alloc/collections/btree/map.rs
1use core::borrow::Borrow;
2use core::cmp::Ordering;
3use core::error::Error;
4use core::fmt::{self, Debug};
5use core::hash::{Hash, Hasher};
6use core::iter::FusedIterator;
7use core::marker::PhantomData;
8use core::mem::{self, ManuallyDrop};
9use core::ops::{Bound, Index, RangeBounds};
10use core::ptr;
11
12use super::borrow::DormantMutRef;
13use super::dedup_sorted_iter::DedupSortedIter;
14use super::navigate::{LazyLeafRange, LeafRange};
15use super::node::ForceResult::*;
16use super::node::{self, Handle, NodeRef, Root, marker};
17use super::search::SearchBound;
18use super::search::SearchResult::*;
19use super::set_val::SetValZST;
20use crate::alloc::{Allocator, Global};
21use crate::vec::Vec;
22
23mod entry;
24
25use Entry::*;
26#[stable(feature = "rust1", since = "1.0.0")]
27pub use entry::{Entry, OccupiedEntry, OccupiedError, VacantEntry};
28
29/// Minimum number of elements in a node that is not a root.
30/// We might temporarily have fewer elements during methods.
31pub(super) const MIN_LEN: usize = node::MIN_LEN_AFTER_SPLIT;
32
33// A tree in a `BTreeMap` is a tree in the `node` module with additional invariants:
34// - Keys must appear in ascending order (according to the key's type).
35// - Every non-leaf node contains at least 1 element (has at least 2 children).
36// - Every non-root node contains at least MIN_LEN elements.
37//
38// An empty map is represented either by the absence of a root node or by a
39// root node that is an empty leaf.
40
41/// An ordered map based on a [B-Tree].
42///
43/// Given a key type with a [total order], an ordered map stores its entries in key order.
44/// That means that keys must be of a type that implements the [`Ord`] trait,
45/// such that two keys can always be compared to determine their [`Ordering`].
46/// Examples of keys with a total order are strings with lexicographical order,
47/// and numbers with their natural order.
48///
49/// Iterators obtained from functions such as [`BTreeMap::iter`], [`BTreeMap::into_iter`], [`BTreeMap::values`], or
50/// [`BTreeMap::keys`] produce their items in key order, and take worst-case logarithmic and
51/// amortized constant time per item returned.
52///
53/// It is a logic error for a key to be modified in such a way that the key's ordering relative to
54/// any other key, as determined by the [`Ord`] trait, changes while it is in the map. This is
55/// normally only possible through [`Cell`], [`RefCell`], global state, I/O, or unsafe code.
56/// The behavior resulting from such a logic error is not specified, but will be encapsulated to the
57/// `BTreeMap` that observed the logic error and not result in undefined behavior. This could
58/// include panics, incorrect results, aborts, memory leaks, and non-termination.
59///
60/// # Examples
61///
62/// ```
63/// use std::collections::BTreeMap;
64///
65/// // type inference lets us omit an explicit type signature (which
66/// // would be `BTreeMap<&str, &str>` in this example).
67/// let mut movie_reviews = BTreeMap::new();
68///
69/// // review some movies.
70/// movie_reviews.insert("Office Space", "Deals with real issues in the workplace.");
71/// movie_reviews.insert("Pulp Fiction", "Masterpiece.");
72/// movie_reviews.insert("The Godfather", "Very enjoyable.");
73/// movie_reviews.insert("The Blues Brothers", "Eye lyked it a lot.");
74///
75/// // check for a specific one.
76/// if !movie_reviews.contains_key("Les Misérables") {
77/// println!("We've got {} reviews, but Les Misérables ain't one.",
78/// movie_reviews.len());
79/// }
80///
81/// // oops, this review has a lot of spelling mistakes, let's delete it.
82/// movie_reviews.remove("The Blues Brothers");
83///
84/// // look up the values associated with some keys.
85/// let to_find = ["Up!", "Office Space"];
86/// for movie in &to_find {
87/// match movie_reviews.get(movie) {
88/// Some(review) => println!("{movie}: {review}"),
89/// None => println!("{movie} is unreviewed.")
90/// }
91/// }
92///
93/// // Look up the value for a key (will panic if the key is not found).
94/// println!("Movie review: {}", movie_reviews["Office Space"]);
95///
96/// // iterate over everything.
97/// for (movie, review) in &movie_reviews {
98/// println!("{movie}: \"{review}\"");
99/// }
100/// ```
101///
102/// A `BTreeMap` with a known list of items can be initialized from an array:
103///
104/// ```
105/// use std::collections::BTreeMap;
106///
107/// let solar_distance = BTreeMap::from([
108/// ("Mercury", 0.4),
109/// ("Venus", 0.7),
110/// ("Earth", 1.0),
111/// ("Mars", 1.5),
112/// ]);
113/// ```
114///
115/// ## `Entry` API
116///
117/// `BTreeMap` implements an [`Entry API`], which allows for complex
118/// methods of getting, setting, updating and removing keys and their values:
119///
120/// [`Entry API`]: BTreeMap::entry
121///
122/// ```
123/// use std::collections::BTreeMap;
124///
125/// // type inference lets us omit an explicit type signature (which
126/// // would be `BTreeMap<&str, u8>` in this example).
127/// let mut player_stats = BTreeMap::new();
128///
129/// fn random_stat_buff() -> u8 {
130/// // could actually return some random value here - let's just return
131/// // some fixed value for now
132/// 42
133/// }
134///
135/// // insert a key only if it doesn't already exist
136/// player_stats.entry("health").or_insert(100);
137///
138/// // insert a key using a function that provides a new value only if it
139/// // doesn't already exist
140/// player_stats.entry("defence").or_insert_with(random_stat_buff);
141///
142/// // update a key, guarding against the key possibly not being set
143/// let stat = player_stats.entry("attack").or_insert(100);
144/// *stat += random_stat_buff();
145///
146/// // modify an entry before an insert with in-place mutation
147/// player_stats.entry("mana").and_modify(|mana| *mana += 200).or_insert(100);
148/// ```
149///
150/// # Background
151///
152/// A B-tree is (like) a [binary search tree], but adapted to the natural granularity that modern
153/// machines like to consume data at. This means that each node contains an entire array of elements,
154/// instead of just a single element.
155///
156/// B-Trees represent a fundamental compromise between cache-efficiency and actually minimizing
157/// the amount of work performed in a search. In theory, a binary search tree (BST) is the optimal
158/// choice for a sorted map, as a perfectly balanced BST performs the theoretical minimum number of
159/// comparisons necessary to find an element (log<sub>2</sub>n). However, in practice the way this
160/// is done is *very* inefficient for modern computer architectures. In particular, every element
161/// is stored in its own individually heap-allocated node. This means that every single insertion
162/// triggers a heap-allocation, and every comparison is a potential cache-miss due to the indirection.
163/// Since both heap-allocations and cache-misses are notably expensive in practice, we are forced to,
164/// at the very least, reconsider the BST strategy.
165///
166/// A B-Tree instead makes each node contain B-1 to 2B-1 elements in a contiguous array. By doing
167/// this, we reduce the number of allocations by a factor of B, and improve cache efficiency in
168/// searches. However, this does mean that searches will have to do *more* comparisons on average.
169/// The precise number of comparisons depends on the node search strategy used. For optimal cache
170/// efficiency, one could search the nodes linearly. For optimal comparisons, one could search
171/// the node using binary search. As a compromise, one could also perform a linear search
172/// that initially only checks every i<sup>th</sup> element for some choice of i.
173///
174/// Currently, our implementation simply performs naive linear search. This provides excellent
175/// performance on *small* nodes of elements which are cheap to compare. However in the future we
176/// would like to further explore choosing the optimal search strategy based on the choice of B,
177/// and possibly other factors. Using linear search, searching for a random element is expected
178/// to take B * log(n) comparisons, which is generally worse than a BST. In practice,
179/// however, performance is excellent.
180///
181/// [B-Tree]: https://en.wikipedia.org/wiki/B-tree
182/// [binary search tree]: https://en.wikipedia.org/wiki/Binary_search_tree
183/// [total order]: https://en.wikipedia.org/wiki/Total_order
184/// [`Cell`]: core::cell::Cell
185/// [`RefCell`]: core::cell::RefCell
186#[stable(feature = "rust1", since = "1.0.0")]
187#[cfg_attr(not(test), rustc_diagnostic_item = "BTreeMap")]
188#[rustc_insignificant_dtor]
189pub struct BTreeMap<
190 K,
191 V,
192 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator + Clone = Global,
193> {
194 root: Option<Root<K, V>>,
195 length: usize,
196 /// `ManuallyDrop` to control drop order (needs to be dropped after all the nodes).
197 // Although some of the accessory types store a copy of the allocator, the nodes do not.
198 // Because allocations will remain live as long as any copy (like this one) of the allocator
199 // is live, it's unnecessary to store the allocator in each node.
200 pub(super) alloc: ManuallyDrop<A>,
201 // For dropck; the `Box` avoids making the `Unpin` impl more strict than before
202 _marker: PhantomData<crate::boxed::Box<(K, V), A>>,
203}
204
205#[stable(feature = "btree_drop", since = "1.7.0")]
206unsafe impl<#[may_dangle] K, #[may_dangle] V, A: Allocator + Clone> Drop for BTreeMap<K, V, A> {
207 fn drop(&mut self) {
208 drop(unsafe { ptr::read(self) }.into_iter())
209 }
210}
211
212// FIXME: This implementation is "wrong", but changing it would be a breaking change.
213// (The bounds of the automatic `UnwindSafe` implementation have been like this since Rust 1.50.)
214// Maybe we can fix it nonetheless with a crater run, or if the `UnwindSafe`
215// traits are deprecated, or disarmed (no longer causing hard errors) in the future.
216#[stable(feature = "btree_unwindsafe", since = "1.64.0")]
217impl<K, V, A: Allocator + Clone> core::panic::UnwindSafe for BTreeMap<K, V, A>
218where
219 A: core::panic::UnwindSafe,
220 K: core::panic::RefUnwindSafe,
221 V: core::panic::RefUnwindSafe,
222{
223}
224
225#[stable(feature = "rust1", since = "1.0.0")]
226impl<K: Clone, V: Clone, A: Allocator + Clone> Clone for BTreeMap<K, V, A> {
227 fn clone(&self) -> BTreeMap<K, V, A> {
228 fn clone_subtree<'a, K: Clone, V: Clone, A: Allocator + Clone>(
229 node: NodeRef<marker::Immut<'a>, K, V, marker::LeafOrInternal>,
230 alloc: A,
231 ) -> BTreeMap<K, V, A>
232 where
233 K: 'a,
234 V: 'a,
235 {
236 match node.force() {
237 Leaf(leaf) => {
238 let mut out_tree = BTreeMap {
239 root: Some(Root::new(alloc.clone())),
240 length: 0,
241 alloc: ManuallyDrop::new(alloc),
242 _marker: PhantomData,
243 };
244
245 {
246 let root = out_tree.root.as_mut().unwrap(); // unwrap succeeds because we just wrapped
247 let mut out_node = match root.borrow_mut().force() {
248 Leaf(leaf) => leaf,
249 Internal(_) => unreachable!(),
250 };
251
252 let mut in_edge = leaf.first_edge();
253 while let Ok(kv) = in_edge.right_kv() {
254 let (k, v) = kv.into_kv();
255 in_edge = kv.right_edge();
256
257 out_node.push(k.clone(), v.clone());
258 out_tree.length += 1;
259 }
260 }
261
262 out_tree
263 }
264 Internal(internal) => {
265 let mut out_tree =
266 clone_subtree(internal.first_edge().descend(), alloc.clone());
267
268 {
269 let out_root = out_tree.root.as_mut().unwrap();
270 let mut out_node = out_root.push_internal_level(alloc.clone());
271 let mut in_edge = internal.first_edge();
272 while let Ok(kv) = in_edge.right_kv() {
273 let (k, v) = kv.into_kv();
274 in_edge = kv.right_edge();
275
276 let k = (*k).clone();
277 let v = (*v).clone();
278 let subtree = clone_subtree(in_edge.descend(), alloc.clone());
279
280 // We can't destructure subtree directly
281 // because BTreeMap implements Drop
282 let (subroot, sublength) = unsafe {
283 let subtree = ManuallyDrop::new(subtree);
284 let root = ptr::read(&subtree.root);
285 let length = subtree.length;
286 (root, length)
287 };
288
289 out_node.push(
290 k,
291 v,
292 subroot.unwrap_or_else(|| Root::new(alloc.clone())),
293 );
294 out_tree.length += 1 + sublength;
295 }
296 }
297
298 out_tree
299 }
300 }
301 }
302
303 if self.is_empty() {
304 BTreeMap::new_in((*self.alloc).clone())
305 } else {
306 clone_subtree(self.root.as_ref().unwrap().reborrow(), (*self.alloc).clone()) // unwrap succeeds because not empty
307 }
308 }
309}
310
311// Internal functionality for `BTreeSet`.
312impl<K, A: Allocator + Clone> BTreeMap<K, SetValZST, A> {
313 pub(super) fn replace(&mut self, key: K) -> Option<K>
314 where
315 K: Ord,
316 {
317 let (map, dormant_map) = DormantMutRef::new(self);
318 let root_node =
319 map.root.get_or_insert_with(|| Root::new((*map.alloc).clone())).borrow_mut();
320 match root_node.search_tree::<K>(&key) {
321 Found(mut kv) => Some(mem::replace(kv.key_mut(), key)),
322 GoDown(handle) => {
323 VacantEntry {
324 key,
325 handle: Some(handle),
326 dormant_map,
327 alloc: (*map.alloc).clone(),
328 _marker: PhantomData,
329 }
330 .insert(SetValZST);
331 None
332 }
333 }
334 }
335
336 pub(super) fn get_or_insert_with<Q: ?Sized, F>(&mut self, q: &Q, f: F) -> &K
337 where
338 K: Borrow<Q> + Ord,
339 Q: Ord,
340 F: FnOnce(&Q) -> K,
341 {
342 let (map, dormant_map) = DormantMutRef::new(self);
343 let root_node =
344 map.root.get_or_insert_with(|| Root::new((*map.alloc).clone())).borrow_mut();
345 match root_node.search_tree(q) {
346 Found(handle) => handle.into_kv_mut().0,
347 GoDown(handle) => {
348 let key = f(q);
349 assert!(*key.borrow() == *q, "new value is not equal");
350 VacantEntry {
351 key,
352 handle: Some(handle),
353 dormant_map,
354 alloc: (*map.alloc).clone(),
355 _marker: PhantomData,
356 }
357 .insert_entry(SetValZST)
358 .into_key()
359 }
360 }
361 }
362}
363
364/// An iterator over the entries of a `BTreeMap`.
365///
366/// This `struct` is created by the [`iter`] method on [`BTreeMap`]. See its
367/// documentation for more.
368///
369/// [`iter`]: BTreeMap::iter
370#[must_use = "iterators are lazy and do nothing unless consumed"]
371#[stable(feature = "rust1", since = "1.0.0")]
372pub struct Iter<'a, K: 'a, V: 'a> {
373 range: LazyLeafRange<marker::Immut<'a>, K, V>,
374 length: usize,
375}
376
377#[stable(feature = "collection_debug", since = "1.17.0")]
378impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for Iter<'_, K, V> {
379 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
380 f.debug_list().entries(self.clone()).finish()
381 }
382}
383
384#[stable(feature = "default_iters", since = "1.70.0")]
385impl<'a, K: 'a, V: 'a> Default for Iter<'a, K, V> {
386 /// Creates an empty `btree_map::Iter`.
387 ///
388 /// ```
389 /// # use std::collections::btree_map;
390 /// let iter: btree_map::Iter<'_, u8, u8> = Default::default();
391 /// assert_eq!(iter.len(), 0);
392 /// ```
393 fn default() -> Self {
394 Iter { range: Default::default(), length: 0 }
395 }
396}
397
398/// A mutable iterator over the entries of a `BTreeMap`.
399///
400/// This `struct` is created by the [`iter_mut`] method on [`BTreeMap`]. See its
401/// documentation for more.
402///
403/// [`iter_mut`]: BTreeMap::iter_mut
404#[must_use = "iterators are lazy and do nothing unless consumed"]
405#[stable(feature = "rust1", since = "1.0.0")]
406pub struct IterMut<'a, K: 'a, V: 'a> {
407 range: LazyLeafRange<marker::ValMut<'a>, K, V>,
408 length: usize,
409
410 // Be invariant in `K` and `V`
411 _marker: PhantomData<&'a mut (K, V)>,
412}
413
414#[stable(feature = "collection_debug", since = "1.17.0")]
415impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for IterMut<'_, K, V> {
416 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
417 let range = Iter { range: self.range.reborrow(), length: self.length };
418 f.debug_list().entries(range).finish()
419 }
420}
421
422#[stable(feature = "default_iters", since = "1.70.0")]
423impl<'a, K: 'a, V: 'a> Default for IterMut<'a, K, V> {
424 /// Creates an empty `btree_map::IterMut`.
425 ///
426 /// ```
427 /// # use std::collections::btree_map;
428 /// let iter: btree_map::IterMut<'_, u8, u8> = Default::default();
429 /// assert_eq!(iter.len(), 0);
430 /// ```
431 fn default() -> Self {
432 IterMut { range: Default::default(), length: 0, _marker: PhantomData {} }
433 }
434}
435
436/// An owning iterator over the entries of a `BTreeMap`, sorted by key.
437///
438/// This `struct` is created by the [`into_iter`] method on [`BTreeMap`]
439/// (provided by the [`IntoIterator`] trait). See its documentation for more.
440///
441/// [`into_iter`]: IntoIterator::into_iter
442#[stable(feature = "rust1", since = "1.0.0")]
443#[rustc_insignificant_dtor]
444pub struct IntoIter<
445 K,
446 V,
447 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator + Clone = Global,
448> {
449 range: LazyLeafRange<marker::Dying, K, V>,
450 length: usize,
451 /// The BTreeMap will outlive this IntoIter so we don't care about drop order for `alloc`.
452 alloc: A,
453}
454
455impl<K, V, A: Allocator + Clone> IntoIter<K, V, A> {
456 /// Returns an iterator of references over the remaining items.
457 #[inline]
458 pub(super) fn iter(&self) -> Iter<'_, K, V> {
459 Iter { range: self.range.reborrow(), length: self.length }
460 }
461}
462
463#[stable(feature = "collection_debug", since = "1.17.0")]
464impl<K: Debug, V: Debug, A: Allocator + Clone> Debug for IntoIter<K, V, A> {
465 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
466 f.debug_list().entries(self.iter()).finish()
467 }
468}
469
470#[stable(feature = "default_iters", since = "1.70.0")]
471impl<K, V, A> Default for IntoIter<K, V, A>
472where
473 A: Allocator + Default + Clone,
474{
475 /// Creates an empty `btree_map::IntoIter`.
476 ///
477 /// ```
478 /// # use std::collections::btree_map;
479 /// let iter: btree_map::IntoIter<u8, u8> = Default::default();
480 /// assert_eq!(iter.len(), 0);
481 /// ```
482 fn default() -> Self {
483 IntoIter { range: Default::default(), length: 0, alloc: Default::default() }
484 }
485}
486
487/// An iterator over the keys of a `BTreeMap`.
488///
489/// This `struct` is created by the [`keys`] method on [`BTreeMap`]. See its
490/// documentation for more.
491///
492/// [`keys`]: BTreeMap::keys
493#[must_use = "iterators are lazy and do nothing unless consumed"]
494#[stable(feature = "rust1", since = "1.0.0")]
495pub struct Keys<'a, K, V> {
496 inner: Iter<'a, K, V>,
497}
498
499#[stable(feature = "collection_debug", since = "1.17.0")]
500impl<K: fmt::Debug, V> fmt::Debug for Keys<'_, K, V> {
501 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
502 f.debug_list().entries(self.clone()).finish()
503 }
504}
505
506/// An iterator over the values of a `BTreeMap`.
507///
508/// This `struct` is created by the [`values`] method on [`BTreeMap`]. See its
509/// documentation for more.
510///
511/// [`values`]: BTreeMap::values
512#[must_use = "iterators are lazy and do nothing unless consumed"]
513#[stable(feature = "rust1", since = "1.0.0")]
514pub struct Values<'a, K, V> {
515 inner: Iter<'a, K, V>,
516}
517
518#[stable(feature = "collection_debug", since = "1.17.0")]
519impl<K, V: fmt::Debug> fmt::Debug for Values<'_, K, V> {
520 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
521 f.debug_list().entries(self.clone()).finish()
522 }
523}
524
525/// A mutable iterator over the values of a `BTreeMap`.
526///
527/// This `struct` is created by the [`values_mut`] method on [`BTreeMap`]. See its
528/// documentation for more.
529///
530/// [`values_mut`]: BTreeMap::values_mut
531#[must_use = "iterators are lazy and do nothing unless consumed"]
532#[stable(feature = "map_values_mut", since = "1.10.0")]
533pub struct ValuesMut<'a, K, V> {
534 inner: IterMut<'a, K, V>,
535}
536
537#[stable(feature = "map_values_mut", since = "1.10.0")]
538impl<K, V: fmt::Debug> fmt::Debug for ValuesMut<'_, K, V> {
539 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
540 f.debug_list().entries(self.inner.iter().map(|(_, val)| val)).finish()
541 }
542}
543
544/// An owning iterator over the keys of a `BTreeMap`.
545///
546/// This `struct` is created by the [`into_keys`] method on [`BTreeMap`].
547/// See its documentation for more.
548///
549/// [`into_keys`]: BTreeMap::into_keys
550#[must_use = "iterators are lazy and do nothing unless consumed"]
551#[stable(feature = "map_into_keys_values", since = "1.54.0")]
552pub struct IntoKeys<
553 K,
554 V,
555 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator + Clone = Global,
556> {
557 inner: IntoIter<K, V, A>,
558}
559
560#[stable(feature = "map_into_keys_values", since = "1.54.0")]
561impl<K: fmt::Debug, V, A: Allocator + Clone> fmt::Debug for IntoKeys<K, V, A> {
562 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
563 f.debug_list().entries(self.inner.iter().map(|(key, _)| key)).finish()
564 }
565}
566
567/// An owning iterator over the values of a `BTreeMap`.
568///
569/// This `struct` is created by the [`into_values`] method on [`BTreeMap`].
570/// See its documentation for more.
571///
572/// [`into_values`]: BTreeMap::into_values
573#[must_use = "iterators are lazy and do nothing unless consumed"]
574#[stable(feature = "map_into_keys_values", since = "1.54.0")]
575pub struct IntoValues<
576 K,
577 V,
578 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator + Clone = Global,
579> {
580 inner: IntoIter<K, V, A>,
581}
582
583#[stable(feature = "map_into_keys_values", since = "1.54.0")]
584impl<K, V: fmt::Debug, A: Allocator + Clone> fmt::Debug for IntoValues<K, V, A> {
585 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
586 f.debug_list().entries(self.inner.iter().map(|(_, val)| val)).finish()
587 }
588}
589
590/// An iterator over a sub-range of entries in a `BTreeMap`.
591///
592/// This `struct` is created by the [`range`] method on [`BTreeMap`]. See its
593/// documentation for more.
594///
595/// [`range`]: BTreeMap::range
596#[must_use = "iterators are lazy and do nothing unless consumed"]
597#[stable(feature = "btree_range", since = "1.17.0")]
598pub struct Range<'a, K: 'a, V: 'a> {
599 inner: LeafRange<marker::Immut<'a>, K, V>,
600}
601
602#[stable(feature = "collection_debug", since = "1.17.0")]
603impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for Range<'_, K, V> {
604 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
605 f.debug_list().entries(self.clone()).finish()
606 }
607}
608
609/// A mutable iterator over a sub-range of entries in a `BTreeMap`.
610///
611/// This `struct` is created by the [`range_mut`] method on [`BTreeMap`]. See its
612/// documentation for more.
613///
614/// [`range_mut`]: BTreeMap::range_mut
615#[must_use = "iterators are lazy and do nothing unless consumed"]
616#[stable(feature = "btree_range", since = "1.17.0")]
617pub struct RangeMut<'a, K: 'a, V: 'a> {
618 inner: LeafRange<marker::ValMut<'a>, K, V>,
619
620 // Be invariant in `K` and `V`
621 _marker: PhantomData<&'a mut (K, V)>,
622}
623
624#[stable(feature = "collection_debug", since = "1.17.0")]
625impl<K: fmt::Debug, V: fmt::Debug> fmt::Debug for RangeMut<'_, K, V> {
626 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
627 let range = Range { inner: self.inner.reborrow() };
628 f.debug_list().entries(range).finish()
629 }
630}
631
632impl<K, V> BTreeMap<K, V> {
633 /// Makes a new, empty `BTreeMap`.
634 ///
635 /// Does not allocate anything on its own.
636 ///
637 /// # Examples
638 ///
639 /// ```
640 /// use std::collections::BTreeMap;
641 ///
642 /// let mut map = BTreeMap::new();
643 ///
644 /// // entries can now be inserted into the empty map
645 /// map.insert(1, "a");
646 /// ```
647 #[stable(feature = "rust1", since = "1.0.0")]
648 #[rustc_const_stable(feature = "const_btree_new", since = "1.66.0")]
649 #[inline]
650 #[must_use]
651 pub const fn new() -> BTreeMap<K, V> {
652 BTreeMap { root: None, length: 0, alloc: ManuallyDrop::new(Global), _marker: PhantomData }
653 }
654}
655
656impl<K, V, A: Allocator + Clone> BTreeMap<K, V, A> {
657 /// Clears the map, removing all elements.
658 ///
659 /// # Examples
660 ///
661 /// ```
662 /// use std::collections::BTreeMap;
663 ///
664 /// let mut a = BTreeMap::new();
665 /// a.insert(1, "a");
666 /// a.clear();
667 /// assert!(a.is_empty());
668 /// ```
669 #[stable(feature = "rust1", since = "1.0.0")]
670 pub fn clear(&mut self) {
671 // avoid moving the allocator
672 drop(BTreeMap {
673 root: mem::replace(&mut self.root, None),
674 length: mem::replace(&mut self.length, 0),
675 alloc: self.alloc.clone(),
676 _marker: PhantomData,
677 });
678 }
679
680 /// Makes a new empty BTreeMap with a reasonable choice for B.
681 ///
682 /// # Examples
683 ///
684 /// ```
685 /// # #![feature(allocator_api)]
686 /// # #![feature(btreemap_alloc)]
687 /// use std::collections::BTreeMap;
688 /// use std::alloc::Global;
689 ///
690 /// let mut map = BTreeMap::new_in(Global);
691 ///
692 /// // entries can now be inserted into the empty map
693 /// map.insert(1, "a");
694 /// ```
695 #[unstable(feature = "btreemap_alloc", issue = "32838")]
696 pub const fn new_in(alloc: A) -> BTreeMap<K, V, A> {
697 BTreeMap { root: None, length: 0, alloc: ManuallyDrop::new(alloc), _marker: PhantomData }
698 }
699}
700
701impl<K, V, A: Allocator + Clone> BTreeMap<K, V, A> {
702 /// Returns a reference to the value corresponding to the key.
703 ///
704 /// The key may be any borrowed form of the map's key type, but the ordering
705 /// on the borrowed form *must* match the ordering on the key type.
706 ///
707 /// # Examples
708 ///
709 /// ```
710 /// use std::collections::BTreeMap;
711 ///
712 /// let mut map = BTreeMap::new();
713 /// map.insert(1, "a");
714 /// assert_eq!(map.get(&1), Some(&"a"));
715 /// assert_eq!(map.get(&2), None);
716 /// ```
717 #[stable(feature = "rust1", since = "1.0.0")]
718 pub fn get<Q: ?Sized>(&self, key: &Q) -> Option<&V>
719 where
720 K: Borrow<Q> + Ord,
721 Q: Ord,
722 {
723 let root_node = self.root.as_ref()?.reborrow();
724 match root_node.search_tree(key) {
725 Found(handle) => Some(handle.into_kv().1),
726 GoDown(_) => None,
727 }
728 }
729
730 /// Returns the key-value pair corresponding to the supplied key. This is
731 /// potentially useful:
732 /// - for key types where non-identical keys can be considered equal;
733 /// - for getting the `&K` stored key value from a borrowed `&Q` lookup key; or
734 /// - for getting a reference to a key with the same lifetime as the collection.
735 ///
736 /// The supplied key may be any borrowed form of the map's key type, but the ordering
737 /// on the borrowed form *must* match the ordering on the key type.
738 ///
739 /// # Examples
740 ///
741 /// ```
742 /// use std::cmp::Ordering;
743 /// use std::collections::BTreeMap;
744 ///
745 /// #[derive(Clone, Copy, Debug)]
746 /// struct S {
747 /// id: u32,
748 /// # #[allow(unused)] // prevents a "field `name` is never read" error
749 /// name: &'static str, // ignored by equality and ordering operations
750 /// }
751 ///
752 /// impl PartialEq for S {
753 /// fn eq(&self, other: &S) -> bool {
754 /// self.id == other.id
755 /// }
756 /// }
757 ///
758 /// impl Eq for S {}
759 ///
760 /// impl PartialOrd for S {
761 /// fn partial_cmp(&self, other: &S) -> Option<Ordering> {
762 /// self.id.partial_cmp(&other.id)
763 /// }
764 /// }
765 ///
766 /// impl Ord for S {
767 /// fn cmp(&self, other: &S) -> Ordering {
768 /// self.id.cmp(&other.id)
769 /// }
770 /// }
771 ///
772 /// let j_a = S { id: 1, name: "Jessica" };
773 /// let j_b = S { id: 1, name: "Jess" };
774 /// let p = S { id: 2, name: "Paul" };
775 /// assert_eq!(j_a, j_b);
776 ///
777 /// let mut map = BTreeMap::new();
778 /// map.insert(j_a, "Paris");
779 /// assert_eq!(map.get_key_value(&j_a), Some((&j_a, &"Paris")));
780 /// assert_eq!(map.get_key_value(&j_b), Some((&j_a, &"Paris"))); // the notable case
781 /// assert_eq!(map.get_key_value(&p), None);
782 /// ```
783 #[stable(feature = "map_get_key_value", since = "1.40.0")]
784 pub fn get_key_value<Q: ?Sized>(&self, k: &Q) -> Option<(&K, &V)>
785 where
786 K: Borrow<Q> + Ord,
787 Q: Ord,
788 {
789 let root_node = self.root.as_ref()?.reborrow();
790 match root_node.search_tree(k) {
791 Found(handle) => Some(handle.into_kv()),
792 GoDown(_) => None,
793 }
794 }
795
796 /// Returns the first key-value pair in the map.
797 /// The key in this pair is the minimum key in the map.
798 ///
799 /// # Examples
800 ///
801 /// ```
802 /// use std::collections::BTreeMap;
803 ///
804 /// let mut map = BTreeMap::new();
805 /// assert_eq!(map.first_key_value(), None);
806 /// map.insert(1, "b");
807 /// map.insert(2, "a");
808 /// assert_eq!(map.first_key_value(), Some((&1, &"b")));
809 /// ```
810 #[stable(feature = "map_first_last", since = "1.66.0")]
811 pub fn first_key_value(&self) -> Option<(&K, &V)>
812 where
813 K: Ord,
814 {
815 let root_node = self.root.as_ref()?.reborrow();
816 root_node.first_leaf_edge().right_kv().ok().map(Handle::into_kv)
817 }
818
819 /// Returns the first entry in the map for in-place manipulation.
820 /// The key of this entry is the minimum key in the map.
821 ///
822 /// # Examples
823 ///
824 /// ```
825 /// use std::collections::BTreeMap;
826 ///
827 /// let mut map = BTreeMap::new();
828 /// map.insert(1, "a");
829 /// map.insert(2, "b");
830 /// if let Some(mut entry) = map.first_entry() {
831 /// if *entry.key() > 0 {
832 /// entry.insert("first");
833 /// }
834 /// }
835 /// assert_eq!(*map.get(&1).unwrap(), "first");
836 /// assert_eq!(*map.get(&2).unwrap(), "b");
837 /// ```
838 #[stable(feature = "map_first_last", since = "1.66.0")]
839 pub fn first_entry(&mut self) -> Option<OccupiedEntry<'_, K, V, A>>
840 where
841 K: Ord,
842 {
843 let (map, dormant_map) = DormantMutRef::new(self);
844 let root_node = map.root.as_mut()?.borrow_mut();
845 let kv = root_node.first_leaf_edge().right_kv().ok()?;
846 Some(OccupiedEntry {
847 handle: kv.forget_node_type(),
848 dormant_map,
849 alloc: (*map.alloc).clone(),
850 _marker: PhantomData,
851 })
852 }
853
854 /// Removes and returns the first element in the map.
855 /// The key of this element is the minimum key that was in the map.
856 ///
857 /// # Examples
858 ///
859 /// Draining elements in ascending order, while keeping a usable map each iteration.
860 ///
861 /// ```
862 /// use std::collections::BTreeMap;
863 ///
864 /// let mut map = BTreeMap::new();
865 /// map.insert(1, "a");
866 /// map.insert(2, "b");
867 /// while let Some((key, _val)) = map.pop_first() {
868 /// assert!(map.iter().all(|(k, _v)| *k > key));
869 /// }
870 /// assert!(map.is_empty());
871 /// ```
872 #[stable(feature = "map_first_last", since = "1.66.0")]
873 pub fn pop_first(&mut self) -> Option<(K, V)>
874 where
875 K: Ord,
876 {
877 self.first_entry().map(|entry| entry.remove_entry())
878 }
879
880 /// Returns the last key-value pair in the map.
881 /// The key in this pair is the maximum key in the map.
882 ///
883 /// # Examples
884 ///
885 /// ```
886 /// use std::collections::BTreeMap;
887 ///
888 /// let mut map = BTreeMap::new();
889 /// map.insert(1, "b");
890 /// map.insert(2, "a");
891 /// assert_eq!(map.last_key_value(), Some((&2, &"a")));
892 /// ```
893 #[stable(feature = "map_first_last", since = "1.66.0")]
894 pub fn last_key_value(&self) -> Option<(&K, &V)>
895 where
896 K: Ord,
897 {
898 let root_node = self.root.as_ref()?.reborrow();
899 root_node.last_leaf_edge().left_kv().ok().map(Handle::into_kv)
900 }
901
902 /// Returns the last entry in the map for in-place manipulation.
903 /// The key of this entry is the maximum key in the map.
904 ///
905 /// # Examples
906 ///
907 /// ```
908 /// use std::collections::BTreeMap;
909 ///
910 /// let mut map = BTreeMap::new();
911 /// map.insert(1, "a");
912 /// map.insert(2, "b");
913 /// if let Some(mut entry) = map.last_entry() {
914 /// if *entry.key() > 0 {
915 /// entry.insert("last");
916 /// }
917 /// }
918 /// assert_eq!(*map.get(&1).unwrap(), "a");
919 /// assert_eq!(*map.get(&2).unwrap(), "last");
920 /// ```
921 #[stable(feature = "map_first_last", since = "1.66.0")]
922 pub fn last_entry(&mut self) -> Option<OccupiedEntry<'_, K, V, A>>
923 where
924 K: Ord,
925 {
926 let (map, dormant_map) = DormantMutRef::new(self);
927 let root_node = map.root.as_mut()?.borrow_mut();
928 let kv = root_node.last_leaf_edge().left_kv().ok()?;
929 Some(OccupiedEntry {
930 handle: kv.forget_node_type(),
931 dormant_map,
932 alloc: (*map.alloc).clone(),
933 _marker: PhantomData,
934 })
935 }
936
937 /// Removes and returns the last element in the map.
938 /// The key of this element is the maximum key that was in the map.
939 ///
940 /// # Examples
941 ///
942 /// Draining elements in descending order, while keeping a usable map each iteration.
943 ///
944 /// ```
945 /// use std::collections::BTreeMap;
946 ///
947 /// let mut map = BTreeMap::new();
948 /// map.insert(1, "a");
949 /// map.insert(2, "b");
950 /// while let Some((key, _val)) = map.pop_last() {
951 /// assert!(map.iter().all(|(k, _v)| *k < key));
952 /// }
953 /// assert!(map.is_empty());
954 /// ```
955 #[stable(feature = "map_first_last", since = "1.66.0")]
956 pub fn pop_last(&mut self) -> Option<(K, V)>
957 where
958 K: Ord,
959 {
960 self.last_entry().map(|entry| entry.remove_entry())
961 }
962
963 /// Returns `true` if the map contains a value for the specified key.
964 ///
965 /// The key may be any borrowed form of the map's key type, but the ordering
966 /// on the borrowed form *must* match the ordering on the key type.
967 ///
968 /// # Examples
969 ///
970 /// ```
971 /// use std::collections::BTreeMap;
972 ///
973 /// let mut map = BTreeMap::new();
974 /// map.insert(1, "a");
975 /// assert_eq!(map.contains_key(&1), true);
976 /// assert_eq!(map.contains_key(&2), false);
977 /// ```
978 #[stable(feature = "rust1", since = "1.0.0")]
979 #[cfg_attr(not(test), rustc_diagnostic_item = "btreemap_contains_key")]
980 pub fn contains_key<Q: ?Sized>(&self, key: &Q) -> bool
981 where
982 K: Borrow<Q> + Ord,
983 Q: Ord,
984 {
985 self.get(key).is_some()
986 }
987
988 /// Returns a mutable reference to the value corresponding to the key.
989 ///
990 /// The key may be any borrowed form of the map's key type, but the ordering
991 /// on the borrowed form *must* match the ordering on the key type.
992 ///
993 /// # Examples
994 ///
995 /// ```
996 /// use std::collections::BTreeMap;
997 ///
998 /// let mut map = BTreeMap::new();
999 /// map.insert(1, "a");
1000 /// if let Some(x) = map.get_mut(&1) {
1001 /// *x = "b";
1002 /// }
1003 /// assert_eq!(map[&1], "b");
1004 /// ```
1005 // See `get` for implementation notes, this is basically a copy-paste with mut's added
1006 #[stable(feature = "rust1", since = "1.0.0")]
1007 pub fn get_mut<Q: ?Sized>(&mut self, key: &Q) -> Option<&mut V>
1008 where
1009 K: Borrow<Q> + Ord,
1010 Q: Ord,
1011 {
1012 let root_node = self.root.as_mut()?.borrow_mut();
1013 match root_node.search_tree(key) {
1014 Found(handle) => Some(handle.into_val_mut()),
1015 GoDown(_) => None,
1016 }
1017 }
1018
1019 /// Inserts a key-value pair into the map.
1020 ///
1021 /// If the map did not have this key present, `None` is returned.
1022 ///
1023 /// If the map did have this key present, the value is updated, and the old
1024 /// value is returned. The key is not updated, though; this matters for
1025 /// types that can be `==` without being identical. See the [module-level
1026 /// documentation] for more.
1027 ///
1028 /// [module-level documentation]: index.html#insert-and-complex-keys
1029 ///
1030 /// # Examples
1031 ///
1032 /// ```
1033 /// use std::collections::BTreeMap;
1034 ///
1035 /// let mut map = BTreeMap::new();
1036 /// assert_eq!(map.insert(37, "a"), None);
1037 /// assert_eq!(map.is_empty(), false);
1038 ///
1039 /// map.insert(37, "b");
1040 /// assert_eq!(map.insert(37, "c"), Some("b"));
1041 /// assert_eq!(map[&37], "c");
1042 /// ```
1043 #[stable(feature = "rust1", since = "1.0.0")]
1044 #[rustc_confusables("push", "put", "set")]
1045 #[cfg_attr(not(test), rustc_diagnostic_item = "btreemap_insert")]
1046 pub fn insert(&mut self, key: K, value: V) -> Option<V>
1047 where
1048 K: Ord,
1049 {
1050 match self.entry(key) {
1051 Occupied(mut entry) => Some(entry.insert(value)),
1052 Vacant(entry) => {
1053 entry.insert(value);
1054 None
1055 }
1056 }
1057 }
1058
1059 /// Tries to insert a key-value pair into the map, and returns
1060 /// a mutable reference to the value in the entry.
1061 ///
1062 /// If the map already had this key present, nothing is updated, and
1063 /// an error containing the occupied entry and the value is returned.
1064 ///
1065 /// # Examples
1066 ///
1067 /// ```
1068 /// #![feature(map_try_insert)]
1069 ///
1070 /// use std::collections::BTreeMap;
1071 ///
1072 /// let mut map = BTreeMap::new();
1073 /// assert_eq!(map.try_insert(37, "a").unwrap(), &"a");
1074 ///
1075 /// let err = map.try_insert(37, "b").unwrap_err();
1076 /// assert_eq!(err.entry.key(), &37);
1077 /// assert_eq!(err.entry.get(), &"a");
1078 /// assert_eq!(err.value, "b");
1079 /// ```
1080 #[unstable(feature = "map_try_insert", issue = "82766")]
1081 pub fn try_insert(&mut self, key: K, value: V) -> Result<&mut V, OccupiedError<'_, K, V, A>>
1082 where
1083 K: Ord,
1084 {
1085 match self.entry(key) {
1086 Occupied(entry) => Err(OccupiedError { entry, value }),
1087 Vacant(entry) => Ok(entry.insert(value)),
1088 }
1089 }
1090
1091 /// Removes a key from the map, returning the value at the key if the key
1092 /// was previously in the map.
1093 ///
1094 /// The key may be any borrowed form of the map's key type, but the ordering
1095 /// on the borrowed form *must* match the ordering on the key type.
1096 ///
1097 /// # Examples
1098 ///
1099 /// ```
1100 /// use std::collections::BTreeMap;
1101 ///
1102 /// let mut map = BTreeMap::new();
1103 /// map.insert(1, "a");
1104 /// assert_eq!(map.remove(&1), Some("a"));
1105 /// assert_eq!(map.remove(&1), None);
1106 /// ```
1107 #[stable(feature = "rust1", since = "1.0.0")]
1108 #[rustc_confusables("delete", "take")]
1109 pub fn remove<Q: ?Sized>(&mut self, key: &Q) -> Option<V>
1110 where
1111 K: Borrow<Q> + Ord,
1112 Q: Ord,
1113 {
1114 self.remove_entry(key).map(|(_, v)| v)
1115 }
1116
1117 /// Removes a key from the map, returning the stored key and value if the key
1118 /// was previously in the map.
1119 ///
1120 /// The key may be any borrowed form of the map's key type, but the ordering
1121 /// on the borrowed form *must* match the ordering on the key type.
1122 ///
1123 /// # Examples
1124 ///
1125 /// ```
1126 /// use std::collections::BTreeMap;
1127 ///
1128 /// let mut map = BTreeMap::new();
1129 /// map.insert(1, "a");
1130 /// assert_eq!(map.remove_entry(&1), Some((1, "a")));
1131 /// assert_eq!(map.remove_entry(&1), None);
1132 /// ```
1133 #[stable(feature = "btreemap_remove_entry", since = "1.45.0")]
1134 pub fn remove_entry<Q: ?Sized>(&mut self, key: &Q) -> Option<(K, V)>
1135 where
1136 K: Borrow<Q> + Ord,
1137 Q: Ord,
1138 {
1139 let (map, dormant_map) = DormantMutRef::new(self);
1140 let root_node = map.root.as_mut()?.borrow_mut();
1141 match root_node.search_tree(key) {
1142 Found(handle) => Some(
1143 OccupiedEntry {
1144 handle,
1145 dormant_map,
1146 alloc: (*map.alloc).clone(),
1147 _marker: PhantomData,
1148 }
1149 .remove_entry(),
1150 ),
1151 GoDown(_) => None,
1152 }
1153 }
1154
1155 /// Retains only the elements specified by the predicate.
1156 ///
1157 /// In other words, remove all pairs `(k, v)` for which `f(&k, &mut v)` returns `false`.
1158 /// The elements are visited in ascending key order.
1159 ///
1160 /// # Examples
1161 ///
1162 /// ```
1163 /// use std::collections::BTreeMap;
1164 ///
1165 /// let mut map: BTreeMap<i32, i32> = (0..8).map(|x| (x, x*10)).collect();
1166 /// // Keep only the elements with even-numbered keys.
1167 /// map.retain(|&k, _| k % 2 == 0);
1168 /// assert!(map.into_iter().eq(vec![(0, 0), (2, 20), (4, 40), (6, 60)]));
1169 /// ```
1170 #[inline]
1171 #[stable(feature = "btree_retain", since = "1.53.0")]
1172 pub fn retain<F>(&mut self, mut f: F)
1173 where
1174 K: Ord,
1175 F: FnMut(&K, &mut V) -> bool,
1176 {
1177 self.extract_if(.., |k, v| !f(k, v)).for_each(drop);
1178 }
1179
1180 /// Moves all elements from `other` into `self`, leaving `other` empty.
1181 ///
1182 /// If a key from `other` is already present in `self`, the respective
1183 /// value from `self` will be overwritten with the respective value from `other`.
1184 ///
1185 /// # Examples
1186 ///
1187 /// ```
1188 /// use std::collections::BTreeMap;
1189 ///
1190 /// let mut a = BTreeMap::new();
1191 /// a.insert(1, "a");
1192 /// a.insert(2, "b");
1193 /// a.insert(3, "c"); // Note: Key (3) also present in b.
1194 ///
1195 /// let mut b = BTreeMap::new();
1196 /// b.insert(3, "d"); // Note: Key (3) also present in a.
1197 /// b.insert(4, "e");
1198 /// b.insert(5, "f");
1199 ///
1200 /// a.append(&mut b);
1201 ///
1202 /// assert_eq!(a.len(), 5);
1203 /// assert_eq!(b.len(), 0);
1204 ///
1205 /// assert_eq!(a[&1], "a");
1206 /// assert_eq!(a[&2], "b");
1207 /// assert_eq!(a[&3], "d"); // Note: "c" has been overwritten.
1208 /// assert_eq!(a[&4], "e");
1209 /// assert_eq!(a[&5], "f");
1210 /// ```
1211 #[stable(feature = "btree_append", since = "1.11.0")]
1212 pub fn append(&mut self, other: &mut Self)
1213 where
1214 K: Ord,
1215 A: Clone,
1216 {
1217 // Do we have to append anything at all?
1218 if other.is_empty() {
1219 return;
1220 }
1221
1222 // We can just swap `self` and `other` if `self` is empty.
1223 if self.is_empty() {
1224 mem::swap(self, other);
1225 return;
1226 }
1227
1228 let self_iter = mem::replace(self, Self::new_in((*self.alloc).clone())).into_iter();
1229 let other_iter = mem::replace(other, Self::new_in((*self.alloc).clone())).into_iter();
1230 let root = self.root.get_or_insert_with(|| Root::new((*self.alloc).clone()));
1231 root.append_from_sorted_iters(
1232 self_iter,
1233 other_iter,
1234 &mut self.length,
1235 (*self.alloc).clone(),
1236 )
1237 }
1238
1239 /// Constructs a double-ended iterator over a sub-range of elements in the map.
1240 /// The simplest way is to use the range syntax `min..max`, thus `range(min..max)` will
1241 /// yield elements from min (inclusive) to max (exclusive).
1242 /// The range may also be entered as `(Bound<T>, Bound<T>)`, so for example
1243 /// `range((Excluded(4), Included(10)))` will yield a left-exclusive, right-inclusive
1244 /// range from 4 to 10.
1245 ///
1246 /// # Panics
1247 ///
1248 /// Panics if range `start > end`.
1249 /// Panics if range `start == end` and both bounds are `Excluded`.
1250 ///
1251 /// # Examples
1252 ///
1253 /// ```
1254 /// use std::collections::BTreeMap;
1255 /// use std::ops::Bound::Included;
1256 ///
1257 /// let mut map = BTreeMap::new();
1258 /// map.insert(3, "a");
1259 /// map.insert(5, "b");
1260 /// map.insert(8, "c");
1261 /// for (&key, &value) in map.range((Included(&4), Included(&8))) {
1262 /// println!("{key}: {value}");
1263 /// }
1264 /// assert_eq!(Some((&5, &"b")), map.range(4..).next());
1265 /// ```
1266 #[stable(feature = "btree_range", since = "1.17.0")]
1267 pub fn range<T: ?Sized, R>(&self, range: R) -> Range<'_, K, V>
1268 where
1269 T: Ord,
1270 K: Borrow<T> + Ord,
1271 R: RangeBounds<T>,
1272 {
1273 if let Some(root) = &self.root {
1274 Range { inner: root.reborrow().range_search(range) }
1275 } else {
1276 Range { inner: LeafRange::none() }
1277 }
1278 }
1279
1280 /// Constructs a mutable double-ended iterator over a sub-range of elements in the map.
1281 /// The simplest way is to use the range syntax `min..max`, thus `range(min..max)` will
1282 /// yield elements from min (inclusive) to max (exclusive).
1283 /// The range may also be entered as `(Bound<T>, Bound<T>)`, so for example
1284 /// `range((Excluded(4), Included(10)))` will yield a left-exclusive, right-inclusive
1285 /// range from 4 to 10.
1286 ///
1287 /// # Panics
1288 ///
1289 /// Panics if range `start > end`.
1290 /// Panics if range `start == end` and both bounds are `Excluded`.
1291 ///
1292 /// # Examples
1293 ///
1294 /// ```
1295 /// use std::collections::BTreeMap;
1296 ///
1297 /// let mut map: BTreeMap<&str, i32> =
1298 /// [("Alice", 0), ("Bob", 0), ("Carol", 0), ("Cheryl", 0)].into();
1299 /// for (_, balance) in map.range_mut("B".."Cheryl") {
1300 /// *balance += 100;
1301 /// }
1302 /// for (name, balance) in &map {
1303 /// println!("{name} => {balance}");
1304 /// }
1305 /// ```
1306 #[stable(feature = "btree_range", since = "1.17.0")]
1307 pub fn range_mut<T: ?Sized, R>(&mut self, range: R) -> RangeMut<'_, K, V>
1308 where
1309 T: Ord,
1310 K: Borrow<T> + Ord,
1311 R: RangeBounds<T>,
1312 {
1313 if let Some(root) = &mut self.root {
1314 RangeMut { inner: root.borrow_valmut().range_search(range), _marker: PhantomData }
1315 } else {
1316 RangeMut { inner: LeafRange::none(), _marker: PhantomData }
1317 }
1318 }
1319
1320 /// Gets the given key's corresponding entry in the map for in-place manipulation.
1321 ///
1322 /// # Examples
1323 ///
1324 /// ```
1325 /// use std::collections::BTreeMap;
1326 ///
1327 /// let mut count: BTreeMap<&str, usize> = BTreeMap::new();
1328 ///
1329 /// // count the number of occurrences of letters in the vec
1330 /// for x in ["a", "b", "a", "c", "a", "b"] {
1331 /// count.entry(x).and_modify(|curr| *curr += 1).or_insert(1);
1332 /// }
1333 ///
1334 /// assert_eq!(count["a"], 3);
1335 /// assert_eq!(count["b"], 2);
1336 /// assert_eq!(count["c"], 1);
1337 /// ```
1338 #[stable(feature = "rust1", since = "1.0.0")]
1339 pub fn entry(&mut self, key: K) -> Entry<'_, K, V, A>
1340 where
1341 K: Ord,
1342 {
1343 let (map, dormant_map) = DormantMutRef::new(self);
1344 match map.root {
1345 None => Vacant(VacantEntry {
1346 key,
1347 handle: None,
1348 dormant_map,
1349 alloc: (*map.alloc).clone(),
1350 _marker: PhantomData,
1351 }),
1352 Some(ref mut root) => match root.borrow_mut().search_tree(&key) {
1353 Found(handle) => Occupied(OccupiedEntry {
1354 handle,
1355 dormant_map,
1356 alloc: (*map.alloc).clone(),
1357 _marker: PhantomData,
1358 }),
1359 GoDown(handle) => Vacant(VacantEntry {
1360 key,
1361 handle: Some(handle),
1362 dormant_map,
1363 alloc: (*map.alloc).clone(),
1364 _marker: PhantomData,
1365 }),
1366 },
1367 }
1368 }
1369
1370 /// Splits the collection into two at the given key. Returns everything after the given key,
1371 /// including the key. If the key is not present, the split will occur at the nearest
1372 /// greater key, or return an empty map if no such key exists.
1373 ///
1374 /// # Examples
1375 ///
1376 /// ```
1377 /// use std::collections::BTreeMap;
1378 ///
1379 /// let mut a = BTreeMap::new();
1380 /// a.insert(1, "a");
1381 /// a.insert(2, "b");
1382 /// a.insert(3, "c");
1383 /// a.insert(17, "d");
1384 /// a.insert(41, "e");
1385 ///
1386 /// let b = a.split_off(&3);
1387 ///
1388 /// assert_eq!(a.len(), 2);
1389 /// assert_eq!(b.len(), 3);
1390 ///
1391 /// assert_eq!(a[&1], "a");
1392 /// assert_eq!(a[&2], "b");
1393 ///
1394 /// assert_eq!(b[&3], "c");
1395 /// assert_eq!(b[&17], "d");
1396 /// assert_eq!(b[&41], "e");
1397 /// ```
1398 #[stable(feature = "btree_split_off", since = "1.11.0")]
1399 pub fn split_off<Q: ?Sized + Ord>(&mut self, key: &Q) -> Self
1400 where
1401 K: Borrow<Q> + Ord,
1402 A: Clone,
1403 {
1404 if self.is_empty() {
1405 return Self::new_in((*self.alloc).clone());
1406 }
1407
1408 let total_num = self.len();
1409 let left_root = self.root.as_mut().unwrap(); // unwrap succeeds because not empty
1410
1411 let right_root = left_root.split_off(key, (*self.alloc).clone());
1412
1413 let (new_left_len, right_len) = Root::calc_split_length(total_num, &left_root, &right_root);
1414 self.length = new_left_len;
1415
1416 BTreeMap {
1417 root: Some(right_root),
1418 length: right_len,
1419 alloc: self.alloc.clone(),
1420 _marker: PhantomData,
1421 }
1422 }
1423
1424 /// Creates an iterator that visits elements (key-value pairs) in the specified range in
1425 /// ascending key order and uses a closure to determine if an element
1426 /// should be removed.
1427 ///
1428 /// If the closure returns `true`, the element is removed from the map and
1429 /// yielded. If the closure returns `false`, or panics, the element remains
1430 /// in the map and will not be yielded.
1431 ///
1432 /// The iterator also lets you mutate the value of each element in the
1433 /// closure, regardless of whether you choose to keep or remove it.
1434 ///
1435 /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
1436 /// or the iteration short-circuits, then the remaining elements will be retained.
1437 /// Use `extract_if().for_each(drop)` if you do not need the returned iterator,
1438 /// or [`retain`] with a negated predicate if you also do not need to restrict the range.
1439 ///
1440 /// [`retain`]: BTreeMap::retain
1441 ///
1442 /// # Examples
1443 ///
1444 /// ```
1445 /// use std::collections::BTreeMap;
1446 ///
1447 /// // Splitting a map into even and odd keys, reusing the original map:
1448 /// let mut map: BTreeMap<i32, i32> = (0..8).map(|x| (x, x)).collect();
1449 /// let evens: BTreeMap<_, _> = map.extract_if(.., |k, _v| k % 2 == 0).collect();
1450 /// let odds = map;
1451 /// assert_eq!(evens.keys().copied().collect::<Vec<_>>(), [0, 2, 4, 6]);
1452 /// assert_eq!(odds.keys().copied().collect::<Vec<_>>(), [1, 3, 5, 7]);
1453 ///
1454 /// // Splitting a map into low and high halves, reusing the original map:
1455 /// let mut map: BTreeMap<i32, i32> = (0..8).map(|x| (x, x)).collect();
1456 /// let low: BTreeMap<_, _> = map.extract_if(0..4, |_k, _v| true).collect();
1457 /// let high = map;
1458 /// assert_eq!(low.keys().copied().collect::<Vec<_>>(), [0, 1, 2, 3]);
1459 /// assert_eq!(high.keys().copied().collect::<Vec<_>>(), [4, 5, 6, 7]);
1460 /// ```
1461 #[stable(feature = "btree_extract_if", since = "1.91.0")]
1462 pub fn extract_if<F, R>(&mut self, range: R, pred: F) -> ExtractIf<'_, K, V, R, F, A>
1463 where
1464 K: Ord,
1465 R: RangeBounds<K>,
1466 F: FnMut(&K, &mut V) -> bool,
1467 {
1468 let (inner, alloc) = self.extract_if_inner(range);
1469 ExtractIf { pred, inner, alloc }
1470 }
1471
1472 pub(super) fn extract_if_inner<R>(&mut self, range: R) -> (ExtractIfInner<'_, K, V, R>, A)
1473 where
1474 K: Ord,
1475 R: RangeBounds<K>,
1476 {
1477 if let Some(root) = self.root.as_mut() {
1478 let (root, dormant_root) = DormantMutRef::new(root);
1479 let first = root.borrow_mut().lower_bound(SearchBound::from_range(range.start_bound()));
1480 (
1481 ExtractIfInner {
1482 length: &mut self.length,
1483 dormant_root: Some(dormant_root),
1484 cur_leaf_edge: Some(first),
1485 range,
1486 },
1487 (*self.alloc).clone(),
1488 )
1489 } else {
1490 (
1491 ExtractIfInner {
1492 length: &mut self.length,
1493 dormant_root: None,
1494 cur_leaf_edge: None,
1495 range,
1496 },
1497 (*self.alloc).clone(),
1498 )
1499 }
1500 }
1501
1502 /// Creates a consuming iterator visiting all the keys, in sorted order.
1503 /// The map cannot be used after calling this.
1504 /// The iterator element type is `K`.
1505 ///
1506 /// # Examples
1507 ///
1508 /// ```
1509 /// use std::collections::BTreeMap;
1510 ///
1511 /// let mut a = BTreeMap::new();
1512 /// a.insert(2, "b");
1513 /// a.insert(1, "a");
1514 ///
1515 /// let keys: Vec<i32> = a.into_keys().collect();
1516 /// assert_eq!(keys, [1, 2]);
1517 /// ```
1518 #[inline]
1519 #[stable(feature = "map_into_keys_values", since = "1.54.0")]
1520 pub fn into_keys(self) -> IntoKeys<K, V, A> {
1521 IntoKeys { inner: self.into_iter() }
1522 }
1523
1524 /// Creates a consuming iterator visiting all the values, in order by key.
1525 /// The map cannot be used after calling this.
1526 /// The iterator element type is `V`.
1527 ///
1528 /// # Examples
1529 ///
1530 /// ```
1531 /// use std::collections::BTreeMap;
1532 ///
1533 /// let mut a = BTreeMap::new();
1534 /// a.insert(1, "hello");
1535 /// a.insert(2, "goodbye");
1536 ///
1537 /// let values: Vec<&str> = a.into_values().collect();
1538 /// assert_eq!(values, ["hello", "goodbye"]);
1539 /// ```
1540 #[inline]
1541 #[stable(feature = "map_into_keys_values", since = "1.54.0")]
1542 pub fn into_values(self) -> IntoValues<K, V, A> {
1543 IntoValues { inner: self.into_iter() }
1544 }
1545
1546 /// Makes a `BTreeMap` from a sorted iterator.
1547 pub(crate) fn bulk_build_from_sorted_iter<I>(iter: I, alloc: A) -> Self
1548 where
1549 K: Ord,
1550 I: IntoIterator<Item = (K, V)>,
1551 {
1552 let mut root = Root::new(alloc.clone());
1553 let mut length = 0;
1554 root.bulk_push(DedupSortedIter::new(iter.into_iter()), &mut length, alloc.clone());
1555 BTreeMap { root: Some(root), length, alloc: ManuallyDrop::new(alloc), _marker: PhantomData }
1556 }
1557}
1558
1559#[stable(feature = "rust1", since = "1.0.0")]
1560impl<'a, K, V, A: Allocator + Clone> IntoIterator for &'a BTreeMap<K, V, A> {
1561 type Item = (&'a K, &'a V);
1562 type IntoIter = Iter<'a, K, V>;
1563
1564 fn into_iter(self) -> Iter<'a, K, V> {
1565 self.iter()
1566 }
1567}
1568
1569#[stable(feature = "rust1", since = "1.0.0")]
1570impl<'a, K: 'a, V: 'a> Iterator for Iter<'a, K, V> {
1571 type Item = (&'a K, &'a V);
1572
1573 fn next(&mut self) -> Option<(&'a K, &'a V)> {
1574 if self.length == 0 {
1575 None
1576 } else {
1577 self.length -= 1;
1578 Some(unsafe { self.range.next_unchecked() })
1579 }
1580 }
1581
1582 fn size_hint(&self) -> (usize, Option<usize>) {
1583 (self.length, Some(self.length))
1584 }
1585
1586 fn last(mut self) -> Option<(&'a K, &'a V)> {
1587 self.next_back()
1588 }
1589
1590 fn min(mut self) -> Option<(&'a K, &'a V)>
1591 where
1592 (&'a K, &'a V): Ord,
1593 {
1594 self.next()
1595 }
1596
1597 fn max(mut self) -> Option<(&'a K, &'a V)>
1598 where
1599 (&'a K, &'a V): Ord,
1600 {
1601 self.next_back()
1602 }
1603}
1604
1605#[stable(feature = "fused", since = "1.26.0")]
1606impl<K, V> FusedIterator for Iter<'_, K, V> {}
1607
1608#[stable(feature = "rust1", since = "1.0.0")]
1609impl<'a, K: 'a, V: 'a> DoubleEndedIterator for Iter<'a, K, V> {
1610 fn next_back(&mut self) -> Option<(&'a K, &'a V)> {
1611 if self.length == 0 {
1612 None
1613 } else {
1614 self.length -= 1;
1615 Some(unsafe { self.range.next_back_unchecked() })
1616 }
1617 }
1618}
1619
1620#[stable(feature = "rust1", since = "1.0.0")]
1621impl<K, V> ExactSizeIterator for Iter<'_, K, V> {
1622 fn len(&self) -> usize {
1623 self.length
1624 }
1625}
1626
1627#[stable(feature = "rust1", since = "1.0.0")]
1628impl<K, V> Clone for Iter<'_, K, V> {
1629 fn clone(&self) -> Self {
1630 Iter { range: self.range.clone(), length: self.length }
1631 }
1632}
1633
1634#[stable(feature = "rust1", since = "1.0.0")]
1635impl<'a, K, V, A: Allocator + Clone> IntoIterator for &'a mut BTreeMap<K, V, A> {
1636 type Item = (&'a K, &'a mut V);
1637 type IntoIter = IterMut<'a, K, V>;
1638
1639 fn into_iter(self) -> IterMut<'a, K, V> {
1640 self.iter_mut()
1641 }
1642}
1643
1644#[stable(feature = "rust1", since = "1.0.0")]
1645impl<'a, K, V> Iterator for IterMut<'a, K, V> {
1646 type Item = (&'a K, &'a mut V);
1647
1648 fn next(&mut self) -> Option<(&'a K, &'a mut V)> {
1649 if self.length == 0 {
1650 None
1651 } else {
1652 self.length -= 1;
1653 Some(unsafe { self.range.next_unchecked() })
1654 }
1655 }
1656
1657 fn size_hint(&self) -> (usize, Option<usize>) {
1658 (self.length, Some(self.length))
1659 }
1660
1661 fn last(mut self) -> Option<(&'a K, &'a mut V)> {
1662 self.next_back()
1663 }
1664
1665 fn min(mut self) -> Option<(&'a K, &'a mut V)>
1666 where
1667 (&'a K, &'a mut V): Ord,
1668 {
1669 self.next()
1670 }
1671
1672 fn max(mut self) -> Option<(&'a K, &'a mut V)>
1673 where
1674 (&'a K, &'a mut V): Ord,
1675 {
1676 self.next_back()
1677 }
1678}
1679
1680#[stable(feature = "rust1", since = "1.0.0")]
1681impl<'a, K, V> DoubleEndedIterator for IterMut<'a, K, V> {
1682 fn next_back(&mut self) -> Option<(&'a K, &'a mut V)> {
1683 if self.length == 0 {
1684 None
1685 } else {
1686 self.length -= 1;
1687 Some(unsafe { self.range.next_back_unchecked() })
1688 }
1689 }
1690}
1691
1692#[stable(feature = "rust1", since = "1.0.0")]
1693impl<K, V> ExactSizeIterator for IterMut<'_, K, V> {
1694 fn len(&self) -> usize {
1695 self.length
1696 }
1697}
1698
1699#[stable(feature = "fused", since = "1.26.0")]
1700impl<K, V> FusedIterator for IterMut<'_, K, V> {}
1701
1702impl<'a, K, V> IterMut<'a, K, V> {
1703 /// Returns an iterator of references over the remaining items.
1704 #[inline]
1705 pub(super) fn iter(&self) -> Iter<'_, K, V> {
1706 Iter { range: self.range.reborrow(), length: self.length }
1707 }
1708}
1709
1710#[stable(feature = "rust1", since = "1.0.0")]
1711impl<K, V, A: Allocator + Clone> IntoIterator for BTreeMap<K, V, A> {
1712 type Item = (K, V);
1713 type IntoIter = IntoIter<K, V, A>;
1714
1715 /// Gets an owning iterator over the entries of the map, sorted by key.
1716 fn into_iter(self) -> IntoIter<K, V, A> {
1717 let mut me = ManuallyDrop::new(self);
1718 if let Some(root) = me.root.take() {
1719 let full_range = root.into_dying().full_range();
1720
1721 IntoIter {
1722 range: full_range,
1723 length: me.length,
1724 alloc: unsafe { ManuallyDrop::take(&mut me.alloc) },
1725 }
1726 } else {
1727 IntoIter {
1728 range: LazyLeafRange::none(),
1729 length: 0,
1730 alloc: unsafe { ManuallyDrop::take(&mut me.alloc) },
1731 }
1732 }
1733 }
1734}
1735
1736#[stable(feature = "btree_drop", since = "1.7.0")]
1737impl<K, V, A: Allocator + Clone> Drop for IntoIter<K, V, A> {
1738 fn drop(&mut self) {
1739 struct DropGuard<'a, K, V, A: Allocator + Clone>(&'a mut IntoIter<K, V, A>);
1740
1741 impl<'a, K, V, A: Allocator + Clone> Drop for DropGuard<'a, K, V, A> {
1742 fn drop(&mut self) {
1743 // Continue the same loop we perform below. This only runs when unwinding, so we
1744 // don't have to care about panics this time (they'll abort).
1745 while let Some(kv) = self.0.dying_next() {
1746 // SAFETY: we consume the dying handle immediately.
1747 unsafe { kv.drop_key_val() };
1748 }
1749 }
1750 }
1751
1752 while let Some(kv) = self.dying_next() {
1753 let guard = DropGuard(self);
1754 // SAFETY: we don't touch the tree before consuming the dying handle.
1755 unsafe { kv.drop_key_val() };
1756 mem::forget(guard);
1757 }
1758 }
1759}
1760
1761impl<K, V, A: Allocator + Clone> IntoIter<K, V, A> {
1762 /// Core of a `next` method returning a dying KV handle,
1763 /// invalidated by further calls to this function and some others.
1764 fn dying_next(
1765 &mut self,
1766 ) -> Option<Handle<NodeRef<marker::Dying, K, V, marker::LeafOrInternal>, marker::KV>> {
1767 if self.length == 0 {
1768 self.range.deallocating_end(self.alloc.clone());
1769 None
1770 } else {
1771 self.length -= 1;
1772 Some(unsafe { self.range.deallocating_next_unchecked(self.alloc.clone()) })
1773 }
1774 }
1775
1776 /// Core of a `next_back` method returning a dying KV handle,
1777 /// invalidated by further calls to this function and some others.
1778 fn dying_next_back(
1779 &mut self,
1780 ) -> Option<Handle<NodeRef<marker::Dying, K, V, marker::LeafOrInternal>, marker::KV>> {
1781 if self.length == 0 {
1782 self.range.deallocating_end(self.alloc.clone());
1783 None
1784 } else {
1785 self.length -= 1;
1786 Some(unsafe { self.range.deallocating_next_back_unchecked(self.alloc.clone()) })
1787 }
1788 }
1789}
1790
1791#[stable(feature = "rust1", since = "1.0.0")]
1792impl<K, V, A: Allocator + Clone> Iterator for IntoIter<K, V, A> {
1793 type Item = (K, V);
1794
1795 fn next(&mut self) -> Option<(K, V)> {
1796 // SAFETY: we consume the dying handle immediately.
1797 self.dying_next().map(unsafe { |kv| kv.into_key_val() })
1798 }
1799
1800 fn size_hint(&self) -> (usize, Option<usize>) {
1801 (self.length, Some(self.length))
1802 }
1803}
1804
1805#[stable(feature = "rust1", since = "1.0.0")]
1806impl<K, V, A: Allocator + Clone> DoubleEndedIterator for IntoIter<K, V, A> {
1807 fn next_back(&mut self) -> Option<(K, V)> {
1808 // SAFETY: we consume the dying handle immediately.
1809 self.dying_next_back().map(unsafe { |kv| kv.into_key_val() })
1810 }
1811}
1812
1813#[stable(feature = "rust1", since = "1.0.0")]
1814impl<K, V, A: Allocator + Clone> ExactSizeIterator for IntoIter<K, V, A> {
1815 fn len(&self) -> usize {
1816 self.length
1817 }
1818}
1819
1820#[stable(feature = "fused", since = "1.26.0")]
1821impl<K, V, A: Allocator + Clone> FusedIterator for IntoIter<K, V, A> {}
1822
1823#[stable(feature = "rust1", since = "1.0.0")]
1824impl<'a, K, V> Iterator for Keys<'a, K, V> {
1825 type Item = &'a K;
1826
1827 fn next(&mut self) -> Option<&'a K> {
1828 self.inner.next().map(|(k, _)| k)
1829 }
1830
1831 fn size_hint(&self) -> (usize, Option<usize>) {
1832 self.inner.size_hint()
1833 }
1834
1835 fn last(mut self) -> Option<&'a K> {
1836 self.next_back()
1837 }
1838
1839 fn min(mut self) -> Option<&'a K>
1840 where
1841 &'a K: Ord,
1842 {
1843 self.next()
1844 }
1845
1846 fn max(mut self) -> Option<&'a K>
1847 where
1848 &'a K: Ord,
1849 {
1850 self.next_back()
1851 }
1852}
1853
1854#[stable(feature = "rust1", since = "1.0.0")]
1855impl<'a, K, V> DoubleEndedIterator for Keys<'a, K, V> {
1856 fn next_back(&mut self) -> Option<&'a K> {
1857 self.inner.next_back().map(|(k, _)| k)
1858 }
1859}
1860
1861#[stable(feature = "rust1", since = "1.0.0")]
1862impl<K, V> ExactSizeIterator for Keys<'_, K, V> {
1863 fn len(&self) -> usize {
1864 self.inner.len()
1865 }
1866}
1867
1868#[stable(feature = "fused", since = "1.26.0")]
1869impl<K, V> FusedIterator for Keys<'_, K, V> {}
1870
1871#[stable(feature = "rust1", since = "1.0.0")]
1872impl<K, V> Clone for Keys<'_, K, V> {
1873 fn clone(&self) -> Self {
1874 Keys { inner: self.inner.clone() }
1875 }
1876}
1877
1878#[stable(feature = "default_iters", since = "1.70.0")]
1879impl<K, V> Default for Keys<'_, K, V> {
1880 /// Creates an empty `btree_map::Keys`.
1881 ///
1882 /// ```
1883 /// # use std::collections::btree_map;
1884 /// let iter: btree_map::Keys<'_, u8, u8> = Default::default();
1885 /// assert_eq!(iter.len(), 0);
1886 /// ```
1887 fn default() -> Self {
1888 Keys { inner: Default::default() }
1889 }
1890}
1891
1892#[stable(feature = "rust1", since = "1.0.0")]
1893impl<'a, K, V> Iterator for Values<'a, K, V> {
1894 type Item = &'a V;
1895
1896 fn next(&mut self) -> Option<&'a V> {
1897 self.inner.next().map(|(_, v)| v)
1898 }
1899
1900 fn size_hint(&self) -> (usize, Option<usize>) {
1901 self.inner.size_hint()
1902 }
1903
1904 fn last(mut self) -> Option<&'a V> {
1905 self.next_back()
1906 }
1907}
1908
1909#[stable(feature = "rust1", since = "1.0.0")]
1910impl<'a, K, V> DoubleEndedIterator for Values<'a, K, V> {
1911 fn next_back(&mut self) -> Option<&'a V> {
1912 self.inner.next_back().map(|(_, v)| v)
1913 }
1914}
1915
1916#[stable(feature = "rust1", since = "1.0.0")]
1917impl<K, V> ExactSizeIterator for Values<'_, K, V> {
1918 fn len(&self) -> usize {
1919 self.inner.len()
1920 }
1921}
1922
1923#[stable(feature = "fused", since = "1.26.0")]
1924impl<K, V> FusedIterator for Values<'_, K, V> {}
1925
1926#[stable(feature = "rust1", since = "1.0.0")]
1927impl<K, V> Clone for Values<'_, K, V> {
1928 fn clone(&self) -> Self {
1929 Values { inner: self.inner.clone() }
1930 }
1931}
1932
1933#[stable(feature = "default_iters", since = "1.70.0")]
1934impl<K, V> Default for Values<'_, K, V> {
1935 /// Creates an empty `btree_map::Values`.
1936 ///
1937 /// ```
1938 /// # use std::collections::btree_map;
1939 /// let iter: btree_map::Values<'_, u8, u8> = Default::default();
1940 /// assert_eq!(iter.len(), 0);
1941 /// ```
1942 fn default() -> Self {
1943 Values { inner: Default::default() }
1944 }
1945}
1946
1947/// An iterator produced by calling `extract_if` on BTreeMap.
1948#[stable(feature = "btree_extract_if", since = "1.91.0")]
1949#[must_use = "iterators are lazy and do nothing unless consumed; \
1950 use `retain` or `extract_if().for_each(drop)` to remove and discard elements"]
1951pub struct ExtractIf<
1952 'a,
1953 K,
1954 V,
1955 R,
1956 F,
1957 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator + Clone = Global,
1958> {
1959 pred: F,
1960 inner: ExtractIfInner<'a, K, V, R>,
1961 /// The BTreeMap will outlive this IntoIter so we don't care about drop order for `alloc`.
1962 alloc: A,
1963}
1964
1965/// Most of the implementation of ExtractIf are generic over the type
1966/// of the predicate, thus also serving for BTreeSet::ExtractIf.
1967pub(super) struct ExtractIfInner<'a, K, V, R> {
1968 /// Reference to the length field in the borrowed map, updated live.
1969 length: &'a mut usize,
1970 /// Buried reference to the root field in the borrowed map.
1971 /// Wrapped in `Option` to allow drop handler to `take` it.
1972 dormant_root: Option<DormantMutRef<'a, Root<K, V>>>,
1973 /// Contains a leaf edge preceding the next element to be returned, or the last leaf edge.
1974 /// Empty if the map has no root, if iteration went beyond the last leaf edge,
1975 /// or if a panic occurred in the predicate.
1976 cur_leaf_edge: Option<Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>>,
1977 /// Range over which iteration was requested. We don't need the left side, but we
1978 /// can't extract the right side without requiring K: Clone.
1979 range: R,
1980}
1981
1982#[stable(feature = "btree_extract_if", since = "1.91.0")]
1983impl<K, V, R, F, A> fmt::Debug for ExtractIf<'_, K, V, R, F, A>
1984where
1985 K: fmt::Debug,
1986 V: fmt::Debug,
1987 A: Allocator + Clone,
1988{
1989 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1990 f.debug_struct("ExtractIf").field("peek", &self.inner.peek()).finish_non_exhaustive()
1991 }
1992}
1993
1994#[stable(feature = "btree_extract_if", since = "1.91.0")]
1995impl<K, V, R, F, A: Allocator + Clone> Iterator for ExtractIf<'_, K, V, R, F, A>
1996where
1997 K: PartialOrd,
1998 R: RangeBounds<K>,
1999 F: FnMut(&K, &mut V) -> bool,
2000{
2001 type Item = (K, V);
2002
2003 fn next(&mut self) -> Option<(K, V)> {
2004 self.inner.next(&mut self.pred, self.alloc.clone())
2005 }
2006
2007 fn size_hint(&self) -> (usize, Option<usize>) {
2008 self.inner.size_hint()
2009 }
2010}
2011
2012impl<'a, K, V, R> ExtractIfInner<'a, K, V, R> {
2013 /// Allow Debug implementations to predict the next element.
2014 pub(super) fn peek(&self) -> Option<(&K, &V)> {
2015 let edge = self.cur_leaf_edge.as_ref()?;
2016 edge.reborrow().next_kv().ok().map(Handle::into_kv)
2017 }
2018
2019 /// Implementation of a typical `ExtractIf::next` method, given the predicate.
2020 pub(super) fn next<F, A: Allocator + Clone>(&mut self, pred: &mut F, alloc: A) -> Option<(K, V)>
2021 where
2022 K: PartialOrd,
2023 R: RangeBounds<K>,
2024 F: FnMut(&K, &mut V) -> bool,
2025 {
2026 while let Ok(mut kv) = self.cur_leaf_edge.take()?.next_kv() {
2027 let (k, v) = kv.kv_mut();
2028
2029 // On creation, we navigated directly to the left bound, so we need only check the
2030 // right bound here to decide whether to stop.
2031 match self.range.end_bound() {
2032 Bound::Included(ref end) if (*k).le(end) => (),
2033 Bound::Excluded(ref end) if (*k).lt(end) => (),
2034 Bound::Unbounded => (),
2035 _ => return None,
2036 }
2037
2038 if pred(k, v) {
2039 *self.length -= 1;
2040 let (kv, pos) = kv.remove_kv_tracking(
2041 || {
2042 // SAFETY: we will touch the root in a way that will not
2043 // invalidate the position returned.
2044 let root = unsafe { self.dormant_root.take().unwrap().awaken() };
2045 root.pop_internal_level(alloc.clone());
2046 self.dormant_root = Some(DormantMutRef::new(root).1);
2047 },
2048 alloc.clone(),
2049 );
2050 self.cur_leaf_edge = Some(pos);
2051 return Some(kv);
2052 }
2053 self.cur_leaf_edge = Some(kv.next_leaf_edge());
2054 }
2055 None
2056 }
2057
2058 /// Implementation of a typical `ExtractIf::size_hint` method.
2059 pub(super) fn size_hint(&self) -> (usize, Option<usize>) {
2060 // In most of the btree iterators, `self.length` is the number of elements
2061 // yet to be visited. Here, it includes elements that were visited and that
2062 // the predicate decided not to drain. Making this upper bound more tight
2063 // during iteration would require an extra field.
2064 (0, Some(*self.length))
2065 }
2066}
2067
2068#[stable(feature = "btree_extract_if", since = "1.91.0")]
2069impl<K, V, R, F> FusedIterator for ExtractIf<'_, K, V, R, F>
2070where
2071 K: PartialOrd,
2072 R: RangeBounds<K>,
2073 F: FnMut(&K, &mut V) -> bool,
2074{
2075}
2076
2077#[stable(feature = "btree_range", since = "1.17.0")]
2078impl<'a, K, V> Iterator for Range<'a, K, V> {
2079 type Item = (&'a K, &'a V);
2080
2081 fn next(&mut self) -> Option<(&'a K, &'a V)> {
2082 self.inner.next_checked()
2083 }
2084
2085 fn last(mut self) -> Option<(&'a K, &'a V)> {
2086 self.next_back()
2087 }
2088
2089 fn min(mut self) -> Option<(&'a K, &'a V)>
2090 where
2091 (&'a K, &'a V): Ord,
2092 {
2093 self.next()
2094 }
2095
2096 fn max(mut self) -> Option<(&'a K, &'a V)>
2097 where
2098 (&'a K, &'a V): Ord,
2099 {
2100 self.next_back()
2101 }
2102}
2103
2104#[stable(feature = "default_iters", since = "1.70.0")]
2105impl<K, V> Default for Range<'_, K, V> {
2106 /// Creates an empty `btree_map::Range`.
2107 ///
2108 /// ```
2109 /// # use std::collections::btree_map;
2110 /// let iter: btree_map::Range<'_, u8, u8> = Default::default();
2111 /// assert_eq!(iter.count(), 0);
2112 /// ```
2113 fn default() -> Self {
2114 Range { inner: Default::default() }
2115 }
2116}
2117
2118#[stable(feature = "default_iters_sequel", since = "1.82.0")]
2119impl<K, V> Default for RangeMut<'_, K, V> {
2120 /// Creates an empty `btree_map::RangeMut`.
2121 ///
2122 /// ```
2123 /// # use std::collections::btree_map;
2124 /// let iter: btree_map::RangeMut<'_, u8, u8> = Default::default();
2125 /// assert_eq!(iter.count(), 0);
2126 /// ```
2127 fn default() -> Self {
2128 RangeMut { inner: Default::default(), _marker: PhantomData }
2129 }
2130}
2131
2132#[stable(feature = "map_values_mut", since = "1.10.0")]
2133impl<'a, K, V> Iterator for ValuesMut<'a, K, V> {
2134 type Item = &'a mut V;
2135
2136 fn next(&mut self) -> Option<&'a mut V> {
2137 self.inner.next().map(|(_, v)| v)
2138 }
2139
2140 fn size_hint(&self) -> (usize, Option<usize>) {
2141 self.inner.size_hint()
2142 }
2143
2144 fn last(mut self) -> Option<&'a mut V> {
2145 self.next_back()
2146 }
2147}
2148
2149#[stable(feature = "map_values_mut", since = "1.10.0")]
2150impl<'a, K, V> DoubleEndedIterator for ValuesMut<'a, K, V> {
2151 fn next_back(&mut self) -> Option<&'a mut V> {
2152 self.inner.next_back().map(|(_, v)| v)
2153 }
2154}
2155
2156#[stable(feature = "map_values_mut", since = "1.10.0")]
2157impl<K, V> ExactSizeIterator for ValuesMut<'_, K, V> {
2158 fn len(&self) -> usize {
2159 self.inner.len()
2160 }
2161}
2162
2163#[stable(feature = "fused", since = "1.26.0")]
2164impl<K, V> FusedIterator for ValuesMut<'_, K, V> {}
2165
2166#[stable(feature = "default_iters_sequel", since = "1.82.0")]
2167impl<K, V> Default for ValuesMut<'_, K, V> {
2168 /// Creates an empty `btree_map::ValuesMut`.
2169 ///
2170 /// ```
2171 /// # use std::collections::btree_map;
2172 /// let iter: btree_map::ValuesMut<'_, u8, u8> = Default::default();
2173 /// assert_eq!(iter.count(), 0);
2174 /// ```
2175 fn default() -> Self {
2176 ValuesMut { inner: Default::default() }
2177 }
2178}
2179
2180#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2181impl<K, V, A: Allocator + Clone> Iterator for IntoKeys<K, V, A> {
2182 type Item = K;
2183
2184 fn next(&mut self) -> Option<K> {
2185 self.inner.next().map(|(k, _)| k)
2186 }
2187
2188 fn size_hint(&self) -> (usize, Option<usize>) {
2189 self.inner.size_hint()
2190 }
2191
2192 fn last(mut self) -> Option<K> {
2193 self.next_back()
2194 }
2195
2196 fn min(mut self) -> Option<K>
2197 where
2198 K: Ord,
2199 {
2200 self.next()
2201 }
2202
2203 fn max(mut self) -> Option<K>
2204 where
2205 K: Ord,
2206 {
2207 self.next_back()
2208 }
2209}
2210
2211#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2212impl<K, V, A: Allocator + Clone> DoubleEndedIterator for IntoKeys<K, V, A> {
2213 fn next_back(&mut self) -> Option<K> {
2214 self.inner.next_back().map(|(k, _)| k)
2215 }
2216}
2217
2218#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2219impl<K, V, A: Allocator + Clone> ExactSizeIterator for IntoKeys<K, V, A> {
2220 fn len(&self) -> usize {
2221 self.inner.len()
2222 }
2223}
2224
2225#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2226impl<K, V, A: Allocator + Clone> FusedIterator for IntoKeys<K, V, A> {}
2227
2228#[stable(feature = "default_iters", since = "1.70.0")]
2229impl<K, V, A> Default for IntoKeys<K, V, A>
2230where
2231 A: Allocator + Default + Clone,
2232{
2233 /// Creates an empty `btree_map::IntoKeys`.
2234 ///
2235 /// ```
2236 /// # use std::collections::btree_map;
2237 /// let iter: btree_map::IntoKeys<u8, u8> = Default::default();
2238 /// assert_eq!(iter.len(), 0);
2239 /// ```
2240 fn default() -> Self {
2241 IntoKeys { inner: Default::default() }
2242 }
2243}
2244
2245#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2246impl<K, V, A: Allocator + Clone> Iterator for IntoValues<K, V, A> {
2247 type Item = V;
2248
2249 fn next(&mut self) -> Option<V> {
2250 self.inner.next().map(|(_, v)| v)
2251 }
2252
2253 fn size_hint(&self) -> (usize, Option<usize>) {
2254 self.inner.size_hint()
2255 }
2256
2257 fn last(mut self) -> Option<V> {
2258 self.next_back()
2259 }
2260}
2261
2262#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2263impl<K, V, A: Allocator + Clone> DoubleEndedIterator for IntoValues<K, V, A> {
2264 fn next_back(&mut self) -> Option<V> {
2265 self.inner.next_back().map(|(_, v)| v)
2266 }
2267}
2268
2269#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2270impl<K, V, A: Allocator + Clone> ExactSizeIterator for IntoValues<K, V, A> {
2271 fn len(&self) -> usize {
2272 self.inner.len()
2273 }
2274}
2275
2276#[stable(feature = "map_into_keys_values", since = "1.54.0")]
2277impl<K, V, A: Allocator + Clone> FusedIterator for IntoValues<K, V, A> {}
2278
2279#[stable(feature = "default_iters", since = "1.70.0")]
2280impl<K, V, A> Default for IntoValues<K, V, A>
2281where
2282 A: Allocator + Default + Clone,
2283{
2284 /// Creates an empty `btree_map::IntoValues`.
2285 ///
2286 /// ```
2287 /// # use std::collections::btree_map;
2288 /// let iter: btree_map::IntoValues<u8, u8> = Default::default();
2289 /// assert_eq!(iter.len(), 0);
2290 /// ```
2291 fn default() -> Self {
2292 IntoValues { inner: Default::default() }
2293 }
2294}
2295
2296#[stable(feature = "btree_range", since = "1.17.0")]
2297impl<'a, K, V> DoubleEndedIterator for Range<'a, K, V> {
2298 fn next_back(&mut self) -> Option<(&'a K, &'a V)> {
2299 self.inner.next_back_checked()
2300 }
2301}
2302
2303#[stable(feature = "fused", since = "1.26.0")]
2304impl<K, V> FusedIterator for Range<'_, K, V> {}
2305
2306#[stable(feature = "btree_range", since = "1.17.0")]
2307impl<K, V> Clone for Range<'_, K, V> {
2308 fn clone(&self) -> Self {
2309 Range { inner: self.inner.clone() }
2310 }
2311}
2312
2313#[stable(feature = "btree_range", since = "1.17.0")]
2314impl<'a, K, V> Iterator for RangeMut<'a, K, V> {
2315 type Item = (&'a K, &'a mut V);
2316
2317 fn next(&mut self) -> Option<(&'a K, &'a mut V)> {
2318 self.inner.next_checked()
2319 }
2320
2321 fn last(mut self) -> Option<(&'a K, &'a mut V)> {
2322 self.next_back()
2323 }
2324
2325 fn min(mut self) -> Option<(&'a K, &'a mut V)>
2326 where
2327 (&'a K, &'a mut V): Ord,
2328 {
2329 self.next()
2330 }
2331
2332 fn max(mut self) -> Option<(&'a K, &'a mut V)>
2333 where
2334 (&'a K, &'a mut V): Ord,
2335 {
2336 self.next_back()
2337 }
2338}
2339
2340#[stable(feature = "btree_range", since = "1.17.0")]
2341impl<'a, K, V> DoubleEndedIterator for RangeMut<'a, K, V> {
2342 fn next_back(&mut self) -> Option<(&'a K, &'a mut V)> {
2343 self.inner.next_back_checked()
2344 }
2345}
2346
2347#[stable(feature = "fused", since = "1.26.0")]
2348impl<K, V> FusedIterator for RangeMut<'_, K, V> {}
2349
2350#[stable(feature = "rust1", since = "1.0.0")]
2351impl<K: Ord, V> FromIterator<(K, V)> for BTreeMap<K, V> {
2352 /// Constructs a `BTreeMap<K, V>` from an iterator of key-value pairs.
2353 ///
2354 /// If the iterator produces any pairs with equal keys,
2355 /// all but one of the corresponding values will be dropped.
2356 fn from_iter<T: IntoIterator<Item = (K, V)>>(iter: T) -> BTreeMap<K, V> {
2357 let mut inputs: Vec<_> = iter.into_iter().collect();
2358
2359 if inputs.is_empty() {
2360 return BTreeMap::new();
2361 }
2362
2363 // use stable sort to preserve the insertion order.
2364 inputs.sort_by(|a, b| a.0.cmp(&b.0));
2365 BTreeMap::bulk_build_from_sorted_iter(inputs, Global)
2366 }
2367}
2368
2369#[stable(feature = "rust1", since = "1.0.0")]
2370impl<K: Ord, V, A: Allocator + Clone> Extend<(K, V)> for BTreeMap<K, V, A> {
2371 #[inline]
2372 fn extend<T: IntoIterator<Item = (K, V)>>(&mut self, iter: T) {
2373 iter.into_iter().for_each(move |(k, v)| {
2374 self.insert(k, v);
2375 });
2376 }
2377
2378 #[inline]
2379 fn extend_one(&mut self, (k, v): (K, V)) {
2380 self.insert(k, v);
2381 }
2382}
2383
2384#[stable(feature = "extend_ref", since = "1.2.0")]
2385impl<'a, K: Ord + Copy, V: Copy, A: Allocator + Clone> Extend<(&'a K, &'a V)>
2386 for BTreeMap<K, V, A>
2387{
2388 fn extend<I: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iter: I) {
2389 self.extend(iter.into_iter().map(|(&key, &value)| (key, value)));
2390 }
2391
2392 #[inline]
2393 fn extend_one(&mut self, (&k, &v): (&'a K, &'a V)) {
2394 self.insert(k, v);
2395 }
2396}
2397
2398#[stable(feature = "rust1", since = "1.0.0")]
2399impl<K: Hash, V: Hash, A: Allocator + Clone> Hash for BTreeMap<K, V, A> {
2400 fn hash<H: Hasher>(&self, state: &mut H) {
2401 state.write_length_prefix(self.len());
2402 for elt in self {
2403 elt.hash(state);
2404 }
2405 }
2406}
2407
2408#[stable(feature = "rust1", since = "1.0.0")]
2409impl<K, V> Default for BTreeMap<K, V> {
2410 /// Creates an empty `BTreeMap`.
2411 fn default() -> BTreeMap<K, V> {
2412 BTreeMap::new()
2413 }
2414}
2415
2416#[stable(feature = "rust1", since = "1.0.0")]
2417impl<K: PartialEq, V: PartialEq, A: Allocator + Clone> PartialEq for BTreeMap<K, V, A> {
2418 fn eq(&self, other: &BTreeMap<K, V, A>) -> bool {
2419 self.iter().eq(other)
2420 }
2421}
2422
2423#[stable(feature = "rust1", since = "1.0.0")]
2424impl<K: Eq, V: Eq, A: Allocator + Clone> Eq for BTreeMap<K, V, A> {}
2425
2426#[stable(feature = "rust1", since = "1.0.0")]
2427impl<K: PartialOrd, V: PartialOrd, A: Allocator + Clone> PartialOrd for BTreeMap<K, V, A> {
2428 #[inline]
2429 fn partial_cmp(&self, other: &BTreeMap<K, V, A>) -> Option<Ordering> {
2430 self.iter().partial_cmp(other.iter())
2431 }
2432}
2433
2434#[stable(feature = "rust1", since = "1.0.0")]
2435impl<K: Ord, V: Ord, A: Allocator + Clone> Ord for BTreeMap<K, V, A> {
2436 #[inline]
2437 fn cmp(&self, other: &BTreeMap<K, V, A>) -> Ordering {
2438 self.iter().cmp(other.iter())
2439 }
2440}
2441
2442#[stable(feature = "rust1", since = "1.0.0")]
2443impl<K: Debug, V: Debug, A: Allocator + Clone> Debug for BTreeMap<K, V, A> {
2444 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2445 f.debug_map().entries(self.iter()).finish()
2446 }
2447}
2448
2449#[stable(feature = "rust1", since = "1.0.0")]
2450impl<K, Q: ?Sized, V, A: Allocator + Clone> Index<&Q> for BTreeMap<K, V, A>
2451where
2452 K: Borrow<Q> + Ord,
2453 Q: Ord,
2454{
2455 type Output = V;
2456
2457 /// Returns a reference to the value corresponding to the supplied key.
2458 ///
2459 /// # Panics
2460 ///
2461 /// Panics if the key is not present in the `BTreeMap`.
2462 #[inline]
2463 fn index(&self, key: &Q) -> &V {
2464 self.get(key).expect("no entry found for key")
2465 }
2466}
2467
2468#[stable(feature = "std_collections_from_array", since = "1.56.0")]
2469impl<K: Ord, V, const N: usize> From<[(K, V); N]> for BTreeMap<K, V> {
2470 /// Converts a `[(K, V); N]` into a `BTreeMap<K, V>`.
2471 ///
2472 /// If any entries in the array have equal keys,
2473 /// all but one of the corresponding values will be dropped.
2474 ///
2475 /// ```
2476 /// use std::collections::BTreeMap;
2477 ///
2478 /// let map1 = BTreeMap::from([(1, 2), (3, 4)]);
2479 /// let map2: BTreeMap<_, _> = [(1, 2), (3, 4)].into();
2480 /// assert_eq!(map1, map2);
2481 /// ```
2482 fn from(mut arr: [(K, V); N]) -> Self {
2483 if N == 0 {
2484 return BTreeMap::new();
2485 }
2486
2487 // use stable sort to preserve the insertion order.
2488 arr.sort_by(|a, b| a.0.cmp(&b.0));
2489 BTreeMap::bulk_build_from_sorted_iter(arr, Global)
2490 }
2491}
2492
2493impl<K, V, A: Allocator + Clone> BTreeMap<K, V, A> {
2494 /// Gets an iterator over the entries of the map, sorted by key.
2495 ///
2496 /// # Examples
2497 ///
2498 /// ```
2499 /// use std::collections::BTreeMap;
2500 ///
2501 /// let mut map = BTreeMap::new();
2502 /// map.insert(3, "c");
2503 /// map.insert(2, "b");
2504 /// map.insert(1, "a");
2505 ///
2506 /// for (key, value) in map.iter() {
2507 /// println!("{key}: {value}");
2508 /// }
2509 ///
2510 /// let (first_key, first_value) = map.iter().next().unwrap();
2511 /// assert_eq!((*first_key, *first_value), (1, "a"));
2512 /// ```
2513 #[stable(feature = "rust1", since = "1.0.0")]
2514 pub fn iter(&self) -> Iter<'_, K, V> {
2515 if let Some(root) = &self.root {
2516 let full_range = root.reborrow().full_range();
2517
2518 Iter { range: full_range, length: self.length }
2519 } else {
2520 Iter { range: LazyLeafRange::none(), length: 0 }
2521 }
2522 }
2523
2524 /// Gets a mutable iterator over the entries of the map, sorted by key.
2525 ///
2526 /// # Examples
2527 ///
2528 /// ```
2529 /// use std::collections::BTreeMap;
2530 ///
2531 /// let mut map = BTreeMap::from([
2532 /// ("a", 1),
2533 /// ("b", 2),
2534 /// ("c", 3),
2535 /// ]);
2536 ///
2537 /// // add 10 to the value if the key isn't "a"
2538 /// for (key, value) in map.iter_mut() {
2539 /// if key != &"a" {
2540 /// *value += 10;
2541 /// }
2542 /// }
2543 /// ```
2544 #[stable(feature = "rust1", since = "1.0.0")]
2545 pub fn iter_mut(&mut self) -> IterMut<'_, K, V> {
2546 if let Some(root) = &mut self.root {
2547 let full_range = root.borrow_valmut().full_range();
2548
2549 IterMut { range: full_range, length: self.length, _marker: PhantomData }
2550 } else {
2551 IterMut { range: LazyLeafRange::none(), length: 0, _marker: PhantomData }
2552 }
2553 }
2554
2555 /// Gets an iterator over the keys of the map, in sorted order.
2556 ///
2557 /// # Examples
2558 ///
2559 /// ```
2560 /// use std::collections::BTreeMap;
2561 ///
2562 /// let mut a = BTreeMap::new();
2563 /// a.insert(2, "b");
2564 /// a.insert(1, "a");
2565 ///
2566 /// let keys: Vec<_> = a.keys().cloned().collect();
2567 /// assert_eq!(keys, [1, 2]);
2568 /// ```
2569 #[stable(feature = "rust1", since = "1.0.0")]
2570 pub fn keys(&self) -> Keys<'_, K, V> {
2571 Keys { inner: self.iter() }
2572 }
2573
2574 /// Gets an iterator over the values of the map, in order by key.
2575 ///
2576 /// # Examples
2577 ///
2578 /// ```
2579 /// use std::collections::BTreeMap;
2580 ///
2581 /// let mut a = BTreeMap::new();
2582 /// a.insert(1, "hello");
2583 /// a.insert(2, "goodbye");
2584 ///
2585 /// let values: Vec<&str> = a.values().cloned().collect();
2586 /// assert_eq!(values, ["hello", "goodbye"]);
2587 /// ```
2588 #[stable(feature = "rust1", since = "1.0.0")]
2589 pub fn values(&self) -> Values<'_, K, V> {
2590 Values { inner: self.iter() }
2591 }
2592
2593 /// Gets a mutable iterator over the values of the map, in order by key.
2594 ///
2595 /// # Examples
2596 ///
2597 /// ```
2598 /// use std::collections::BTreeMap;
2599 ///
2600 /// let mut a = BTreeMap::new();
2601 /// a.insert(1, String::from("hello"));
2602 /// a.insert(2, String::from("goodbye"));
2603 ///
2604 /// for value in a.values_mut() {
2605 /// value.push_str("!");
2606 /// }
2607 ///
2608 /// let values: Vec<String> = a.values().cloned().collect();
2609 /// assert_eq!(values, [String::from("hello!"),
2610 /// String::from("goodbye!")]);
2611 /// ```
2612 #[stable(feature = "map_values_mut", since = "1.10.0")]
2613 pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> {
2614 ValuesMut { inner: self.iter_mut() }
2615 }
2616
2617 /// Returns the number of elements in the map.
2618 ///
2619 /// # Examples
2620 ///
2621 /// ```
2622 /// use std::collections::BTreeMap;
2623 ///
2624 /// let mut a = BTreeMap::new();
2625 /// assert_eq!(a.len(), 0);
2626 /// a.insert(1, "a");
2627 /// assert_eq!(a.len(), 1);
2628 /// ```
2629 #[must_use]
2630 #[stable(feature = "rust1", since = "1.0.0")]
2631 #[rustc_const_unstable(
2632 feature = "const_btree_len",
2633 issue = "71835",
2634 implied_by = "const_btree_new"
2635 )]
2636 #[rustc_confusables("length", "size")]
2637 pub const fn len(&self) -> usize {
2638 self.length
2639 }
2640
2641 /// Returns `true` if the map contains no elements.
2642 ///
2643 /// # Examples
2644 ///
2645 /// ```
2646 /// use std::collections::BTreeMap;
2647 ///
2648 /// let mut a = BTreeMap::new();
2649 /// assert!(a.is_empty());
2650 /// a.insert(1, "a");
2651 /// assert!(!a.is_empty());
2652 /// ```
2653 #[must_use]
2654 #[stable(feature = "rust1", since = "1.0.0")]
2655 #[rustc_const_unstable(
2656 feature = "const_btree_len",
2657 issue = "71835",
2658 implied_by = "const_btree_new"
2659 )]
2660 pub const fn is_empty(&self) -> bool {
2661 self.len() == 0
2662 }
2663
2664 /// Returns a [`Cursor`] pointing at the gap before the smallest key
2665 /// greater than the given bound.
2666 ///
2667 /// Passing `Bound::Included(x)` will return a cursor pointing to the
2668 /// gap before the smallest key greater than or equal to `x`.
2669 ///
2670 /// Passing `Bound::Excluded(x)` will return a cursor pointing to the
2671 /// gap before the smallest key greater than `x`.
2672 ///
2673 /// Passing `Bound::Unbounded` will return a cursor pointing to the
2674 /// gap before the smallest key in the map.
2675 ///
2676 /// # Examples
2677 ///
2678 /// ```
2679 /// #![feature(btree_cursors)]
2680 ///
2681 /// use std::collections::BTreeMap;
2682 /// use std::ops::Bound;
2683 ///
2684 /// let map = BTreeMap::from([
2685 /// (1, "a"),
2686 /// (2, "b"),
2687 /// (3, "c"),
2688 /// (4, "d"),
2689 /// ]);
2690 ///
2691 /// let cursor = map.lower_bound(Bound::Included(&2));
2692 /// assert_eq!(cursor.peek_prev(), Some((&1, &"a")));
2693 /// assert_eq!(cursor.peek_next(), Some((&2, &"b")));
2694 ///
2695 /// let cursor = map.lower_bound(Bound::Excluded(&2));
2696 /// assert_eq!(cursor.peek_prev(), Some((&2, &"b")));
2697 /// assert_eq!(cursor.peek_next(), Some((&3, &"c")));
2698 ///
2699 /// let cursor = map.lower_bound(Bound::Unbounded);
2700 /// assert_eq!(cursor.peek_prev(), None);
2701 /// assert_eq!(cursor.peek_next(), Some((&1, &"a")));
2702 /// ```
2703 #[unstable(feature = "btree_cursors", issue = "107540")]
2704 pub fn lower_bound<Q: ?Sized>(&self, bound: Bound<&Q>) -> Cursor<'_, K, V>
2705 where
2706 K: Borrow<Q> + Ord,
2707 Q: Ord,
2708 {
2709 let root_node = match self.root.as_ref() {
2710 None => return Cursor { current: None, root: None },
2711 Some(root) => root.reborrow(),
2712 };
2713 let edge = root_node.lower_bound(SearchBound::from_range(bound));
2714 Cursor { current: Some(edge), root: self.root.as_ref() }
2715 }
2716
2717 /// Returns a [`CursorMut`] pointing at the gap before the smallest key
2718 /// greater than the given bound.
2719 ///
2720 /// Passing `Bound::Included(x)` will return a cursor pointing to the
2721 /// gap before the smallest key greater than or equal to `x`.
2722 ///
2723 /// Passing `Bound::Excluded(x)` will return a cursor pointing to the
2724 /// gap before the smallest key greater than `x`.
2725 ///
2726 /// Passing `Bound::Unbounded` will return a cursor pointing to the
2727 /// gap before the smallest key in the map.
2728 ///
2729 /// # Examples
2730 ///
2731 /// ```
2732 /// #![feature(btree_cursors)]
2733 ///
2734 /// use std::collections::BTreeMap;
2735 /// use std::ops::Bound;
2736 ///
2737 /// let mut map = BTreeMap::from([
2738 /// (1, "a"),
2739 /// (2, "b"),
2740 /// (3, "c"),
2741 /// (4, "d"),
2742 /// ]);
2743 ///
2744 /// let mut cursor = map.lower_bound_mut(Bound::Included(&2));
2745 /// assert_eq!(cursor.peek_prev(), Some((&1, &mut "a")));
2746 /// assert_eq!(cursor.peek_next(), Some((&2, &mut "b")));
2747 ///
2748 /// let mut cursor = map.lower_bound_mut(Bound::Excluded(&2));
2749 /// assert_eq!(cursor.peek_prev(), Some((&2, &mut "b")));
2750 /// assert_eq!(cursor.peek_next(), Some((&3, &mut "c")));
2751 ///
2752 /// let mut cursor = map.lower_bound_mut(Bound::Unbounded);
2753 /// assert_eq!(cursor.peek_prev(), None);
2754 /// assert_eq!(cursor.peek_next(), Some((&1, &mut "a")));
2755 /// ```
2756 #[unstable(feature = "btree_cursors", issue = "107540")]
2757 pub fn lower_bound_mut<Q: ?Sized>(&mut self, bound: Bound<&Q>) -> CursorMut<'_, K, V, A>
2758 where
2759 K: Borrow<Q> + Ord,
2760 Q: Ord,
2761 {
2762 let (root, dormant_root) = DormantMutRef::new(&mut self.root);
2763 let root_node = match root.as_mut() {
2764 None => {
2765 return CursorMut {
2766 inner: CursorMutKey {
2767 current: None,
2768 root: dormant_root,
2769 length: &mut self.length,
2770 alloc: &mut *self.alloc,
2771 },
2772 };
2773 }
2774 Some(root) => root.borrow_mut(),
2775 };
2776 let edge = root_node.lower_bound(SearchBound::from_range(bound));
2777 CursorMut {
2778 inner: CursorMutKey {
2779 current: Some(edge),
2780 root: dormant_root,
2781 length: &mut self.length,
2782 alloc: &mut *self.alloc,
2783 },
2784 }
2785 }
2786
2787 /// Returns a [`Cursor`] pointing at the gap after the greatest key
2788 /// smaller than the given bound.
2789 ///
2790 /// Passing `Bound::Included(x)` will return a cursor pointing to the
2791 /// gap after the greatest key smaller than or equal to `x`.
2792 ///
2793 /// Passing `Bound::Excluded(x)` will return a cursor pointing to the
2794 /// gap after the greatest key smaller than `x`.
2795 ///
2796 /// Passing `Bound::Unbounded` will return a cursor pointing to the
2797 /// gap after the greatest key in the map.
2798 ///
2799 /// # Examples
2800 ///
2801 /// ```
2802 /// #![feature(btree_cursors)]
2803 ///
2804 /// use std::collections::BTreeMap;
2805 /// use std::ops::Bound;
2806 ///
2807 /// let map = BTreeMap::from([
2808 /// (1, "a"),
2809 /// (2, "b"),
2810 /// (3, "c"),
2811 /// (4, "d"),
2812 /// ]);
2813 ///
2814 /// let cursor = map.upper_bound(Bound::Included(&3));
2815 /// assert_eq!(cursor.peek_prev(), Some((&3, &"c")));
2816 /// assert_eq!(cursor.peek_next(), Some((&4, &"d")));
2817 ///
2818 /// let cursor = map.upper_bound(Bound::Excluded(&3));
2819 /// assert_eq!(cursor.peek_prev(), Some((&2, &"b")));
2820 /// assert_eq!(cursor.peek_next(), Some((&3, &"c")));
2821 ///
2822 /// let cursor = map.upper_bound(Bound::Unbounded);
2823 /// assert_eq!(cursor.peek_prev(), Some((&4, &"d")));
2824 /// assert_eq!(cursor.peek_next(), None);
2825 /// ```
2826 #[unstable(feature = "btree_cursors", issue = "107540")]
2827 pub fn upper_bound<Q: ?Sized>(&self, bound: Bound<&Q>) -> Cursor<'_, K, V>
2828 where
2829 K: Borrow<Q> + Ord,
2830 Q: Ord,
2831 {
2832 let root_node = match self.root.as_ref() {
2833 None => return Cursor { current: None, root: None },
2834 Some(root) => root.reborrow(),
2835 };
2836 let edge = root_node.upper_bound(SearchBound::from_range(bound));
2837 Cursor { current: Some(edge), root: self.root.as_ref() }
2838 }
2839
2840 /// Returns a [`CursorMut`] pointing at the gap after the greatest key
2841 /// smaller than the given bound.
2842 ///
2843 /// Passing `Bound::Included(x)` will return a cursor pointing to the
2844 /// gap after the greatest key smaller than or equal to `x`.
2845 ///
2846 /// Passing `Bound::Excluded(x)` will return a cursor pointing to the
2847 /// gap after the greatest key smaller than `x`.
2848 ///
2849 /// Passing `Bound::Unbounded` will return a cursor pointing to the
2850 /// gap after the greatest key in the map.
2851 ///
2852 /// # Examples
2853 ///
2854 /// ```
2855 /// #![feature(btree_cursors)]
2856 ///
2857 /// use std::collections::BTreeMap;
2858 /// use std::ops::Bound;
2859 ///
2860 /// let mut map = BTreeMap::from([
2861 /// (1, "a"),
2862 /// (2, "b"),
2863 /// (3, "c"),
2864 /// (4, "d"),
2865 /// ]);
2866 ///
2867 /// let mut cursor = map.upper_bound_mut(Bound::Included(&3));
2868 /// assert_eq!(cursor.peek_prev(), Some((&3, &mut "c")));
2869 /// assert_eq!(cursor.peek_next(), Some((&4, &mut "d")));
2870 ///
2871 /// let mut cursor = map.upper_bound_mut(Bound::Excluded(&3));
2872 /// assert_eq!(cursor.peek_prev(), Some((&2, &mut "b")));
2873 /// assert_eq!(cursor.peek_next(), Some((&3, &mut "c")));
2874 ///
2875 /// let mut cursor = map.upper_bound_mut(Bound::Unbounded);
2876 /// assert_eq!(cursor.peek_prev(), Some((&4, &mut "d")));
2877 /// assert_eq!(cursor.peek_next(), None);
2878 /// ```
2879 #[unstable(feature = "btree_cursors", issue = "107540")]
2880 pub fn upper_bound_mut<Q: ?Sized>(&mut self, bound: Bound<&Q>) -> CursorMut<'_, K, V, A>
2881 where
2882 K: Borrow<Q> + Ord,
2883 Q: Ord,
2884 {
2885 let (root, dormant_root) = DormantMutRef::new(&mut self.root);
2886 let root_node = match root.as_mut() {
2887 None => {
2888 return CursorMut {
2889 inner: CursorMutKey {
2890 current: None,
2891 root: dormant_root,
2892 length: &mut self.length,
2893 alloc: &mut *self.alloc,
2894 },
2895 };
2896 }
2897 Some(root) => root.borrow_mut(),
2898 };
2899 let edge = root_node.upper_bound(SearchBound::from_range(bound));
2900 CursorMut {
2901 inner: CursorMutKey {
2902 current: Some(edge),
2903 root: dormant_root,
2904 length: &mut self.length,
2905 alloc: &mut *self.alloc,
2906 },
2907 }
2908 }
2909}
2910
2911/// A cursor over a `BTreeMap`.
2912///
2913/// A `Cursor` is like an iterator, except that it can freely seek back-and-forth.
2914///
2915/// Cursors always point to a gap between two elements in the map, and can
2916/// operate on the two immediately adjacent elements.
2917///
2918/// A `Cursor` is created with the [`BTreeMap::lower_bound`] and [`BTreeMap::upper_bound`] methods.
2919#[unstable(feature = "btree_cursors", issue = "107540")]
2920pub struct Cursor<'a, K: 'a, V: 'a> {
2921 // If current is None then it means the tree has not been allocated yet.
2922 current: Option<Handle<NodeRef<marker::Immut<'a>, K, V, marker::Leaf>, marker::Edge>>,
2923 root: Option<&'a node::Root<K, V>>,
2924}
2925
2926#[unstable(feature = "btree_cursors", issue = "107540")]
2927impl<K, V> Clone for Cursor<'_, K, V> {
2928 fn clone(&self) -> Self {
2929 let Cursor { current, root } = *self;
2930 Cursor { current, root }
2931 }
2932}
2933
2934#[unstable(feature = "btree_cursors", issue = "107540")]
2935impl<K: Debug, V: Debug> Debug for Cursor<'_, K, V> {
2936 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2937 f.write_str("Cursor")
2938 }
2939}
2940
2941/// A cursor over a `BTreeMap` with editing operations.
2942///
2943/// A `Cursor` is like an iterator, except that it can freely seek back-and-forth, and can
2944/// safely mutate the map during iteration. This is because the lifetime of its yielded
2945/// references is tied to its own lifetime, instead of just the underlying map. This means
2946/// cursors cannot yield multiple elements at once.
2947///
2948/// Cursors always point to a gap between two elements in the map, and can
2949/// operate on the two immediately adjacent elements.
2950///
2951/// A `CursorMut` is created with the [`BTreeMap::lower_bound_mut`] and [`BTreeMap::upper_bound_mut`]
2952/// methods.
2953#[unstable(feature = "btree_cursors", issue = "107540")]
2954pub struct CursorMut<
2955 'a,
2956 K: 'a,
2957 V: 'a,
2958 #[unstable(feature = "allocator_api", issue = "32838")] A = Global,
2959> {
2960 inner: CursorMutKey<'a, K, V, A>,
2961}
2962
2963#[unstable(feature = "btree_cursors", issue = "107540")]
2964impl<K: Debug, V: Debug, A> Debug for CursorMut<'_, K, V, A> {
2965 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2966 f.write_str("CursorMut")
2967 }
2968}
2969
2970/// A cursor over a `BTreeMap` with editing operations, and which allows
2971/// mutating the key of elements.
2972///
2973/// A `Cursor` is like an iterator, except that it can freely seek back-and-forth, and can
2974/// safely mutate the map during iteration. This is because the lifetime of its yielded
2975/// references is tied to its own lifetime, instead of just the underlying map. This means
2976/// cursors cannot yield multiple elements at once.
2977///
2978/// Cursors always point to a gap between two elements in the map, and can
2979/// operate on the two immediately adjacent elements.
2980///
2981/// A `CursorMutKey` is created from a [`CursorMut`] with the
2982/// [`CursorMut::with_mutable_key`] method.
2983///
2984/// # Safety
2985///
2986/// Since this cursor allows mutating keys, you must ensure that the `BTreeMap`
2987/// invariants are maintained. Specifically:
2988///
2989/// * The key of the newly inserted element must be unique in the tree.
2990/// * All keys in the tree must remain in sorted order.
2991#[unstable(feature = "btree_cursors", issue = "107540")]
2992pub struct CursorMutKey<
2993 'a,
2994 K: 'a,
2995 V: 'a,
2996 #[unstable(feature = "allocator_api", issue = "32838")] A = Global,
2997> {
2998 // If current is None then it means the tree has not been allocated yet.
2999 current: Option<Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>>,
3000 root: DormantMutRef<'a, Option<node::Root<K, V>>>,
3001 length: &'a mut usize,
3002 alloc: &'a mut A,
3003}
3004
3005#[unstable(feature = "btree_cursors", issue = "107540")]
3006impl<K: Debug, V: Debug, A> Debug for CursorMutKey<'_, K, V, A> {
3007 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3008 f.write_str("CursorMutKey")
3009 }
3010}
3011
3012impl<'a, K, V> Cursor<'a, K, V> {
3013 /// Advances the cursor to the next gap, returning the key and value of the
3014 /// element that it moved over.
3015 ///
3016 /// If the cursor is already at the end of the map then `None` is returned
3017 /// and the cursor is not moved.
3018 #[unstable(feature = "btree_cursors", issue = "107540")]
3019 pub fn next(&mut self) -> Option<(&'a K, &'a V)> {
3020 let current = self.current.take()?;
3021 match current.next_kv() {
3022 Ok(kv) => {
3023 let result = kv.into_kv();
3024 self.current = Some(kv.next_leaf_edge());
3025 Some(result)
3026 }
3027 Err(root) => {
3028 self.current = Some(root.last_leaf_edge());
3029 None
3030 }
3031 }
3032 }
3033
3034 /// Advances the cursor to the previous gap, returning the key and value of
3035 /// the element that it moved over.
3036 ///
3037 /// If the cursor is already at the start of the map then `None` is returned
3038 /// and the cursor is not moved.
3039 #[unstable(feature = "btree_cursors", issue = "107540")]
3040 pub fn prev(&mut self) -> Option<(&'a K, &'a V)> {
3041 let current = self.current.take()?;
3042 match current.next_back_kv() {
3043 Ok(kv) => {
3044 let result = kv.into_kv();
3045 self.current = Some(kv.next_back_leaf_edge());
3046 Some(result)
3047 }
3048 Err(root) => {
3049 self.current = Some(root.first_leaf_edge());
3050 None
3051 }
3052 }
3053 }
3054
3055 /// Returns a reference to the key and value of the next element without
3056 /// moving the cursor.
3057 ///
3058 /// If the cursor is at the end of the map then `None` is returned.
3059 #[unstable(feature = "btree_cursors", issue = "107540")]
3060 pub fn peek_next(&self) -> Option<(&'a K, &'a V)> {
3061 self.clone().next()
3062 }
3063
3064 /// Returns a reference to the key and value of the previous element
3065 /// without moving the cursor.
3066 ///
3067 /// If the cursor is at the start of the map then `None` is returned.
3068 #[unstable(feature = "btree_cursors", issue = "107540")]
3069 pub fn peek_prev(&self) -> Option<(&'a K, &'a V)> {
3070 self.clone().prev()
3071 }
3072}
3073
3074impl<'a, K, V, A> CursorMut<'a, K, V, A> {
3075 /// Advances the cursor to the next gap, returning the key and value of the
3076 /// element that it moved over.
3077 ///
3078 /// If the cursor is already at the end of the map then `None` is returned
3079 /// and the cursor is not moved.
3080 #[unstable(feature = "btree_cursors", issue = "107540")]
3081 pub fn next(&mut self) -> Option<(&K, &mut V)> {
3082 let (k, v) = self.inner.next()?;
3083 Some((&*k, v))
3084 }
3085
3086 /// Advances the cursor to the previous gap, returning the key and value of
3087 /// the element that it moved over.
3088 ///
3089 /// If the cursor is already at the start of the map then `None` is returned
3090 /// and the cursor is not moved.
3091 #[unstable(feature = "btree_cursors", issue = "107540")]
3092 pub fn prev(&mut self) -> Option<(&K, &mut V)> {
3093 let (k, v) = self.inner.prev()?;
3094 Some((&*k, v))
3095 }
3096
3097 /// Returns a reference to the key and value of the next element without
3098 /// moving the cursor.
3099 ///
3100 /// If the cursor is at the end of the map then `None` is returned.
3101 #[unstable(feature = "btree_cursors", issue = "107540")]
3102 pub fn peek_next(&mut self) -> Option<(&K, &mut V)> {
3103 let (k, v) = self.inner.peek_next()?;
3104 Some((&*k, v))
3105 }
3106
3107 /// Returns a reference to the key and value of the previous element
3108 /// without moving the cursor.
3109 ///
3110 /// If the cursor is at the start of the map then `None` is returned.
3111 #[unstable(feature = "btree_cursors", issue = "107540")]
3112 pub fn peek_prev(&mut self) -> Option<(&K, &mut V)> {
3113 let (k, v) = self.inner.peek_prev()?;
3114 Some((&*k, v))
3115 }
3116
3117 /// Returns a read-only cursor pointing to the same location as the
3118 /// `CursorMut`.
3119 ///
3120 /// The lifetime of the returned `Cursor` is bound to that of the
3121 /// `CursorMut`, which means it cannot outlive the `CursorMut` and that the
3122 /// `CursorMut` is frozen for the lifetime of the `Cursor`.
3123 #[unstable(feature = "btree_cursors", issue = "107540")]
3124 pub fn as_cursor(&self) -> Cursor<'_, K, V> {
3125 self.inner.as_cursor()
3126 }
3127
3128 /// Converts the cursor into a [`CursorMutKey`], which allows mutating
3129 /// the key of elements in the tree.
3130 ///
3131 /// # Safety
3132 ///
3133 /// Since this cursor allows mutating keys, you must ensure that the `BTreeMap`
3134 /// invariants are maintained. Specifically:
3135 ///
3136 /// * The key of the newly inserted element must be unique in the tree.
3137 /// * All keys in the tree must remain in sorted order.
3138 #[unstable(feature = "btree_cursors", issue = "107540")]
3139 pub unsafe fn with_mutable_key(self) -> CursorMutKey<'a, K, V, A> {
3140 self.inner
3141 }
3142}
3143
3144impl<'a, K, V, A> CursorMutKey<'a, K, V, A> {
3145 /// Advances the cursor to the next gap, returning the key and value of the
3146 /// element that it moved over.
3147 ///
3148 /// If the cursor is already at the end of the map then `None` is returned
3149 /// and the cursor is not moved.
3150 #[unstable(feature = "btree_cursors", issue = "107540")]
3151 pub fn next(&mut self) -> Option<(&mut K, &mut V)> {
3152 let current = self.current.take()?;
3153 match current.next_kv() {
3154 Ok(mut kv) => {
3155 // SAFETY: The key/value pointers remain valid even after the
3156 // cursor is moved forward. The lifetimes then prevent any
3157 // further access to the cursor.
3158 let (k, v) = unsafe { kv.reborrow_mut().into_kv_mut() };
3159 let (k, v) = (k as *mut _, v as *mut _);
3160 self.current = Some(kv.next_leaf_edge());
3161 Some(unsafe { (&mut *k, &mut *v) })
3162 }
3163 Err(root) => {
3164 self.current = Some(root.last_leaf_edge());
3165 None
3166 }
3167 }
3168 }
3169
3170 /// Advances the cursor to the previous gap, returning the key and value of
3171 /// the element that it moved over.
3172 ///
3173 /// If the cursor is already at the start of the map then `None` is returned
3174 /// and the cursor is not moved.
3175 #[unstable(feature = "btree_cursors", issue = "107540")]
3176 pub fn prev(&mut self) -> Option<(&mut K, &mut V)> {
3177 let current = self.current.take()?;
3178 match current.next_back_kv() {
3179 Ok(mut kv) => {
3180 // SAFETY: The key/value pointers remain valid even after the
3181 // cursor is moved forward. The lifetimes then prevent any
3182 // further access to the cursor.
3183 let (k, v) = unsafe { kv.reborrow_mut().into_kv_mut() };
3184 let (k, v) = (k as *mut _, v as *mut _);
3185 self.current = Some(kv.next_back_leaf_edge());
3186 Some(unsafe { (&mut *k, &mut *v) })
3187 }
3188 Err(root) => {
3189 self.current = Some(root.first_leaf_edge());
3190 None
3191 }
3192 }
3193 }
3194
3195 /// Returns a reference to the key and value of the next element without
3196 /// moving the cursor.
3197 ///
3198 /// If the cursor is at the end of the map then `None` is returned.
3199 #[unstable(feature = "btree_cursors", issue = "107540")]
3200 pub fn peek_next(&mut self) -> Option<(&mut K, &mut V)> {
3201 let current = self.current.as_mut()?;
3202 // SAFETY: We're not using this to mutate the tree.
3203 let kv = unsafe { current.reborrow_mut() }.next_kv().ok()?.into_kv_mut();
3204 Some(kv)
3205 }
3206
3207 /// Returns a reference to the key and value of the previous element
3208 /// without moving the cursor.
3209 ///
3210 /// If the cursor is at the start of the map then `None` is returned.
3211 #[unstable(feature = "btree_cursors", issue = "107540")]
3212 pub fn peek_prev(&mut self) -> Option<(&mut K, &mut V)> {
3213 let current = self.current.as_mut()?;
3214 // SAFETY: We're not using this to mutate the tree.
3215 let kv = unsafe { current.reborrow_mut() }.next_back_kv().ok()?.into_kv_mut();
3216 Some(kv)
3217 }
3218
3219 /// Returns a read-only cursor pointing to the same location as the
3220 /// `CursorMutKey`.
3221 ///
3222 /// The lifetime of the returned `Cursor` is bound to that of the
3223 /// `CursorMutKey`, which means it cannot outlive the `CursorMutKey` and that the
3224 /// `CursorMutKey` is frozen for the lifetime of the `Cursor`.
3225 #[unstable(feature = "btree_cursors", issue = "107540")]
3226 pub fn as_cursor(&self) -> Cursor<'_, K, V> {
3227 Cursor {
3228 // SAFETY: The tree is immutable while the cursor exists.
3229 root: unsafe { self.root.reborrow_shared().as_ref() },
3230 current: self.current.as_ref().map(|current| current.reborrow()),
3231 }
3232 }
3233}
3234
3235// Now the tree editing operations
3236impl<'a, K: Ord, V, A: Allocator + Clone> CursorMutKey<'a, K, V, A> {
3237 /// Inserts a new key-value pair into the map in the gap that the
3238 /// cursor is currently pointing to.
3239 ///
3240 /// After the insertion the cursor will be pointing at the gap before the
3241 /// newly inserted element.
3242 ///
3243 /// # Safety
3244 ///
3245 /// You must ensure that the `BTreeMap` invariants are maintained.
3246 /// Specifically:
3247 ///
3248 /// * The key of the newly inserted element must be unique in the tree.
3249 /// * All keys in the tree must remain in sorted order.
3250 #[unstable(feature = "btree_cursors", issue = "107540")]
3251 pub unsafe fn insert_after_unchecked(&mut self, key: K, value: V) {
3252 let edge = match self.current.take() {
3253 None => {
3254 // Tree is empty, allocate a new root.
3255 // SAFETY: We have no other reference to the tree.
3256 let root = unsafe { self.root.reborrow() };
3257 debug_assert!(root.is_none());
3258 let mut node = NodeRef::new_leaf(self.alloc.clone());
3259 // SAFETY: We don't touch the root while the handle is alive.
3260 let handle = unsafe { node.borrow_mut().push_with_handle(key, value) };
3261 *root = Some(node.forget_type());
3262 *self.length += 1;
3263 self.current = Some(handle.left_edge());
3264 return;
3265 }
3266 Some(current) => current,
3267 };
3268
3269 let handle = edge.insert_recursing(key, value, self.alloc.clone(), |ins| {
3270 drop(ins.left);
3271 // SAFETY: The handle to the newly inserted value is always on a
3272 // leaf node, so adding a new root node doesn't invalidate it.
3273 let root = unsafe { self.root.reborrow().as_mut().unwrap() };
3274 root.push_internal_level(self.alloc.clone()).push(ins.kv.0, ins.kv.1, ins.right)
3275 });
3276 self.current = Some(handle.left_edge());
3277 *self.length += 1;
3278 }
3279
3280 /// Inserts a new key-value pair into the map in the gap that the
3281 /// cursor is currently pointing to.
3282 ///
3283 /// After the insertion the cursor will be pointing at the gap after the
3284 /// newly inserted element.
3285 ///
3286 /// # Safety
3287 ///
3288 /// You must ensure that the `BTreeMap` invariants are maintained.
3289 /// Specifically:
3290 ///
3291 /// * The key of the newly inserted element must be unique in the tree.
3292 /// * All keys in the tree must remain in sorted order.
3293 #[unstable(feature = "btree_cursors", issue = "107540")]
3294 pub unsafe fn insert_before_unchecked(&mut self, key: K, value: V) {
3295 let edge = match self.current.take() {
3296 None => {
3297 // SAFETY: We have no other reference to the tree.
3298 match unsafe { self.root.reborrow() } {
3299 root @ None => {
3300 // Tree is empty, allocate a new root.
3301 let mut node = NodeRef::new_leaf(self.alloc.clone());
3302 // SAFETY: We don't touch the root while the handle is alive.
3303 let handle = unsafe { node.borrow_mut().push_with_handle(key, value) };
3304 *root = Some(node.forget_type());
3305 *self.length += 1;
3306 self.current = Some(handle.right_edge());
3307 return;
3308 }
3309 Some(root) => root.borrow_mut().last_leaf_edge(),
3310 }
3311 }
3312 Some(current) => current,
3313 };
3314
3315 let handle = edge.insert_recursing(key, value, self.alloc.clone(), |ins| {
3316 drop(ins.left);
3317 // SAFETY: The handle to the newly inserted value is always on a
3318 // leaf node, so adding a new root node doesn't invalidate it.
3319 let root = unsafe { self.root.reborrow().as_mut().unwrap() };
3320 root.push_internal_level(self.alloc.clone()).push(ins.kv.0, ins.kv.1, ins.right)
3321 });
3322 self.current = Some(handle.right_edge());
3323 *self.length += 1;
3324 }
3325
3326 /// Inserts a new key-value pair into the map in the gap that the
3327 /// cursor is currently pointing to.
3328 ///
3329 /// After the insertion the cursor will be pointing at the gap before the
3330 /// newly inserted element.
3331 ///
3332 /// If the inserted key is not greater than the key before the cursor
3333 /// (if any), or if it not less than the key after the cursor (if any),
3334 /// then an [`UnorderedKeyError`] is returned since this would
3335 /// invalidate the [`Ord`] invariant between the keys of the map.
3336 #[unstable(feature = "btree_cursors", issue = "107540")]
3337 pub fn insert_after(&mut self, key: K, value: V) -> Result<(), UnorderedKeyError> {
3338 if let Some((prev, _)) = self.peek_prev() {
3339 if &key <= prev {
3340 return Err(UnorderedKeyError {});
3341 }
3342 }
3343 if let Some((next, _)) = self.peek_next() {
3344 if &key >= next {
3345 return Err(UnorderedKeyError {});
3346 }
3347 }
3348 unsafe {
3349 self.insert_after_unchecked(key, value);
3350 }
3351 Ok(())
3352 }
3353
3354 /// Inserts a new key-value pair into the map in the gap that the
3355 /// cursor is currently pointing to.
3356 ///
3357 /// After the insertion the cursor will be pointing at the gap after the
3358 /// newly inserted element.
3359 ///
3360 /// If the inserted key is not greater than the key before the cursor
3361 /// (if any), or if it not less than the key after the cursor (if any),
3362 /// then an [`UnorderedKeyError`] is returned since this would
3363 /// invalidate the [`Ord`] invariant between the keys of the map.
3364 #[unstable(feature = "btree_cursors", issue = "107540")]
3365 pub fn insert_before(&mut self, key: K, value: V) -> Result<(), UnorderedKeyError> {
3366 if let Some((prev, _)) = self.peek_prev() {
3367 if &key <= prev {
3368 return Err(UnorderedKeyError {});
3369 }
3370 }
3371 if let Some((next, _)) = self.peek_next() {
3372 if &key >= next {
3373 return Err(UnorderedKeyError {});
3374 }
3375 }
3376 unsafe {
3377 self.insert_before_unchecked(key, value);
3378 }
3379 Ok(())
3380 }
3381
3382 /// Removes the next element from the `BTreeMap`.
3383 ///
3384 /// The element that was removed is returned. The cursor position is
3385 /// unchanged (before the removed element).
3386 #[unstable(feature = "btree_cursors", issue = "107540")]
3387 pub fn remove_next(&mut self) -> Option<(K, V)> {
3388 let current = self.current.take()?;
3389 if current.reborrow().next_kv().is_err() {
3390 self.current = Some(current);
3391 return None;
3392 }
3393 let mut emptied_internal_root = false;
3394 let (kv, pos) = current
3395 .next_kv()
3396 // This should be unwrap(), but that doesn't work because NodeRef
3397 // doesn't implement Debug. The condition is checked above.
3398 .ok()?
3399 .remove_kv_tracking(|| emptied_internal_root = true, self.alloc.clone());
3400 self.current = Some(pos);
3401 *self.length -= 1;
3402 if emptied_internal_root {
3403 // SAFETY: This is safe since current does not point within the now
3404 // empty root node.
3405 let root = unsafe { self.root.reborrow().as_mut().unwrap() };
3406 root.pop_internal_level(self.alloc.clone());
3407 }
3408 Some(kv)
3409 }
3410
3411 /// Removes the preceding element from the `BTreeMap`.
3412 ///
3413 /// The element that was removed is returned. The cursor position is
3414 /// unchanged (after the removed element).
3415 #[unstable(feature = "btree_cursors", issue = "107540")]
3416 pub fn remove_prev(&mut self) -> Option<(K, V)> {
3417 let current = self.current.take()?;
3418 if current.reborrow().next_back_kv().is_err() {
3419 self.current = Some(current);
3420 return None;
3421 }
3422 let mut emptied_internal_root = false;
3423 let (kv, pos) = current
3424 .next_back_kv()
3425 // This should be unwrap(), but that doesn't work because NodeRef
3426 // doesn't implement Debug. The condition is checked above.
3427 .ok()?
3428 .remove_kv_tracking(|| emptied_internal_root = true, self.alloc.clone());
3429 self.current = Some(pos);
3430 *self.length -= 1;
3431 if emptied_internal_root {
3432 // SAFETY: This is safe since current does not point within the now
3433 // empty root node.
3434 let root = unsafe { self.root.reborrow().as_mut().unwrap() };
3435 root.pop_internal_level(self.alloc.clone());
3436 }
3437 Some(kv)
3438 }
3439}
3440
3441impl<'a, K: Ord, V, A: Allocator + Clone> CursorMut<'a, K, V, A> {
3442 /// Inserts a new key-value pair into the map in the gap that the
3443 /// cursor is currently pointing to.
3444 ///
3445 /// After the insertion the cursor will be pointing at the gap after the
3446 /// newly inserted element.
3447 ///
3448 /// # Safety
3449 ///
3450 /// You must ensure that the `BTreeMap` invariants are maintained.
3451 /// Specifically:
3452 ///
3453 /// * The key of the newly inserted element must be unique in the tree.
3454 /// * All keys in the tree must remain in sorted order.
3455 #[unstable(feature = "btree_cursors", issue = "107540")]
3456 pub unsafe fn insert_after_unchecked(&mut self, key: K, value: V) {
3457 unsafe { self.inner.insert_after_unchecked(key, value) }
3458 }
3459
3460 /// Inserts a new key-value pair into the map in the gap that the
3461 /// cursor is currently pointing to.
3462 ///
3463 /// After the insertion the cursor will be pointing at the gap after the
3464 /// newly inserted element.
3465 ///
3466 /// # Safety
3467 ///
3468 /// You must ensure that the `BTreeMap` invariants are maintained.
3469 /// Specifically:
3470 ///
3471 /// * The key of the newly inserted element must be unique in the tree.
3472 /// * All keys in the tree must remain in sorted order.
3473 #[unstable(feature = "btree_cursors", issue = "107540")]
3474 pub unsafe fn insert_before_unchecked(&mut self, key: K, value: V) {
3475 unsafe { self.inner.insert_before_unchecked(key, value) }
3476 }
3477
3478 /// Inserts a new key-value pair into the map in the gap that the
3479 /// cursor is currently pointing to.
3480 ///
3481 /// After the insertion the cursor will be pointing at the gap before the
3482 /// newly inserted element.
3483 ///
3484 /// If the inserted key is not greater than the key before the cursor
3485 /// (if any), or if it not less than the key after the cursor (if any),
3486 /// then an [`UnorderedKeyError`] is returned since this would
3487 /// invalidate the [`Ord`] invariant between the keys of the map.
3488 #[unstable(feature = "btree_cursors", issue = "107540")]
3489 pub fn insert_after(&mut self, key: K, value: V) -> Result<(), UnorderedKeyError> {
3490 self.inner.insert_after(key, value)
3491 }
3492
3493 /// Inserts a new key-value pair into the map in the gap that the
3494 /// cursor is currently pointing to.
3495 ///
3496 /// After the insertion the cursor will be pointing at the gap after the
3497 /// newly inserted element.
3498 ///
3499 /// If the inserted key is not greater than the key before the cursor
3500 /// (if any), or if it not less than the key after the cursor (if any),
3501 /// then an [`UnorderedKeyError`] is returned since this would
3502 /// invalidate the [`Ord`] invariant between the keys of the map.
3503 #[unstable(feature = "btree_cursors", issue = "107540")]
3504 pub fn insert_before(&mut self, key: K, value: V) -> Result<(), UnorderedKeyError> {
3505 self.inner.insert_before(key, value)
3506 }
3507
3508 /// Removes the next element from the `BTreeMap`.
3509 ///
3510 /// The element that was removed is returned. The cursor position is
3511 /// unchanged (before the removed element).
3512 #[unstable(feature = "btree_cursors", issue = "107540")]
3513 pub fn remove_next(&mut self) -> Option<(K, V)> {
3514 self.inner.remove_next()
3515 }
3516
3517 /// Removes the preceding element from the `BTreeMap`.
3518 ///
3519 /// The element that was removed is returned. The cursor position is
3520 /// unchanged (after the removed element).
3521 #[unstable(feature = "btree_cursors", issue = "107540")]
3522 pub fn remove_prev(&mut self) -> Option<(K, V)> {
3523 self.inner.remove_prev()
3524 }
3525}
3526
3527/// Error type returned by [`CursorMut::insert_before`] and
3528/// [`CursorMut::insert_after`] if the key being inserted is not properly
3529/// ordered with regards to adjacent keys.
3530#[derive(Clone, PartialEq, Eq, Debug)]
3531#[unstable(feature = "btree_cursors", issue = "107540")]
3532pub struct UnorderedKeyError {}
3533
3534#[unstable(feature = "btree_cursors", issue = "107540")]
3535impl fmt::Display for UnorderedKeyError {
3536 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3537 write!(f, "key is not properly ordered relative to neighbors")
3538 }
3539}
3540
3541#[unstable(feature = "btree_cursors", issue = "107540")]
3542impl Error for UnorderedKeyError {}
3543
3544#[cfg(test)]
3545mod tests;