alloc/raw_vec/
mod.rs

1#![unstable(feature = "raw_vec_internals", reason = "unstable const warnings", issue = "none")]
2#![cfg_attr(test, allow(dead_code))]
3
4// Note: This module is also included in the alloctests crate using #[path] to
5// run the tests. See the comment there for an explanation why this is the case.
6
7use core::marker::PhantomData;
8use core::mem::{ManuallyDrop, MaybeUninit, SizedTypeProperties};
9use core::ptr::{self, Alignment, NonNull, Unique};
10use core::{cmp, hint};
11
12#[cfg(not(no_global_oom_handling))]
13use crate::alloc::handle_alloc_error;
14use crate::alloc::{Allocator, Global, Layout};
15use crate::boxed::Box;
16use crate::collections::TryReserveError;
17use crate::collections::TryReserveErrorKind::*;
18
19#[cfg(test)]
20mod tests;
21
22// One central function responsible for reporting capacity overflows. This'll
23// ensure that the code generation related to these panics is minimal as there's
24// only one location which panics rather than a bunch throughout the module.
25#[cfg(not(no_global_oom_handling))]
26#[cfg_attr(not(panic = "immediate-abort"), inline(never))]
27fn capacity_overflow() -> ! {
28    panic!("capacity overflow");
29}
30
31enum AllocInit {
32    /// The contents of the new memory are uninitialized.
33    Uninitialized,
34    #[cfg(not(no_global_oom_handling))]
35    /// The new memory is guaranteed to be zeroed.
36    Zeroed,
37}
38
39type Cap = core::num::niche_types::UsizeNoHighBit;
40
41const ZERO_CAP: Cap = unsafe { Cap::new_unchecked(0) };
42
43/// `Cap(cap)`, except if `T` is a ZST then `Cap::ZERO`.
44///
45/// # Safety: cap must be <= `isize::MAX`.
46unsafe fn new_cap<T>(cap: usize) -> Cap {
47    if T::IS_ZST { ZERO_CAP } else { unsafe { Cap::new_unchecked(cap) } }
48}
49
50/// A low-level utility for more ergonomically allocating, reallocating, and deallocating
51/// a buffer of memory on the heap without having to worry about all the corner cases
52/// involved. This type is excellent for building your own data structures like Vec and VecDeque.
53/// In particular:
54///
55/// * Produces `Unique::dangling()` on zero-sized types.
56/// * Produces `Unique::dangling()` on zero-length allocations.
57/// * Avoids freeing `Unique::dangling()`.
58/// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics).
59/// * Guards against 32-bit systems allocating more than `isize::MAX` bytes.
60/// * Guards against overflowing your length.
61/// * Calls `handle_alloc_error` for fallible allocations.
62/// * Contains a `ptr::Unique` and thus endows the user with all related benefits.
63/// * Uses the excess returned from the allocator to use the largest available capacity.
64///
65/// This type does not in anyway inspect the memory that it manages. When dropped it *will*
66/// free its memory, but it *won't* try to drop its contents. It is up to the user of `RawVec`
67/// to handle the actual things *stored* inside of a `RawVec`.
68///
69/// Note that the excess of a zero-sized types is always infinite, so `capacity()` always returns
70/// `usize::MAX`. This means that you need to be careful when round-tripping this type with a
71/// `Box<[T]>`, since `capacity()` won't yield the length.
72#[allow(missing_debug_implementations)]
73pub(crate) struct RawVec<T, A: Allocator = Global> {
74    inner: RawVecInner<A>,
75    _marker: PhantomData<T>,
76}
77
78/// Like a `RawVec`, but only generic over the allocator, not the type.
79///
80/// As such, all the methods need the layout passed-in as a parameter.
81///
82/// Having this separation reduces the amount of code we need to monomorphize,
83/// as most operations don't need the actual type, just its layout.
84#[allow(missing_debug_implementations)]
85struct RawVecInner<A: Allocator = Global> {
86    ptr: Unique<u8>,
87    /// Never used for ZSTs; it's `capacity()`'s responsibility to return usize::MAX in that case.
88    ///
89    /// # Safety
90    ///
91    /// `cap` must be in the `0..=isize::MAX` range.
92    cap: Cap,
93    alloc: A,
94}
95
96impl<T> RawVec<T, Global> {
97    /// Creates the biggest possible `RawVec` (on the system heap)
98    /// without allocating. If `T` has positive size, then this makes a
99    /// `RawVec` with capacity `0`. If `T` is zero-sized, then it makes a
100    /// `RawVec` with capacity `usize::MAX`. Useful for implementing
101    /// delayed allocation.
102    #[must_use]
103    pub(crate) const fn new() -> Self {
104        Self::new_in(Global)
105    }
106
107    /// Creates a `RawVec` (on the system heap) with exactly the
108    /// capacity and alignment requirements for a `[T; capacity]`. This is
109    /// equivalent to calling `RawVec::new` when `capacity` is `0` or `T` is
110    /// zero-sized. Note that if `T` is zero-sized this means you will
111    /// *not* get a `RawVec` with the requested capacity.
112    ///
113    /// Non-fallible version of `try_with_capacity`
114    ///
115    /// # Panics
116    ///
117    /// Panics if the requested capacity exceeds `isize::MAX` bytes.
118    ///
119    /// # Aborts
120    ///
121    /// Aborts on OOM.
122    #[cfg(not(any(no_global_oom_handling, test)))]
123    #[must_use]
124    #[inline]
125    pub(crate) fn with_capacity(capacity: usize) -> Self {
126        Self { inner: RawVecInner::with_capacity(capacity, T::LAYOUT), _marker: PhantomData }
127    }
128
129    /// Like `with_capacity`, but guarantees the buffer is zeroed.
130    #[cfg(not(any(no_global_oom_handling, test)))]
131    #[must_use]
132    #[inline]
133    pub(crate) fn with_capacity_zeroed(capacity: usize) -> Self {
134        Self {
135            inner: RawVecInner::with_capacity_zeroed_in(capacity, Global, T::LAYOUT),
136            _marker: PhantomData,
137        }
138    }
139}
140
141impl RawVecInner<Global> {
142    #[cfg(not(any(no_global_oom_handling, test)))]
143    #[must_use]
144    #[inline]
145    fn with_capacity(capacity: usize, elem_layout: Layout) -> Self {
146        match Self::try_allocate_in(capacity, AllocInit::Uninitialized, Global, elem_layout) {
147            Ok(res) => res,
148            Err(err) => handle_error(err),
149        }
150    }
151}
152
153// Tiny Vecs are dumb. Skip to:
154// - 8 if the element size is 1, because any heap allocator is likely
155//   to round up a request of less than 8 bytes to at least 8 bytes.
156// - 4 if elements are moderate-sized (<= 1 KiB).
157// - 1 otherwise, to avoid wasting too much space for very short Vecs.
158const fn min_non_zero_cap(size: usize) -> usize {
159    if size == 1 {
160        8
161    } else if size <= 1024 {
162        4
163    } else {
164        1
165    }
166}
167
168impl<T, A: Allocator> RawVec<T, A> {
169    #[cfg(not(no_global_oom_handling))]
170    pub(crate) const MIN_NON_ZERO_CAP: usize = min_non_zero_cap(size_of::<T>());
171
172    /// Like `new`, but parameterized over the choice of allocator for
173    /// the returned `RawVec`.
174    #[inline]
175    pub(crate) const fn new_in(alloc: A) -> Self {
176        // Check assumption made in `current_memory`
177        const { assert!(T::LAYOUT.size() % T::LAYOUT.align() == 0) };
178        Self { inner: RawVecInner::new_in(alloc, Alignment::of::<T>()), _marker: PhantomData }
179    }
180
181    /// Like `with_capacity`, but parameterized over the choice of
182    /// allocator for the returned `RawVec`.
183    #[cfg(not(no_global_oom_handling))]
184    #[inline]
185    pub(crate) fn with_capacity_in(capacity: usize, alloc: A) -> Self {
186        Self {
187            inner: RawVecInner::with_capacity_in(capacity, alloc, T::LAYOUT),
188            _marker: PhantomData,
189        }
190    }
191
192    /// Like `try_with_capacity`, but parameterized over the choice of
193    /// allocator for the returned `RawVec`.
194    #[inline]
195    pub(crate) fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
196        match RawVecInner::try_with_capacity_in(capacity, alloc, T::LAYOUT) {
197            Ok(inner) => Ok(Self { inner, _marker: PhantomData }),
198            Err(e) => Err(e),
199        }
200    }
201
202    /// Like `with_capacity_zeroed`, but parameterized over the choice
203    /// of allocator for the returned `RawVec`.
204    #[cfg(not(no_global_oom_handling))]
205    #[inline]
206    pub(crate) fn with_capacity_zeroed_in(capacity: usize, alloc: A) -> Self {
207        Self {
208            inner: RawVecInner::with_capacity_zeroed_in(capacity, alloc, T::LAYOUT),
209            _marker: PhantomData,
210        }
211    }
212
213    /// Converts the entire buffer into `Box<[MaybeUninit<T>]>` with the specified `len`.
214    ///
215    /// Note that this will correctly reconstitute any `cap` changes
216    /// that may have been performed. (See description of type for details.)
217    ///
218    /// # Safety
219    ///
220    /// * `len` must be greater than or equal to the most recently requested capacity, and
221    /// * `len` must be less than or equal to `self.capacity()`.
222    ///
223    /// Note, that the requested capacity and `self.capacity()` could differ, as
224    /// an allocator could overallocate and return a greater memory block than requested.
225    pub(crate) unsafe fn into_box(self, len: usize) -> Box<[MaybeUninit<T>], A> {
226        // Sanity-check one half of the safety requirement (we cannot check the other half).
227        debug_assert!(
228            len <= self.capacity(),
229            "`len` must be smaller than or equal to `self.capacity()`"
230        );
231
232        let me = ManuallyDrop::new(self);
233        unsafe {
234            let slice = ptr::slice_from_raw_parts_mut(me.ptr() as *mut MaybeUninit<T>, len);
235            Box::from_raw_in(slice, ptr::read(&me.inner.alloc))
236        }
237    }
238
239    /// Reconstitutes a `RawVec` from a pointer, capacity, and allocator.
240    ///
241    /// # Safety
242    ///
243    /// The `ptr` must be allocated (via the given allocator `alloc`), and with the given
244    /// `capacity`.
245    /// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit
246    /// systems). For ZSTs capacity is ignored.
247    /// If the `ptr` and `capacity` come from a `RawVec` created via `alloc`, then this is
248    /// guaranteed.
249    #[inline]
250    pub(crate) unsafe fn from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self {
251        // SAFETY: Precondition passed to the caller
252        unsafe {
253            let ptr = ptr.cast();
254            let capacity = new_cap::<T>(capacity);
255            Self {
256                inner: RawVecInner::from_raw_parts_in(ptr, capacity, alloc),
257                _marker: PhantomData,
258            }
259        }
260    }
261
262    /// A convenience method for hoisting the non-null precondition out of [`RawVec::from_raw_parts_in`].
263    ///
264    /// # Safety
265    ///
266    /// See [`RawVec::from_raw_parts_in`].
267    #[inline]
268    pub(crate) unsafe fn from_nonnull_in(ptr: NonNull<T>, capacity: usize, alloc: A) -> Self {
269        // SAFETY: Precondition passed to the caller
270        unsafe {
271            let ptr = ptr.cast();
272            let capacity = new_cap::<T>(capacity);
273            Self { inner: RawVecInner::from_nonnull_in(ptr, capacity, alloc), _marker: PhantomData }
274        }
275    }
276
277    /// Gets a raw pointer to the start of the allocation. Note that this is
278    /// `Unique::dangling()` if `capacity == 0` or `T` is zero-sized. In the former case, you must
279    /// be careful.
280    #[inline]
281    pub(crate) const fn ptr(&self) -> *mut T {
282        self.inner.ptr()
283    }
284
285    #[inline]
286    pub(crate) const fn non_null(&self) -> NonNull<T> {
287        self.inner.non_null()
288    }
289
290    /// Gets the capacity of the allocation.
291    ///
292    /// This will always be `usize::MAX` if `T` is zero-sized.
293    #[inline]
294    pub(crate) const fn capacity(&self) -> usize {
295        self.inner.capacity(size_of::<T>())
296    }
297
298    /// Returns a shared reference to the allocator backing this `RawVec`.
299    #[inline]
300    pub(crate) fn allocator(&self) -> &A {
301        self.inner.allocator()
302    }
303
304    /// Ensures that the buffer contains at least enough space to hold `len +
305    /// additional` elements. If it doesn't already have enough capacity, will
306    /// reallocate enough space plus comfortable slack space to get amortized
307    /// *O*(1) behavior. Will limit this behavior if it would needlessly cause
308    /// itself to panic.
309    ///
310    /// If `len` exceeds `self.capacity()`, this may fail to actually allocate
311    /// the requested space. This is not really unsafe, but the unsafe
312    /// code *you* write that relies on the behavior of this function may break.
313    ///
314    /// This is ideal for implementing a bulk-push operation like `extend`.
315    ///
316    /// # Panics
317    ///
318    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
319    ///
320    /// # Aborts
321    ///
322    /// Aborts on OOM.
323    #[cfg(not(no_global_oom_handling))]
324    #[inline]
325    pub(crate) fn reserve(&mut self, len: usize, additional: usize) {
326        // SAFETY: All calls on self.inner pass T::LAYOUT as the elem_layout
327        unsafe { self.inner.reserve(len, additional, T::LAYOUT) }
328    }
329
330    /// A specialized version of `self.reserve(len, 1)` which requires the
331    /// caller to ensure `len == self.capacity()`.
332    #[cfg(not(no_global_oom_handling))]
333    #[inline(never)]
334    pub(crate) fn grow_one(&mut self) {
335        // SAFETY: All calls on self.inner pass T::LAYOUT as the elem_layout
336        unsafe { self.inner.grow_one(T::LAYOUT) }
337    }
338
339    /// The same as `reserve`, but returns on errors instead of panicking or aborting.
340    pub(crate) fn try_reserve(
341        &mut self,
342        len: usize,
343        additional: usize,
344    ) -> Result<(), TryReserveError> {
345        // SAFETY: All calls on self.inner pass T::LAYOUT as the elem_layout
346        unsafe { self.inner.try_reserve(len, additional, T::LAYOUT) }
347    }
348
349    /// Ensures that the buffer contains at least enough space to hold `len +
350    /// additional` elements. If it doesn't already, will reallocate the
351    /// minimum possible amount of memory necessary. Generally this will be
352    /// exactly the amount of memory necessary, but in principle the allocator
353    /// is free to give back more than we asked for.
354    ///
355    /// If `len` exceeds `self.capacity()`, this may fail to actually allocate
356    /// the requested space. This is not really unsafe, but the unsafe code
357    /// *you* write that relies on the behavior of this function may break.
358    ///
359    /// # Panics
360    ///
361    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
362    ///
363    /// # Aborts
364    ///
365    /// Aborts on OOM.
366    #[cfg(not(no_global_oom_handling))]
367    pub(crate) fn reserve_exact(&mut self, len: usize, additional: usize) {
368        // SAFETY: All calls on self.inner pass T::LAYOUT as the elem_layout
369        unsafe { self.inner.reserve_exact(len, additional, T::LAYOUT) }
370    }
371
372    /// The same as `reserve_exact`, but returns on errors instead of panicking or aborting.
373    pub(crate) fn try_reserve_exact(
374        &mut self,
375        len: usize,
376        additional: usize,
377    ) -> Result<(), TryReserveError> {
378        // SAFETY: All calls on self.inner pass T::LAYOUT as the elem_layout
379        unsafe { self.inner.try_reserve_exact(len, additional, T::LAYOUT) }
380    }
381
382    /// Shrinks the buffer down to the specified capacity. If the given amount
383    /// is 0, actually completely deallocates.
384    ///
385    /// # Panics
386    ///
387    /// Panics if the given amount is *larger* than the current capacity.
388    ///
389    /// # Aborts
390    ///
391    /// Aborts on OOM.
392    #[cfg(not(no_global_oom_handling))]
393    #[inline]
394    pub(crate) fn shrink_to_fit(&mut self, cap: usize) {
395        // SAFETY: All calls on self.inner pass T::LAYOUT as the elem_layout
396        unsafe { self.inner.shrink_to_fit(cap, T::LAYOUT) }
397    }
398}
399
400unsafe impl<#[may_dangle] T, A: Allocator> Drop for RawVec<T, A> {
401    /// Frees the memory owned by the `RawVec` *without* trying to drop its contents.
402    fn drop(&mut self) {
403        // SAFETY: We are in a Drop impl, self.inner will not be used again.
404        unsafe { self.inner.deallocate(T::LAYOUT) }
405    }
406}
407
408impl<A: Allocator> RawVecInner<A> {
409    #[inline]
410    const fn new_in(alloc: A, align: Alignment) -> Self {
411        let ptr = Unique::from_non_null(NonNull::without_provenance(align.as_nonzero()));
412        // `cap: 0` means "unallocated". zero-sized types are ignored.
413        Self { ptr, cap: ZERO_CAP, alloc }
414    }
415
416    #[cfg(not(no_global_oom_handling))]
417    #[inline]
418    fn with_capacity_in(capacity: usize, alloc: A, elem_layout: Layout) -> Self {
419        match Self::try_allocate_in(capacity, AllocInit::Uninitialized, alloc, elem_layout) {
420            Ok(this) => {
421                unsafe {
422                    // Make it more obvious that a subsequent Vec::reserve(capacity) will not allocate.
423                    hint::assert_unchecked(!this.needs_to_grow(0, capacity, elem_layout));
424                }
425                this
426            }
427            Err(err) => handle_error(err),
428        }
429    }
430
431    #[inline]
432    fn try_with_capacity_in(
433        capacity: usize,
434        alloc: A,
435        elem_layout: Layout,
436    ) -> Result<Self, TryReserveError> {
437        Self::try_allocate_in(capacity, AllocInit::Uninitialized, alloc, elem_layout)
438    }
439
440    #[cfg(not(no_global_oom_handling))]
441    #[inline]
442    fn with_capacity_zeroed_in(capacity: usize, alloc: A, elem_layout: Layout) -> Self {
443        match Self::try_allocate_in(capacity, AllocInit::Zeroed, alloc, elem_layout) {
444            Ok(res) => res,
445            Err(err) => handle_error(err),
446        }
447    }
448
449    fn try_allocate_in(
450        capacity: usize,
451        init: AllocInit,
452        alloc: A,
453        elem_layout: Layout,
454    ) -> Result<Self, TryReserveError> {
455        // We avoid `unwrap_or_else` here because it bloats the amount of
456        // LLVM IR generated.
457        let layout = match layout_array(capacity, elem_layout) {
458            Ok(layout) => layout,
459            Err(_) => return Err(CapacityOverflow.into()),
460        };
461
462        // Don't allocate here because `Drop` will not deallocate when `capacity` is 0.
463        if layout.size() == 0 {
464            return Ok(Self::new_in(alloc, elem_layout.alignment()));
465        }
466
467        let result = match init {
468            AllocInit::Uninitialized => alloc.allocate(layout),
469            #[cfg(not(no_global_oom_handling))]
470            AllocInit::Zeroed => alloc.allocate_zeroed(layout),
471        };
472        let ptr = match result {
473            Ok(ptr) => ptr,
474            Err(_) => return Err(AllocError { layout, non_exhaustive: () }.into()),
475        };
476
477        // Allocators currently return a `NonNull<[u8]>` whose length
478        // matches the size requested. If that ever changes, the capacity
479        // here should change to `ptr.len() / size_of::<T>()`.
480        Ok(Self {
481            ptr: Unique::from(ptr.cast()),
482            cap: unsafe { Cap::new_unchecked(capacity) },
483            alloc,
484        })
485    }
486
487    #[inline]
488    unsafe fn from_raw_parts_in(ptr: *mut u8, cap: Cap, alloc: A) -> Self {
489        Self { ptr: unsafe { Unique::new_unchecked(ptr) }, cap, alloc }
490    }
491
492    #[inline]
493    unsafe fn from_nonnull_in(ptr: NonNull<u8>, cap: Cap, alloc: A) -> Self {
494        Self { ptr: Unique::from(ptr), cap, alloc }
495    }
496
497    #[inline]
498    const fn ptr<T>(&self) -> *mut T {
499        self.non_null::<T>().as_ptr()
500    }
501
502    #[inline]
503    const fn non_null<T>(&self) -> NonNull<T> {
504        self.ptr.cast().as_non_null_ptr()
505    }
506
507    #[inline]
508    const fn capacity(&self, elem_size: usize) -> usize {
509        if elem_size == 0 { usize::MAX } else { self.cap.as_inner() }
510    }
511
512    #[inline]
513    fn allocator(&self) -> &A {
514        &self.alloc
515    }
516
517    /// # Safety
518    /// - `elem_layout` must be valid for `self`, i.e. it must be the same `elem_layout` used to
519    ///   initially construct `self`
520    /// - `elem_layout`'s size must be a multiple of its alignment
521    #[inline]
522    unsafe fn current_memory(&self, elem_layout: Layout) -> Option<(NonNull<u8>, Layout)> {
523        if elem_layout.size() == 0 || self.cap.as_inner() == 0 {
524            None
525        } else {
526            // We could use Layout::array here which ensures the absence of isize and usize overflows
527            // and could hypothetically handle differences between stride and size, but this memory
528            // has already been allocated so we know it can't overflow and currently Rust does not
529            // support such types. So we can do better by skipping some checks and avoid an unwrap.
530            unsafe {
531                let alloc_size = elem_layout.size().unchecked_mul(self.cap.as_inner());
532                let layout = Layout::from_size_align_unchecked(alloc_size, elem_layout.align());
533                Some((self.ptr.into(), layout))
534            }
535        }
536    }
537
538    /// # Safety
539    /// - `elem_layout` must be valid for `self`, i.e. it must be the same `elem_layout` used to
540    ///   initially construct `self`
541    /// - `elem_layout`'s size must be a multiple of its alignment
542    #[cfg(not(no_global_oom_handling))]
543    #[inline]
544    unsafe fn reserve(&mut self, len: usize, additional: usize, elem_layout: Layout) {
545        // Callers expect this function to be very cheap when there is already sufficient capacity.
546        // Therefore, we move all the resizing and error-handling logic from grow_amortized and
547        // handle_reserve behind a call, while making sure that this function is likely to be
548        // inlined as just a comparison and a call if the comparison fails.
549        #[cold]
550        unsafe fn do_reserve_and_handle<A: Allocator>(
551            slf: &mut RawVecInner<A>,
552            len: usize,
553            additional: usize,
554            elem_layout: Layout,
555        ) {
556            // SAFETY: Precondition passed to caller
557            if let Err(err) = unsafe { slf.grow_amortized(len, additional, elem_layout) } {
558                handle_error(err);
559            }
560        }
561
562        if self.needs_to_grow(len, additional, elem_layout) {
563            unsafe {
564                do_reserve_and_handle(self, len, additional, elem_layout);
565            }
566        }
567    }
568
569    /// # Safety
570    /// - `elem_layout` must be valid for `self`, i.e. it must be the same `elem_layout` used to
571    ///   initially construct `self`
572    /// - `elem_layout`'s size must be a multiple of its alignment
573    #[cfg(not(no_global_oom_handling))]
574    #[inline]
575    unsafe fn grow_one(&mut self, elem_layout: Layout) {
576        // SAFETY: Precondition passed to caller
577        if let Err(err) = unsafe { self.grow_amortized(self.cap.as_inner(), 1, elem_layout) } {
578            handle_error(err);
579        }
580    }
581
582    /// # Safety
583    /// - `elem_layout` must be valid for `self`, i.e. it must be the same `elem_layout` used to
584    ///   initially construct `self`
585    /// - `elem_layout`'s size must be a multiple of its alignment
586    unsafe fn try_reserve(
587        &mut self,
588        len: usize,
589        additional: usize,
590        elem_layout: Layout,
591    ) -> Result<(), TryReserveError> {
592        if self.needs_to_grow(len, additional, elem_layout) {
593            // SAFETY: Precondition passed to caller
594            unsafe {
595                self.grow_amortized(len, additional, elem_layout)?;
596            }
597        }
598        unsafe {
599            // Inform the optimizer that the reservation has succeeded or wasn't needed
600            hint::assert_unchecked(!self.needs_to_grow(len, additional, elem_layout));
601        }
602        Ok(())
603    }
604
605    /// # Safety
606    /// - `elem_layout` must be valid for `self`, i.e. it must be the same `elem_layout` used to
607    ///   initially construct `self`
608    /// - `elem_layout`'s size must be a multiple of its alignment
609    #[cfg(not(no_global_oom_handling))]
610    unsafe fn reserve_exact(&mut self, len: usize, additional: usize, elem_layout: Layout) {
611        // SAFETY: Precondition passed to caller
612        if let Err(err) = unsafe { self.try_reserve_exact(len, additional, elem_layout) } {
613            handle_error(err);
614        }
615    }
616
617    /// # Safety
618    /// - `elem_layout` must be valid for `self`, i.e. it must be the same `elem_layout` used to
619    ///   initially construct `self`
620    /// - `elem_layout`'s size must be a multiple of its alignment
621    unsafe fn try_reserve_exact(
622        &mut self,
623        len: usize,
624        additional: usize,
625        elem_layout: Layout,
626    ) -> Result<(), TryReserveError> {
627        if self.needs_to_grow(len, additional, elem_layout) {
628            // SAFETY: Precondition passed to caller
629            unsafe {
630                self.grow_exact(len, additional, elem_layout)?;
631            }
632        }
633        unsafe {
634            // Inform the optimizer that the reservation has succeeded or wasn't needed
635            hint::assert_unchecked(!self.needs_to_grow(len, additional, elem_layout));
636        }
637        Ok(())
638    }
639
640    /// # Safety
641    /// - `elem_layout` must be valid for `self`, i.e. it must be the same `elem_layout` used to
642    ///   initially construct `self`
643    /// - `elem_layout`'s size must be a multiple of its alignment
644    /// - `cap` must be less than or equal to `self.capacity(elem_layout.size())`
645    #[cfg(not(no_global_oom_handling))]
646    #[inline]
647    unsafe fn shrink_to_fit(&mut self, cap: usize, elem_layout: Layout) {
648        if let Err(err) = unsafe { self.shrink(cap, elem_layout) } {
649            handle_error(err);
650        }
651    }
652
653    #[inline]
654    fn needs_to_grow(&self, len: usize, additional: usize, elem_layout: Layout) -> bool {
655        additional > self.capacity(elem_layout.size()).wrapping_sub(len)
656    }
657
658    #[inline]
659    unsafe fn set_ptr_and_cap(&mut self, ptr: NonNull<[u8]>, cap: usize) {
660        // Allocators currently return a `NonNull<[u8]>` whose length matches
661        // the size requested. If that ever changes, the capacity here should
662        // change to `ptr.len() / size_of::<T>()`.
663        self.ptr = Unique::from(ptr.cast());
664        self.cap = unsafe { Cap::new_unchecked(cap) };
665    }
666
667    /// # Safety
668    /// - `elem_layout` must be valid for `self`, i.e. it must be the same `elem_layout` used to
669    ///   initially construct `self`
670    /// - `elem_layout`'s size must be a multiple of its alignment
671    /// - The sum of `len` and `additional` must be greater than or equal to
672    ///   `self.capacity(elem_layout.size())`
673    unsafe fn grow_amortized(
674        &mut self,
675        len: usize,
676        additional: usize,
677        elem_layout: Layout,
678    ) -> Result<(), TryReserveError> {
679        // This is ensured by the calling contexts.
680        debug_assert!(additional > 0);
681
682        if elem_layout.size() == 0 {
683            // Since we return a capacity of `usize::MAX` when `elem_size` is
684            // 0, getting to here necessarily means the `RawVec` is overfull.
685            return Err(CapacityOverflow.into());
686        }
687
688        // Nothing we can really do about these checks, sadly.
689        let required_cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
690
691        // This guarantees exponential growth. The doubling cannot overflow
692        // because `cap <= isize::MAX` and the type of `cap` is `usize`.
693        let cap = cmp::max(self.cap.as_inner() * 2, required_cap);
694        let cap = cmp::max(min_non_zero_cap(elem_layout.size()), cap);
695
696        let new_layout = layout_array(cap, elem_layout)?;
697
698        // SAFETY:
699        // - For the `current_memory` call: Precondition passed to caller
700        // - For the `finish_grow` call: Precondition passed to caller
701        //   + `current_memory` does the right thing
702        let ptr =
703            unsafe { finish_grow(new_layout, self.current_memory(elem_layout), &mut self.alloc)? };
704
705        // SAFETY: layout_array would have resulted in a capacity overflow if we tried to allocate more than `isize::MAX` items
706        unsafe { self.set_ptr_and_cap(ptr, cap) };
707        Ok(())
708    }
709
710    /// # Safety
711    /// - `elem_layout` must be valid for `self`, i.e. it must be the same `elem_layout` used to
712    ///   initially construct `self`
713    /// - `elem_layout`'s size must be a multiple of its alignment
714    /// - The sum of `len` and `additional` must be greater than or equal to
715    ///   `self.capacity(elem_layout.size())`
716    unsafe fn grow_exact(
717        &mut self,
718        len: usize,
719        additional: usize,
720        elem_layout: Layout,
721    ) -> Result<(), TryReserveError> {
722        if elem_layout.size() == 0 {
723            // Since we return a capacity of `usize::MAX` when the type size is
724            // 0, getting to here necessarily means the `RawVec` is overfull.
725            return Err(CapacityOverflow.into());
726        }
727
728        let cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
729        let new_layout = layout_array(cap, elem_layout)?;
730
731        // SAFETY:
732        // - For the `current_memory` call: Precondition passed to caller
733        // - For the `finish_grow` call: Precondition passed to caller
734        //   + `current_memory` does the right thing
735        let ptr =
736            unsafe { finish_grow(new_layout, self.current_memory(elem_layout), &mut self.alloc)? };
737        // SAFETY: layout_array would have resulted in a capacity overflow if we tried to allocate more than `isize::MAX` items
738        unsafe {
739            self.set_ptr_and_cap(ptr, cap);
740        }
741        Ok(())
742    }
743
744    /// # Safety
745    /// - `elem_layout` must be valid for `self`, i.e. it must be the same `elem_layout` used to
746    ///   initially construct `self`
747    /// - `elem_layout`'s size must be a multiple of its alignment
748    /// - `cap` must be less than or equal to `self.capacity(elem_layout.size())`
749    #[cfg(not(no_global_oom_handling))]
750    #[inline]
751    unsafe fn shrink(&mut self, cap: usize, elem_layout: Layout) -> Result<(), TryReserveError> {
752        assert!(cap <= self.capacity(elem_layout.size()), "Tried to shrink to a larger capacity");
753        // SAFETY: Just checked this isn't trying to grow
754        unsafe { self.shrink_unchecked(cap, elem_layout) }
755    }
756
757    /// `shrink`, but without the capacity check.
758    ///
759    /// This is split out so that `shrink` can inline the check, since it
760    /// optimizes out in things like `shrink_to_fit`, without needing to
761    /// also inline all this code, as doing that ends up failing the
762    /// `vec-shrink-panic` codegen test when `shrink_to_fit` ends up being too
763    /// big for LLVM to be willing to inline.
764    ///
765    /// # Safety
766    /// `cap <= self.capacity()`
767    #[cfg(not(no_global_oom_handling))]
768    unsafe fn shrink_unchecked(
769        &mut self,
770        cap: usize,
771        elem_layout: Layout,
772    ) -> Result<(), TryReserveError> {
773        // SAFETY: Precondition passed to caller
774        let (ptr, layout) = if let Some(mem) = unsafe { self.current_memory(elem_layout) } {
775            mem
776        } else {
777            return Ok(());
778        };
779
780        // If shrinking to 0, deallocate the buffer. We don't reach this point
781        // for the T::IS_ZST case since current_memory() will have returned
782        // None.
783        if cap == 0 {
784            unsafe { self.alloc.deallocate(ptr, layout) };
785            self.ptr =
786                unsafe { Unique::new_unchecked(ptr::without_provenance_mut(elem_layout.align())) };
787            self.cap = ZERO_CAP;
788        } else {
789            let ptr = unsafe {
790                // Layout cannot overflow here because it would have
791                // overflowed earlier when capacity was larger.
792                let new_size = elem_layout.size().unchecked_mul(cap);
793                let new_layout = Layout::from_size_align_unchecked(new_size, layout.align());
794                self.alloc
795                    .shrink(ptr, layout, new_layout)
796                    .map_err(|_| AllocError { layout: new_layout, non_exhaustive: () })?
797            };
798            // SAFETY: if the allocation is valid, then the capacity is too
799            unsafe {
800                self.set_ptr_and_cap(ptr, cap);
801            }
802        }
803        Ok(())
804    }
805
806    /// # Safety
807    ///
808    /// This function deallocates the owned allocation, but does not update `ptr` or `cap` to
809    /// prevent double-free or use-after-free. Essentially, do not do anything with the caller
810    /// after this function returns.
811    /// Ideally this function would take `self` by move, but it cannot because it exists to be
812    /// called from a `Drop` impl.
813    unsafe fn deallocate(&mut self, elem_layout: Layout) {
814        // SAFETY: Precondition passed to caller
815        if let Some((ptr, layout)) = unsafe { self.current_memory(elem_layout) } {
816            unsafe {
817                self.alloc.deallocate(ptr, layout);
818            }
819        }
820    }
821}
822
823/// # Safety
824/// If `current_memory` matches `Some((ptr, old_layout))`:
825/// - `ptr` must denote a block of memory *currently allocated* via `alloc`
826/// - `old_layout` must *fit* that block of memory
827/// - `new_layout` must have the same alignment as `old_layout`
828/// - `new_layout.size()` must be greater than or equal to `old_layout.size()`
829/// If `current_memory` is `None`, this function is safe.
830// not marked inline(never) since we want optimizers to be able to observe the specifics of this
831// function, see tests/codegen-llvm/vec-reserve-extend.rs.
832#[cold]
833unsafe fn finish_grow<A>(
834    new_layout: Layout,
835    current_memory: Option<(NonNull<u8>, Layout)>,
836    alloc: &mut A,
837) -> Result<NonNull<[u8]>, TryReserveError>
838where
839    A: Allocator,
840{
841    let memory = if let Some((ptr, old_layout)) = current_memory {
842        debug_assert_eq!(old_layout.align(), new_layout.align());
843        unsafe {
844            // The allocator checks for alignment equality
845            hint::assert_unchecked(old_layout.align() == new_layout.align());
846            alloc.grow(ptr, old_layout, new_layout)
847        }
848    } else {
849        alloc.allocate(new_layout)
850    };
851
852    memory.map_err(|_| AllocError { layout: new_layout, non_exhaustive: () }.into())
853}
854
855// Central function for reserve error handling.
856#[cfg(not(no_global_oom_handling))]
857#[cold]
858#[optimize(size)]
859fn handle_error(e: TryReserveError) -> ! {
860    match e.kind() {
861        CapacityOverflow => capacity_overflow(),
862        AllocError { layout, .. } => handle_alloc_error(layout),
863    }
864}
865
866#[inline]
867fn layout_array(cap: usize, elem_layout: Layout) -> Result<Layout, TryReserveError> {
868    elem_layout.repeat(cap).map(|(layout, _pad)| layout).map_err(|_| CapacityOverflow.into())
869}