocator;
60#[cfg(not(no_global_oom_handling))]
61use crate::alloc::Global;
62#[cfg(not(no_global_oom_handling))]
63use crate::borrow::ToOwned;
64use crate::boxed::Box;
65use crate::vec::Vec;
66
67impl<T> [T] {
68    /// Sorts the slice in ascending order, preserving initial order of equal elements.
69    ///
70    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*))
71    /// worst-case.
72    ///
73    /// If the implementation of [`Ord`] for `T` does not implement a [total order], the function
74    /// may panic; even if the function exits normally, the resulting order of elements in the slice
75    /// is unspecified. See also the note on panicking below.
76    ///
77    /// When applicable, unstable sorting is preferred because it is generally faster than stable
78    /// sorting and it doesn't allocate auxiliary memory. See
79    /// [`sort_unstable`](slice::sort_unstable). The exception are partially sorted slices, which
80    /// may be better served with `slice::sort`.
81    ///
82    /// Sorting types that only implement [`PartialOrd`] such as [`f32`] and [`f64`] require
83    /// additional precautions. For example, `f32::NAN != f32::NAN`, which doesn't fulfill the
84    /// reflexivity requirement of [`Ord`]. By using an alternative comparison function with
85    /// `slice::sort_by` such as [`f32::total_cmp`] or [`f64::total_cmp`] that defines a [total
86    /// order] users can sort slices containing floating-point values. Alternatively, if all values
87    /// in the slice are guaranteed to be in a subset for which [`PartialOrd::partial_cmp`] forms a
88    /// [total order], it's possible to sort the slice with `sort_by(|a, b|
89    /// a.partial_cmp(b).unwrap())`.
90    ///
91    /// # Current implementation
92    ///
93    /// The current implementation is based on [driftsort] by Orson Peters and Lukas Bergdoll, which
94    /// combines the fast average case of quicksort with the fast worst case and partial run
95    /// detection of mergesort, achieving linear time on fully sorted and reversed inputs. On inputs
96    /// with k distinct elements, the expected time to sort the data is *O*(*n* \* log(*k*)).
97    ///
98    /// The auxiliary memory allocation behavior depends on the input length. Short slices are
99    /// handled without allocation, medium sized slices allocate `self.len()` and beyond that it
100    /// clamps at `self.len() / 2`.
101    ///
102    /// # Panics
103    ///
104    /// May panic if the implementation of [`Ord`] for `T` does not implement a [total order], or if
105    /// the [`Ord`] implementation itself panics.
106    ///
107    /// All safe functions on slices preserve the invariant that even if the function panics, all
108    /// original elements will remain in the slice and any possible modifications via interior
109    /// mutability are observed in the input. This ensures that recovery code (for instance inside
110    /// of a `Drop` or following a `catch_unwind`) will still have access to all the original
111    /// elements. For instance, if the slice belongs to a `Vec`, the `Vec::drop` method will be able
112    /// to dispose of all contained elements.
113    ///
114    /// # Examples
115    ///
116    /// ```
117    /// let mut v = [4, -5, 1, -3, 2];
118    ///
119    /// v.sort();
120    /// assert_eq!(v, [-5, -3, 1, 2, 4]);
121    /// ```
122    ///
123    /// [driftsort]: https://github.com/Voultapher/driftsort
124    /// [total order]: https://en.wikipedia.org/wiki/Total_order
125    #[cfg(not(no_global_oom_handling))]
126    #[rustc_allow_incoherent_impl]
127    #[stable(feature = "rust1", since = "1.0.0")]
128    #[inline]
129    pub fn sort(&mut self)
130    where
131        T: Ord,
132    {
133        stable_sort(self, T::lt);
134    }
135
136    /// Sorts the slice in ascending order with a comparison function, preserving initial order of
137    /// equal elements.
138    ///
139    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*))
140    /// worst-case.
141    ///
142    /// If the comparison function `compare` does not implement a [total order], the function may
143    /// panic; even if the function exits normally, the resulting order of elements in the slice is
144    /// unspecified. See also the note on panicking below.
145    ///
146    /// For example `|a, b| (a - b).cmp(a)` is a comparison function that is neither transitive nor
147    /// reflexive nor total, `a < b < c < a` with `a = 1, b = 2, c = 3`. For more information and
148    /// examples see the [`Ord`] documentation.
149    ///
150    /// # Current implementation
151    ///
152    /// The current implementation is based on [driftsort] by Orson Peters and Lukas Bergdoll, which
153    /// combines the fast average case of quicksort with the fast worst case and partial run
154    /// detection of mergesort, achieving linear time on fully sorted and reversed inputs. On inputs
155    /// with k distinct elements, the expected time to sort the data is *O*(*n* \* log(*k*)).
156    ///
157    /// The auxiliary memory allocation behavior depends on the input length. Short slices are
158    /// handled without allocation, medium sized slices allocate `self.len()` and beyond that it
159    /// clamps at `self.len() / 2`.
160    ///
161    /// # Panics
162    ///
163    /// May panic if `compare` does not implement a [total order], or if `compare` itself panics.
164    ///
165    /// All safe functions on slices preserve the invariant that even if the function panics, all
166    /// original elements will remain in the slice and any possible modifications via interior
167    /// mutability are observed in the input. This ensures that recovery code (for instance inside
168    /// of a `Drop` or following a `catch_unwind`) will still have access to all the original
169    /// elements. For instance, if the slice belongs to a `Vec`, the `Vec::drop` method will be able
170    /// to dispose of all contained elements.
171    ///
172    /// # Examples
173    ///
174    /// ```
175    /// let mut v = [4, -5, 1, -3, 2];
176    /// v.sort_by(|a, b| a.cmp(b));
177    /// assert_eq!(v, [-5, -3, 1, 2, 4]);
178    ///
179    /// // reverse sorting
180    /// v.sort_by(|a, b| b.cmp(a));
181    /// assert_eq!(v, [4, 2, 1, -3, -5]);
182    /// ```
183    ///
184    /// [driftsort]: https://github.com/Voultapher/driftsort
185    /// [total order]: https://en.wikipedia.org/wiki/Total_order
186    #[cfg(not(no_global_oom_handling))]
187    #[rustc_allow_incoherent_impl]
188    #[stable(feature = "rust1", since = "1.0.0")]
189    #[inline]
190    pub fn sort_by<F>(&mut self, mut compare: F)
191    where
192        F: FnMut(&T, &T) -> Ordering,
193    {
194        stable_sort(self, |a, b| compare(a, b) == Less);
195    }
196
197    /// Sorts the slice in ascending order with a key extraction function, preserving initial order
198    /// of equal elements.
199    ///
200    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* \* log(*n*))
201    /// worst-case, where the key function is *O*(*m*).
202    ///
203    /// If the implementation of [`Ord`] for `K` does not implement a [total order], the function
204    /// may panic; even if the function exits normally, the resulting order of elements in the slice
205    /// is unspecified. See also the note on panicking below.
206    ///
207    /// # Current implementation
208    ///
209    /// The current implementation is based on [driftsort] by Orson Peters and Lukas Bergdoll, which
210    /// combines the fast average case of quicksort with the fast worst case and partial run
211    /// detection of mergesort, achieving linear time on fully sorted and reversed inputs. On inputs
212    /// with k distinct elements, the expected time to sort the data is *O*(*n* \* log(*k*)).
213    ///
214    /// The auxiliary memory allocation behavior depends on the input length. Short slices are
215    /// handled without allocation, medium sized slices allocate `self.len()` and beyond that it
216    /// clamps at `self.len() / 2`.
217    ///
218    /// # Panics
219    ///
220    /// May panic if the implementation of [`Ord`] for `K` does not implement a [total order], or if
221    /// the [`Ord`] implementation or the key-function `f` panics.
222    ///
223    /// All safe functions on slices preserve the invariant that even if the function panics, all
224    /// original elements will remain in the slice and any possible modifications via interior
225    /// mutability are observed in the input. This ensures that recovery code (for instance inside
226    /// of a `Drop` or following a `catch_unwind`) will still have access to all the original
227    /// elements. For instance, if the slice belongs to a `Vec`, the `Vec::drop` method will be able
228    /// to dispose of all contained elements.
229    ///
230    /// # Examples
231    ///
232    /// ```
233    /// let mut v = [4i32, -5, 1, -3, 2];
234    ///
235    /// v.sort_by_key(|k| k.abs());
236    /// assert_eq!(v, [1, 2, -3, 4, -5]);
237    /// ```
238    ///
239    /// [driftsort]: https://github.com/Voultapher/driftsort
240    /// [total order]: https://en.wikipedia.org/wiki/Total_order
241    #[cfg(not(no_global_oom_handling))]
242    #[rustc_allow_incoherent_impl]
243    #[stable(feature = "slice_sort_by_key", since = "1.7.0")]
244    #[inline]
245    pub fn sort_by_key<K, F>(&mut self, mut f: F)
246    where
247        F: FnMut(&T) -> K,
248        K: Ord,
249    {
250        stable_sort(self, |a, b| f(a).lt(&f(b)));
251    }
252
253    /// Sorts the slice in ascending order with a key extraction function, preserving initial order
254    /// of equal elements.
255    ///
256    /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* + *n* \*
257    /// log(*n*)) worst-case, where the key function is *O*(*m*).
258    ///
259    /// During sorting, the key function is called at most once per element, by using temporary
260    /// storage to remember the results of key evaluation. The order of calls to the key function is
261    /// unspecified and may change in future versions of the standard library.
262    ///
263    /// If the implementation of [`Ord`] for `K` does not implement a [total order], the function
264    /// may panic; even if the function exits normally, the resulting order of elements in the slice
265    /// is unspecified. See also the note on panicking below.
266    ///
267    /// For simple key functions (e.g., functions that are property accesses or basic operations),
268    /// [`sort_by_key`](slice::sort_by_key) is likely to be faster.
269    ///
270    /// # Current implementation
271    ///
272    /// The current implementation is based on [instruction-parallel-network sort][ipnsort] by Lukas
273    /// Bergdoll, which combines the fast average case of randomized quicksort with the fast worst
274    /// case of heapsort, while achieving linear time on fully sorted and reversed inputs. And
275    /// *O*(*k* \* log(*n*)) where *k* is the number of distinct elements in the input. It leverages
276    /// superscalar out-of-order execution capabilities commonly found in CPUs, to efficiently
277    /// perform the operation.
278    ///
279    /// In the worst case, the algorithm allocates temporary storage in a `Vec<(K, usize)>` the
280    /// length of the slice.
281    ///
282    /// # Panics
283    ///
284    /// May panic if the implementation of [`Ord`] for `K` does not implement a [total order], or if
285    /// the [`Ord`] implementation panics.
286    ///
287    /// All safe functions on slices preserve the invariant that even if the function panics, all
288    /// original elements will remain in the slice and any possible modifications via interior
289    /// mutability are observed in the input. This ensures that recovery code (for instance inside
290    /// of a `Drop` or following a `catch_unwind`) will still have access to all the original
291    /// elements. For instance, if the slice belongs to a `Vec`, the `Vec::drop` method will be able
292    /// to dispose of all contained elements.
293    ///
294    /// # Examples
295    ///
296    /// ```
297    /// let mut v = [4i32, -5, 1, -3, 2, 10];
298    ///
299    /// // Strings are sorted by lexicographical order.
300    /// v.sort_by_cached_key(|k| k.to_string());
301    /// assert_eq!(v, [-3, -5, 1, 10, 2, 4]);
302    /// ```
303    ///
304    /// [ipnsort]: https://github.com/Voultapher/sort-research-rs/tree/main/ipnsort
305    /// [total order]: https://en.wikipedia.org/wiki/Total_order
306    #[cfg(not(no_global_oom_handling))]
307    #[rustc_allow_incoherent_impl]
308    #[stable(feature = "slice_sort_by_cached_key", since = "1.34.0")]
309    #[inline]
310    pub fn sort_by_cached_key<K, F>(&mut self, f: F)
311    where
312        F: FnMut(&T) -> K,
313        K: Ord,
314    {
315        // Helper macro for indexing our vector by the smallest possible type, to reduce allocation.
316        macro_rules! sort_by_key {
317            ($t:ty, $slice:ident, $f:ident) => {{
318                let mut indices: Vec<_> =
319                    $slice.iter().map($f).enumerate().map(|(i, k)| (k, i as $t)).collect();
320                // The elements of `indices` are unique, as they are indexed, so any sort will be
321                // stable with respect to the original slice. We use `sort_unstable` here because
322                // it requires no memory allocation.
323                indices.sort_unstable();
324                for i in 0..$slice.len() {
325                    let mut index = indices[i].1;
326                    while (index as usize) < i {
327                        index = indices[index as usize].1;
328                    }
329                    indices[i].1 = index;
330                    $slice.swap(i, index as usize);
331                }
332            }};
333        }
334
335        let len = self.len();
336        if len < 2 {
337            return;
338        }
339
340        // Avoids binary-size usage in cases where the alignment doesn't work out to make this
341        // beneficial or on 32-bit platforms.
342        let is_using_u32_as_idx_type_helpful =
343            const { size_of::<(K, u32)>() < size_of::<(K, usize)>() };
344
345        // It's possible to instantiate this for u8 and u16 but, doing so is very wasteful in terms
346        // of compile-times and binary-size, the peak saved heap memory for u16 is (u8 + u16) -> 4
347        // bytes * u16::MAX vs (u8 + u32) -> 8 bytes * u16::MAX, the saved heap memory is at peak
348        // ~262KB.
349        if is_using_u32_as_idx_type_helpful && len <= (u32::MAX as usize) {
350            return sort_by_key!(u32, self, f);
351        }
352
353        sort_by_key!(usize, self, f)
354    }
355
356    /// Copies `self` into a new `Vec`.
357    ///
358    /// # Examples
359    ///
360    /// ```
361    /// let s = [10, 40, 30];
362    /// let x = s.to_vec();
363    /// // Here, `s` and `x` can be modified independently.
364    /// ```
365    #[cfg(not(no_global_oom_handling))]
366    #[rustc_allow_incoherent_impl]
367    #[rustc_conversion_suggestion]
368    #[stable(feature = "rust1", since = "1.0.0")]
369    #[inline]
370    pub fn to_vec(&self) -> Vec<T>
371    where
372        T: Clone,
373    {
374        self.to_vec_in(Global)
375    }
376
377    /// Copies `self` into a new `Vec` with an allocator.
378    ///
379    /// # Examples
380    ///
381    /// ```
382    /// #![feature(allocator_api)]
383    ///
384    /// use std::alloc::System;
385    ///
386    /// let s = [10, 40, 30];
387    /// let x = s.to_vec_in(System);
388    /// // Here, `s` and `x` can be modified independently.
389    /// ```
390    #[cfg(not(no_global_oom_handling))]
391    #[rustc_allow_incoherent_impl]
392    #[inline]
393    #[unstable(feature = "allocator_api", issue = "32838")]
394    pub fn to_vec_in<A: Allocator>(&self, alloc: A) -> Vec<T, A>
395    where
396        T: Clone,
397    {
398        return T::to_vec(self, alloc);
399
400        trait ConvertVec {
401            fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A>
402            where
403                Self: Sized;
404        }
405
406        impl<T: Clone> ConvertVec for T {
407            #[inline]
408            default fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> {
409                struct DropGuard<'a, T, A: Allocator> {
410                    vec: &'a mut Vec<T, A>,
411                    num_init: usize,
412                }
413                impl<'a, T, A: Allocator> Drop for DropGuard<'a, T, A> {
414                    #[inline]
415                    fn drop(&mut self) {
416                        // SAFETY:
417                        // items were marked initialized in the loop below
418                        unsafe {
419                            self.vec.set_len(self.num_init);
420                        }
421                    }
422                }
423                let mut vec = Vec::with_capacity_in(s.len(), alloc);
424                let mut guard = DropGuard { vec: &mut vec, num_init: 0 };
425                let slots = guard.vec.spare_capacity_mut();
426                // .take(slots.len()) is necessary for LLVM to remove bounds checks
427                // and has better codegen than zip.
428                for (i, b) in s.iter().enumerate().take(slots.len()) {
429                    guard.num_init = i;
430                    slots[i].write(b.clone());
431                }
432                core::mem::forget(guard);
433                // SAFETY:
434                // the vec was allocated and initialized above to at least this length.
435                unsafe {
436                    vec.set_len(s.len());
437                }
438                vec
439            }
440        }
441
442        impl<T: Copy> ConvertVec for T {
443            #[inline]
444            fn to_vec<A: Allocator>(s: &[Self], alloc: A) -> Vec<Self, A> {
445                let mut v = Vec::with_capacity_in(s.len(), alloc);
446                // SAFETY:
447                // allocated above with the capacity of `s`, and initialize to `s.len()` in
448                // ptr::copy_to_non_overlapping below.
449                unsafe {
450                    s.as_ptr().copy_to_nonoverlapping(v.as_mut_ptr(), s.len());
451                    v.set_len(s.len());
452                }
453                v
454            }
455        }
456    }
457
458    /// Converts `self` into a vector without clones or allocation.
459    ///
460    /// The resulting vector can be converted back into a box via
461    /// `Vec<T>`'s `into_boxed_slice` method.
462    ///
463    /// # Examples
464    ///
465    /// ```
466    /// let s: Box<[i32]> = Box::new([10, 40, 30]);
467    /// let x = s.into_vec();
468    /// // `s` cannot be used anymore because it has been converted into `x`.
469    ///
470    /// assert_eq!(x, vec![10, 40, 30]);
471    /// ```
472    #[rustc_allow_incoherent_impl]
473    #[stable(feature = "rust1", since = "1.0.0")]
474    #[inline]
475    #[rustc_diagnostic_item = "slice_into_vec"]
476    pub fn into_vec<A: Allocator>(self: Box<Self, A>) -> Vec<T, A> {
477        unsafe {
478            let len = self.len();
479            let (b, alloc) = Box::into_raw_with_allocator(self);
480            Vec::from_raw_parts_in(b as *mut T, len, len, alloc)
481        }
482    }
483
484    /// Creates a vector by copying a slice `n` times.
485    ///
486    /// # Panics
487    ///
488    /// This function will panic if the capacity would overflow.
489    ///
490    /// # Examples
491    ///
492    /// ```
493    /// assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]);
494    /// ```
495    ///
496    /// A panic upon overflow:
497    ///
498    /// ```should_panic
499    /// // this will panic at runtime
500    /// b"0123456789abcdef".repeat(usize::MAX);
501    /// ```
502    #[rustc_allow_incoherent_impl]
503    #[cfg(not(no_global_oom_handling))]
504    #[stable(feature = "repeat_generic_slice", since = "1.40.0")]
505    pub fn repeat(&self, n: usize) -> Vec<T>
506    where
507        T: Copy,
508    {
509        if n == 0 {
510            return Vec::new();
511        }
512
513        // If `n` is larger than zero, it can be split as
514        // `n = 2^expn + rem (2^expn > rem, expn >= 0, rem >= 0)`.
515        // `2^expn` is the number represented by the leftmost '1' bit of `n`,
516        // and `rem` is the remaining part of `n`.
517
518        // Using `Vec` to access `set_len()`.
519        let capacity = self.len().checked_mul(n).expect("capacity overflow");
520        let mut buf = Vec::with_capacity(capacity);
521
522        // `2^expn` repetition is done by doubling `buf` `expn`-times.
523        buf.extend(self);
524        {
525            let mut m = n >> 1;
526            // If `m > 0`, there are remaining bits up to the leftmost '1'.
527            while m > 0 {
528                // `buf.extend(buf)`:
529                unsafe {
530                    ptr::copy_nonoverlapping::<T>(
531                        buf.as_ptr(),
532                        (buf.as_mut_ptr()).add(buf.len()),
533                        buf.len(),
534                    );
535                    // `buf` has capacity of `self.len() * n`.
536                    let buf_len = buf.len();
537                    buf.set_len(buf_len * 2);
538                }
539
540                m >>= 1;
541            }
542        }
543
544        // `rem` (`= n - 2^expn`) repetition is done by copying
545        // first `rem` repetitions from `buf` itself.
546        let rem_len = capacity - buf.len(); // `self.len() * rem`
547        if rem_len > 0 {
548            // `buf.extend(buf[0 .. rem_len])`:
549            unsafe {
550                // This is non-overlapping since `2^expn > rem`.
551                ptr::copy_nonoverlapping::<T>(
552                    buf.as_ptr(),
553                    (buf.as_mut_ptr()).add(buf.len()),
554                    rem_len,
555                );
556                // `buf.len() + rem_len` equals to `buf.capacity()` (`= self.len() * n`).
557                buf.set_len(capacity);
558            }
559        }
560        buf
561    }
562
563    /// Flattens a slice of `T` into a single value `Self::Output`.
564    ///
565    /// # Examples
566    ///
567    /// ```
568    /// assert_eq!(["hello", "world"].concat(), "helloworld");
569    /// assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]);
570    /// ```
571    #[rustc_allow_incoherent_impl]
572    #[stable(feature = "rust1", since = "1.0.0")]
573    pub fn concat<Item: ?Sized>(&self) -> <Self as Concat<Item>>::Output
574    where
575        Self: Concat<Item>,
576    {
577        Concat::concat(self)
578    }
579
580    /// Flattens a slice of `T` into a single value `Self::Output`, placing a
581    /// given separator between each.
582    ///
583    /// # Examples
584    ///
585    /// ```
586    /// assert_eq!(["hello", "world"].join(" "), "hello world");
587    /// assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]);
588    /// assert_eq!([[1, 2], [3, 4]].join(&[0, 0][..]), [1, 2, 0, 0, 3, 4]);
589    /// ```
590    #[rustc_allow_incoherent_impl]
591    #[stable(feature = "rename_connect_to_join", since = "1.3.0")]
592    pub fn join<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output
593    where
594        Self: Join<Separator>,
595    {
596        Join::join(self, sep)
597    }
598
599    /// Flattens a slice of `T` into a single value `Self::Output`, placing a
600    /// given separator between each.
601    ///
602    /// # Examples
603    ///
604    /// ```
605    /// # #![allow(deprecated)]
606    /// assert_eq!(["hello", "world"].connect(" "), "hello world");
607    /// assert_eq!([[1, 2], [3, 4]].connect(&0), [1, 2, 0, 3, 4]);
608    /// ```
609    #[rustc_allow_incoherent_impl]
610    #[stable(feature = "rust1", since = "1.0.0")]
611    #[deprecated(since = "1.3.0", note = "renamed to join", suggestion = "join")]
612    pub fn connect<Separator>(&self, sep: Separator) -> <Self as Join<Separator>>::Output
613    where
614        Self: Join<Separator>,
615    {
616        Join::join(self, sep)
617    }
618}
619
620impl [u8] {
621    /// Returns a vector containing a copy of this slice where each byte
622    /// is mapped to its ASCII upper case equivalent.
623    ///
624    /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
625    /// but non-ASCII letters are unchanged.
626    ///
627    /// To uppercase the value in-place, use [`make_ascii_uppercase`].
628    ///
629    /// [`make_ascii_uppercase`]: slice::make_ascii_uppercase
630    #[cfg(not(no_global_oom_handling))]
631    #[rustc_allow_incoherent_impl]
632    #[must_use = "this returns the uppercase bytes as a new Vec, \
633                  without modifying the original"]
634    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
635    #[inline]
636    pub fn to_ascii_uppercase(&self) -> Vec<u8> {
637        let mut me = self.to_vec();
638        me.make_ascii_uppercase();
639        me
640    }
641
642    /// Returns a vector containing a copy of this slice where each byte
643    /// is mapped to its ASCII lower case equivalent.
644    ///
645    /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
646    /// but non-ASCII letters are unchanged.
647    ///
648    /// To lowercase the value in-place, use [`make_ascii_lowercase`].
649    ///
650    /// [`make_ascii_lowercase`]: slice::make_ascii_lowercase
651    #[cfg(not(no_global_oom_handling))]
652    #[rustc_allow_incoherent_impl]
653    #[must_use = "this returns the lowercase bytes as a new Vec, \
654                  without modifying the original"]
655    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
656    #[inline]
657    pub fn to_ascii_lowercase(&self) -> Vec<u8> {
658        let mut me = self.to_vec();
659        me.make_ascii_lowercase();
660        me
661    }
662}
663
664////////////////////////////////////////////////////////////////////////////////
665// Extension traits for slices over specific kinds of data
666////////////////////////////////////////////////////////////////////////////////
667
668/// Helper trait for [`[T]::concat`](slice::concat).
669///
670/// Note: the `Item` type parameter is not used in this trait,
671/// but it allows impls to be more generic.
672/// Without it, we get this error:
673///
674/// ```error
675/// error[E0207]: the type parameter `T` is not constrained by the impl trait, self type, or predica
676///    --> library/alloc/src/slice.rs:608:6
677///     |
678/// 608 | impl<T: Clone, V: Borrow<[T]>> Concat for [V] {
679///     |      ^ unconstrained type parameter
680/// ```
681///
682/// This is because there could exist `V` types with multiple `Borrow<[_]>` impls,
683/// such that multiple `T` types would apply:
684///
685/// ```
686/// # #[allow(dead_code)]
687/// pub struct Foo(Vec<u32>, Vec<String>);
688///
689/// impl std::borrow::Borrow<[u32]> for Foo {
690///     fn borrow(&self) -> &[u32] { &self.0 }
691/// }
692///
693/// impl std::borrow::Borrow<[String]> for Foo {
694///     fn borrow(&self) -> &[String] { &self.1 }
695/// }
696/// ```
697#[unstable(feature = "slice_concat_trait", issue = "27747")]
698pub trait Concat<Item: ?Sized> {
699    #[unstable(feature = "slice_concat_trait", issue = "27747")]
700    /// The resulting type after concatenation
701    type Output;
702
703    /// Implementation of [`[T]::concat`](slice::concat)
704    #[unstable(feature = "slice_concat_trait", issue = "27747")]
705    fn concat(slice: &Self) -> Self::Output;
706}
707
708/// Helper trait for [`[T]::join`](slice::join)
709#[unstable(feature = "slice_concat_trait", issue = "27747")]
710pub trait Join<Separator> {
711    #[unstable(feature = "slice_concat_trait", issue = "27747")]
712    /// The resulting type after concatenation
713    type Output;
714
715    /// Implementation of [`[T]::join`](slice::join)
716    #[unstable(feature = "slice_concat_trait", issue = "27747")]
717    fn join(slice: &Self, sep: Separator) -> Self::Output;
718}
719
720#[cfg(not(no_global_oom_handling))]
721#[unstable(feature = "slice_concat_ext", issue = "27747")]
722impl<T: Clone, V: Borrow<[T]>> Concat<T> for [V] {
723    type Output = Vec<T>;
724
725    fn concat(slice: &Self) -> Vec<T> {
726        let size = slice.iter().map(|slice| slice.borrow().len()).sum();
727        let mut result = Vec::with_capacity(size);
728        for v in slice {
729            result.extend_from_slice(v.borrow())
730        }
731        result
732    }
733}
734
735#[cfg(not(no_global_oom_handling))]
736#[unstable(feature = "slice_concat_ext", issue = "27747")]
737impl<T: Clone, V: Borrow<[T]>> Join<&T> for [V] {
738    type Output = Vec<T>;
739
740    fn join(slice: &Self, sep: &T) -> Vec<T> {
741        let mut iter = slice.iter();
742        let first = match iter.next() {
743            Some(first) => first,
744            None => return vec![],
745        };
746        let size = slice.iter().map(|v| v.borrow().len()).sum::<usize>() + slice.len() - 1;
747        let mut result = Vec::with_capacity(size);
748        result.extend_from_slice(first.borrow());
749
750        for v in iter {
751            result.push(sep.clone());
752            result.extend_from_slice(v.borrow())
753        }
754        result
755    }
756}
757
758#[cfg(not(no_global_oom_handling))]
759#[unstable(feature = "slice_concat_ext", issue = "27747")]
760impl<T: Clone, V: Borrow<[T]>> Join<&[T]> for [V] {
761    type Output = Vec<T>;
762
763    fn join(slice: &Self, sep: &[T]) -> Vec<T> {
764        let mut iter = slice.iter();
765        let first = match iter.next() {
766            Some(first) => first,
767            None => return vec![],
768        };
769        let size =
770            slice.iter().map(|v| v.borrow().len()).sum::<usize>() + sep.len() * (slice.len() - 1);
771        let mut result = Vec::with_capacity(size);
772        result.extend_from_slice(first.borrow());
773
774        for v in iter {
775            result.extend_from_slice(sep);
776            result.extend_from_slice(v.borrow())
777        }
778        result
779    }
780}
781
782////////////////////////////////////////////////////////////////////////////////
783// Standard trait implementations for slices
784////////////////////////////////////////////////////////////////////////////////
785
786#[stable(feature = "rust1", since = "1.0.0")]
787impl<T, A: Allocator> Borrow<[T]> for Vec<T, A> {
788    fn borrow(&self) -> &[T] {
789        &self[..]
790    }
791}
792
793#[stable(feature = "rust1", since = "1.0.0")]
794impl<T, A: Allocator> BorrowMut<[T]> for Vec<T, A> {
795    fn borrow_mut(&mut self) -> &mut [T] {
796        &mut self[..]
797    }
798}
799
800// Specializable trait for implementing ToOwned::clone_into. This is
801// public in the crate and has the Allocator parameter so that
802// vec::clone_from use it too.
803#[cfg(not(no_global_oom_handling))]
804pub(crate) trait SpecCloneIntoVec<T, A: Allocator> {
805    fn clone_into(&self, target: &mut Vec<T, A>);
806}
807
808#[cfg(not(no_global_oom_handling))]
809impl<T: Clone, A: Allocator> SpecCloneIntoVec<T, A> for [T] {
810    default fn clone_into(&self, target: &mut Vec<T, A>) {
811        // drop anything in target that will not be overwritten
812        target.truncate(self.len());
813
814        // target.len <= self.len due to the truncate above, so the
815        // slices here are always in-bounds.
816        let (init, tail) = self.split_at(target.len());
817
818        // reuse the contained values' allocations/resources.
819        target.clone_from_slice(init);
820        target.extend_from_slice(tail);
821    }
822}
823
824#[cfg(not(no_global_oom_handling))]
825impl<T: Copy, A: Allocator> SpecCloneIntoVec<T, A> for [T] {
826    fn clone_into(&self, target: &mut Vec<T, A>) {
827        target.clear();
828        target.extend_from_slice(self);
829    }
830}
831
832#[cfg(not(no_global_oom_handling))]
833#[stable(feature = "rust1", since = "1.0.0")]
834impl<T: Clone> ToOwned for [T] {
835    type Owned = Vec<T>;
836
837    fn to_owned(&self) -> Vec<T> {
838        self.to_vec()
839    }
840
841    fn clone_into(&self, target: &mut Vec<T>) {
842        SpecCloneIntoVec::clone_into(self, target);
843    }
844}
845
846////////////////////////////////////////////////////////////////////////////////
847// Sorting
848////////////////////////////////////////////////////////////////////////////////
849
850#[inline]
851#[cfg(not(no_global_oom_handling))]
852fn stable_sort<T, F>(v: &mut [T], mut is_less: F)
853where
854    F: FnMut(&T, &T) -> bool,
855{
856    sort::stable::sort::<T, F, Vec<T>>(v, &mut is_less);
857}
858
859#[cfg(not(no_global_oom_handling))]
860#[unstable(issue = "none", feature = "std_internals")]
861impl<T> sort::stable::BufGuard<T> for Vec<T> {
862    fn with_capacity(capacity: usize) -> Self {
863        Vec::with_capacity(capacity)
864    }
865
866    fn as_uninit_slice_mut(&mut self) -> &mut [MaybeUninit<T>] {
867        self.spare_capacity_mut()
868    }
869}