Module avx512f

Source
Available on x86 or x86-64 only.

Constants§

_MM_CMPINT_EQ
Equal
_MM_CMPINT_FALSE
False
_MM_CMPINT_LE
Less-than-or-equal
_MM_CMPINT_LT
Less-than
_MM_CMPINT_NE
Not-equal
_MM_CMPINT_NLE
Not less-than-or-equal
_MM_CMPINT_NLT
Not less-than
_MM_CMPINT_TRUE
True
_MM_MANT_NORM_1_2
interval [1, 2)
_MM_MANT_NORM_P5_1
interval [0.5, 1)
_MM_MANT_NORM_P5_2
interval [0.5, 2)
_MM_MANT_NORM_P75_1P5
interval [0.75, 1.5)
_MM_MANT_SIGN_NAN
DEST = NaN if sign(SRC) = 1
_MM_MANT_SIGN_SRC
sign = sign(SRC)
_MM_MANT_SIGN_ZERO
sign = 0
_MM_PERM_AAAA
_MM_PERM_AAAB
_MM_PERM_AAAC
_MM_PERM_AAAD
_MM_PERM_AABA
_MM_PERM_AABB
_MM_PERM_AABC
_MM_PERM_AABD
_MM_PERM_AACA
_MM_PERM_AACB
_MM_PERM_AACC
_MM_PERM_AACD
_MM_PERM_AADA
_MM_PERM_AADB
_MM_PERM_AADC
_MM_PERM_AADD
_MM_PERM_ABAA
_MM_PERM_ABAB
_MM_PERM_ABAC
_MM_PERM_ABAD
_MM_PERM_ABBA
_MM_PERM_ABBB
_MM_PERM_ABBC
_MM_PERM_ABBD
_MM_PERM_ABCA
_MM_PERM_ABCB
_MM_PERM_ABCC
_MM_PERM_ABCD
_MM_PERM_ABDA
_MM_PERM_ABDB
_MM_PERM_ABDC
_MM_PERM_ABDD
_MM_PERM_ACAA
_MM_PERM_ACAB
_MM_PERM_ACAC
_MM_PERM_ACAD
_MM_PERM_ACBA
_MM_PERM_ACBB
_MM_PERM_ACBC
_MM_PERM_ACBD
_MM_PERM_ACCA
_MM_PERM_ACCB
_MM_PERM_ACCC
_MM_PERM_ACCD
_MM_PERM_ACDA
_MM_PERM_ACDB
_MM_PERM_ACDC
_MM_PERM_ACDD
_MM_PERM_ADAA
_MM_PERM_ADAB
_MM_PERM_ADAC
_MM_PERM_ADAD
_MM_PERM_ADBA
_MM_PERM_ADBB
_MM_PERM_ADBC
_MM_PERM_ADBD
_MM_PERM_ADCA
_MM_PERM_ADCB
_MM_PERM_ADCC
_MM_PERM_ADCD
_MM_PERM_ADDA
_MM_PERM_ADDB
_MM_PERM_ADDC
_MM_PERM_ADDD
_MM_PERM_BAAA
_MM_PERM_BAAB
_MM_PERM_BAAC
_MM_PERM_BAAD
_MM_PERM_BABA
_MM_PERM_BABB
_MM_PERM_BABC
_MM_PERM_BABD
_MM_PERM_BACA
_MM_PERM_BACB
_MM_PERM_BACC
_MM_PERM_BACD
_MM_PERM_BADA
_MM_PERM_BADB
_MM_PERM_BADC
_MM_PERM_BADD
_MM_PERM_BBAA
_MM_PERM_BBAB
_MM_PERM_BBAC
_MM_PERM_BBAD
_MM_PERM_BBBA
_MM_PERM_BBBB
_MM_PERM_BBBC
_MM_PERM_BBBD
_MM_PERM_BBCA
_MM_PERM_BBCB
_MM_PERM_BBCC
_MM_PERM_BBCD
_MM_PERM_BBDA
_MM_PERM_BBDB
_MM_PERM_BBDC
_MM_PERM_BBDD
_MM_PERM_BCAA
_MM_PERM_BCAB
_MM_PERM_BCAC
_MM_PERM_BCAD
_MM_PERM_BCBA
_MM_PERM_BCBB
_MM_PERM_BCBC
_MM_PERM_BCBD
_MM_PERM_BCCA
_MM_PERM_BCCB
_MM_PERM_BCCC
_MM_PERM_BCCD
_MM_PERM_BCDA
_MM_PERM_BCDB
_MM_PERM_BCDC
_MM_PERM_BCDD
_MM_PERM_BDAA
_MM_PERM_BDAB
_MM_PERM_BDAC
_MM_PERM_BDAD
_MM_PERM_BDBA
_MM_PERM_BDBB
_MM_PERM_BDBC
_MM_PERM_BDBD
_MM_PERM_BDCA
_MM_PERM_BDCB
_MM_PERM_BDCC
_MM_PERM_BDCD
_MM_PERM_BDDA
_MM_PERM_BDDB
_MM_PERM_BDDC
_MM_PERM_BDDD
_MM_PERM_CAAA
_MM_PERM_CAAB
_MM_PERM_CAAC
_MM_PERM_CAAD
_MM_PERM_CABA
_MM_PERM_CABB
_MM_PERM_CABC
_MM_PERM_CABD
_MM_PERM_CACA
_MM_PERM_CACB
_MM_PERM_CACC
_MM_PERM_CACD
_MM_PERM_CADA
_MM_PERM_CADB
_MM_PERM_CADC
_MM_PERM_CADD
_MM_PERM_CBAA
_MM_PERM_CBAB
_MM_PERM_CBAC
_MM_PERM_CBAD
_MM_PERM_CBBA
_MM_PERM_CBBB
_MM_PERM_CBBC
_MM_PERM_CBBD
_MM_PERM_CBCA
_MM_PERM_CBCB
_MM_PERM_CBCC
_MM_PERM_CBCD
_MM_PERM_CBDA
_MM_PERM_CBDB
_MM_PERM_CBDC
_MM_PERM_CBDD
_MM_PERM_CCAA
_MM_PERM_CCAB
_MM_PERM_CCAC
_MM_PERM_CCAD
_MM_PERM_CCBA
_MM_PERM_CCBB
_MM_PERM_CCBC
_MM_PERM_CCBD
_MM_PERM_CCCA
_MM_PERM_CCCB
_MM_PERM_CCCC
_MM_PERM_CCCD
_MM_PERM_CCDA
_MM_PERM_CCDB
_MM_PERM_CCDC
_MM_PERM_CCDD
_MM_PERM_CDAA
_MM_PERM_CDAB
_MM_PERM_CDAC
_MM_PERM_CDAD
_MM_PERM_CDBA
_MM_PERM_CDBB
_MM_PERM_CDBC
_MM_PERM_CDBD
_MM_PERM_CDCA
_MM_PERM_CDCB
_MM_PERM_CDCC
_MM_PERM_CDCD
_MM_PERM_CDDA
_MM_PERM_CDDB
_MM_PERM_CDDC
_MM_PERM_CDDD
_MM_PERM_DAAA
_MM_PERM_DAAB
_MM_PERM_DAAC
_MM_PERM_DAAD
_MM_PERM_DABA
_MM_PERM_DABB
_MM_PERM_DABC
_MM_PERM_DABD
_MM_PERM_DACA
_MM_PERM_DACB
_MM_PERM_DACC
_MM_PERM_DACD
_MM_PERM_DADA
_MM_PERM_DADB
_MM_PERM_DADC
_MM_PERM_DADD
_MM_PERM_DBAA
_MM_PERM_DBAB
_MM_PERM_DBAC
_MM_PERM_DBAD
_MM_PERM_DBBA
_MM_PERM_DBBB
_MM_PERM_DBBC
_MM_PERM_DBBD
_MM_PERM_DBCA
_MM_PERM_DBCB
_MM_PERM_DBCC
_MM_PERM_DBCD
_MM_PERM_DBDA
_MM_PERM_DBDB
_MM_PERM_DBDC
_MM_PERM_DBDD
_MM_PERM_DCAA
_MM_PERM_DCAB
_MM_PERM_DCAC
_MM_PERM_DCAD
_MM_PERM_DCBA
_MM_PERM_DCBB
_MM_PERM_DCBC
_MM_PERM_DCBD
_MM_PERM_DCCA
_MM_PERM_DCCB
_MM_PERM_DCCC
_MM_PERM_DCCD
_MM_PERM_DCDA
_MM_PERM_DCDB
_MM_PERM_DCDC
_MM_PERM_DCDD
_MM_PERM_DDAA
_MM_PERM_DDAB
_MM_PERM_DDAC
_MM_PERM_DDAD
_MM_PERM_DDBA
_MM_PERM_DDBB
_MM_PERM_DDBC
_MM_PERM_DDBD
_MM_PERM_DDCA
_MM_PERM_DDCB
_MM_PERM_DDCC
_MM_PERM_DDCD
_MM_PERM_DDDA
_MM_PERM_DDDB
_MM_PERM_DDDC
_MM_PERM_DDDD

Functions§

_cvtmask16_u32avx512f
Convert 16-bit mask a into an integer value, and store the result in dst.
_cvtu32_mask16avx512f
Convert 32-bit integer value a to an 16-bit mask and store the result in dst.
_kand_mask16avx512f
Compute the bitwise AND of 16-bit masks a and b, and store the result in k.
_kandn_mask16avx512f
Compute the bitwise NOT of 16-bit masks a and then AND with b, and store the result in k.
_knot_mask16avx512f
Compute the bitwise NOT of 16-bit mask a, and store the result in k.
_kor_mask16avx512f
Compute the bitwise OR of 16-bit masks a and b, and store the result in k.
_kortest_mask16_u8avx512f
Compute the bitwise OR of 16-bit masks a and b. If the result is all zeros, store 1 in dst, otherwise store 0 in dst. If the result is all ones, store 1 in all_ones, otherwise store 0 in all_ones.
_kortestc_mask16_u8avx512f
Compute the bitwise OR of 16-bit masks a and b. If the result is all ones, store 1 in dst, otherwise store 0 in dst.
_kortestz_mask16_u8avx512f
Compute the bitwise OR of 16-bit masks a and b. If the result is all zeros, store 1 in dst, otherwise store 0 in dst.
_kshiftli_mask16avx512f
Shift 16-bit mask a left by count bits while shifting in zeros, and store the result in dst.
_kshiftri_mask16avx512f
Shift 16-bit mask a right by count bits while shifting in zeros, and store the result in dst.
_kxnor_mask16avx512f
Compute the bitwise XNOR of 16-bit masks a and b, and store the result in k.
_kxor_mask16avx512f
Compute the bitwise XOR of 16-bit masks a and b, and store the result in k.
_load_mask16avx512f
Load 16-bit mask from memory
_mm256_abs_epi64avx512f and avx512vl
Compute the absolute value of packed signed 64-bit integers in a, and store the unsigned results in dst.
_mm256_alignr_epi32avx512f and avx512vl
Concatenate a and b into a 64-byte immediate result, shift the result right by imm8 32-bit elements, and store the low 32 bytes (8 elements) in dst.
_mm256_alignr_epi64avx512f and avx512vl
Concatenate a and b into a 64-byte immediate result, shift the result right by imm8 64-bit elements, and store the low 32 bytes (4 elements) in dst.
_mm256_broadcast_f32x4avx512f and avx512vl
Broadcast the 4 packed single-precision (32-bit) floating-point elements from a to all elements of dst.
_mm256_broadcast_i32x4avx512f and avx512vl
Broadcast the 4 packed 32-bit integers from a to all elements of dst.
_mm256_cmp_epi32_maskavx512f and avx512vl
Compare packed signed 32-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.
_mm256_cmp_epi64_maskavx512f and avx512vl
Compare packed signed 64-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.
_mm256_cmp_epu32_maskavx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.
_mm256_cmp_epu64_maskavx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.
_mm256_cmp_pd_maskavx512f and avx512vl
Compare packed double-precision (64-bit) floating-point elements in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.
_mm256_cmp_ps_maskavx512f and avx512vl
Compare packed single-precision (32-bit) floating-point elements in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.
_mm256_cmpeq_epi32_maskavx512f and avx512vl
Compare packed 32-bit integers in a and b for equality, and store the results in mask vector k.
_mm256_cmpeq_epi64_maskavx512f and avx512vl
Compare packed 64-bit integers in a and b for equality, and store the results in mask vector k.
_mm256_cmpeq_epu32_maskavx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b for equality, and store the results in mask vector k.
_mm256_cmpeq_epu64_maskavx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b for equality, and store the results in mask vector k.
_mm256_cmpge_epi32_maskavx512f and avx512vl
Compare packed signed 32-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k.
_mm256_cmpge_epi64_maskavx512f and avx512vl
Compare packed signed 64-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k.
_mm256_cmpge_epu32_maskavx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k.
_mm256_cmpge_epu64_maskavx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k.
_mm256_cmpgt_epi32_maskavx512f and avx512vl
Compare packed signed 32-bit integers in a and b for greater-than, and store the results in mask vector k.
_mm256_cmpgt_epi64_maskavx512f and avx512vl
Compare packed signed 64-bit integers in a and b for greater-than, and store the results in mask vector k.
_mm256_cmpgt_epu32_maskavx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b for greater-than, and store the results in mask vector k.
_mm256_cmpgt_epu64_maskavx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b for greater-than, and store the results in mask vector k.
_mm256_cmple_epi32_maskavx512f and avx512vl
Compare packed signed 32-bit integers in a and b for less-than-or-equal, and store the results in mask vector k.
_mm256_cmple_epi64_maskavx512f and avx512vl
Compare packed signed 64-bit integers in a and b for less-than-or-equal, and store the results in mask vector k.
_mm256_cmple_epu32_maskavx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b for less-than-or-equal, and store the results in mask vector k.
_mm256_cmple_epu64_maskavx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b for less-than-or-equal, and store the results in mask vector k.
_mm256_cmplt_epi32_maskavx512f and avx512vl
Compare packed signed 32-bit integers in a and b for less-than, and store the results in mask vector k.
_mm256_cmplt_epi64_maskavx512f and avx512vl
Compare packed signed 64-bit integers in a and b for less-than, and store the results in mask vector k.
_mm256_cmplt_epu32_maskavx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b for less-than, and store the results in mask vector k.
_mm256_cmplt_epu64_maskavx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b for less-than, and store the results in mask vector k.
_mm256_cmpneq_epi32_maskavx512f and avx512vl
Compare packed 32-bit integers in a and b for not-equal, and store the results in mask vector k.
_mm256_cmpneq_epi64_maskavx512f and avx512vl
Compare packed signed 64-bit integers in a and b for not-equal, and store the results in mask vector k.
_mm256_cmpneq_epu32_maskavx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b for not-equal, and store the results in mask vector k.
_mm256_cmpneq_epu64_maskavx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b for not-equal, and store the results in mask vector k.
_mm256_cvtepi32_epi8avx512f and avx512vl
Convert packed 32-bit integers in a to packed 8-bit integers with truncation, and store the results in dst.
_mm256_cvtepi32_epi16avx512f and avx512vl
Convert packed 32-bit integers in a to packed 16-bit integers with truncation, and store the results in dst.
_mm256_cvtepi64_epi8avx512f and avx512vl
Convert packed 64-bit integers in a to packed 8-bit integers with truncation, and store the results in dst.
_mm256_cvtepi64_epi16avx512f and avx512vl
Convert packed 64-bit integers in a to packed 16-bit integers with truncation, and store the results in dst.
_mm256_cvtepi64_epi32avx512f and avx512vl
Convert packed 64-bit integers in a to packed 32-bit integers with truncation, and store the results in dst.
_mm256_cvtepu32_pdavx512f and avx512vl
Convert packed unsigned 32-bit integers in a to packed double-precision (64-bit) floating-point elements, and store the results in dst.
_mm256_cvtpd_epu32avx512f and avx512vl
Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst.
_mm256_cvtps_epu32avx512f and avx512vl
Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst.
_mm256_cvtsepi32_epi8avx512f and avx512vl
Convert packed signed 32-bit integers in a to packed 8-bit integers with signed saturation, and store the results in dst.
_mm256_cvtsepi32_epi16avx512f and avx512vl
Convert packed signed 32-bit integers in a to packed 16-bit integers with signed saturation, and store the results in dst.
_mm256_cvtsepi64_epi8avx512f and avx512vl
Convert packed signed 64-bit integers in a to packed 8-bit integers with signed saturation, and store the results in dst.
_mm256_cvtsepi64_epi16avx512f and avx512vl
Convert packed signed 64-bit integers in a to packed 16-bit integers with signed saturation, and store the results in dst.
_mm256_cvtsepi64_epi32avx512f and avx512vl
Convert packed signed 64-bit integers in a to packed 32-bit integers with signed saturation, and store the results in dst.
_mm256_cvttpd_epu32avx512f and avx512vl
Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst.
_mm256_cvttps_epu32avx512f and avx512vl
Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst.
_mm256_cvtusepi32_epi8avx512f and avx512vl
Convert packed unsigned 32-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and store the results in dst.
_mm256_cvtusepi32_epi16avx512f and avx512vl
Convert packed unsigned 32-bit integers in a to packed unsigned 16-bit integers with unsigned saturation, and store the results in dst.
_mm256_cvtusepi64_epi8avx512f and avx512vl
Convert packed unsigned 64-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and store the results in dst.
_mm256_cvtusepi64_epi16avx512f and avx512vl
Convert packed unsigned 64-bit integers in a to packed unsigned 16-bit integers with unsigned saturation, and store the results in dst.
_mm256_cvtusepi64_epi32avx512f and avx512vl
Convert packed unsigned 64-bit integers in a to packed unsigned 32-bit integers with unsigned saturation, and store the results in dst.
_mm256_extractf32x4_psavx512f and avx512vl
Extract 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from a, selected with imm8, and store the result in dst.
_mm256_extracti32x4_epi32avx512f and avx512vl
Extract 128 bits (composed of 4 packed 32-bit integers) from a, selected with IMM1, and store the result in dst.
_mm256_fixupimm_pdavx512f and avx512vl
Fix up packed double-precision (64-bit) floating-point elements in a and b using packed 64-bit integers in c, and store the results in dst. imm8 is used to set the required flags reporting.
_mm256_fixupimm_psavx512f and avx512vl
Fix up packed single-precision (32-bit) floating-point elements in a and b using packed 32-bit integers in c, and store the results in dst. imm8 is used to set the required flags reporting.
_mm256_getexp_pdavx512f and avx512vl
Convert the exponent of each packed double-precision (64-bit) floating-point element in a to a double-precision (64-bit) floating-point number representing the integer exponent, and store the results in dst. This intrinsic essentially calculates floor(log2(x)) for each element.
_mm256_getexp_psavx512f and avx512vl
Convert the exponent of each packed single-precision (32-bit) floating-point element in a to a single-precision (32-bit) floating-point number representing the integer exponent, and store the results in dst. This intrinsic essentially calculates floor(log2(x)) for each element.
_mm256_getmant_pdavx512f and avx512vl
Normalize the mantissas of packed double-precision (64-bit) floating-point elements in a, and store the results in dst. This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
_mm256_getmant_psavx512f and avx512vl
Normalize the mantissas of packed single-precision (32-bit) floating-point elements in a, and store the results in dst. This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign. The mantissa is normalized to the interval specified by interv, which can take the following values: _MM_MANT_NORM_1_2 // interval [1, 2) _MM_MANT_NORM_p5_2 // interval [0.5, 2) _MM_MANT_NORM_p5_1 // interval [0.5, 1) _MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5) The sign is determined by sc which can take the following values: _MM_MANT_SIGN_src // sign = sign(src) _MM_MANT_SIGN_zero // sign = 0 _MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
_mm256_i32scatter_epi32avx512f and avx512vl
Stores 8 32-bit integer elements from a to memory starting at location base_addr at packed 32-bit integer indices stored in vindex scaled by scale
_mm256_i32scatter_epi64avx512f and avx512vl
Scatter 64-bit integers from a into memory using 32-bit indices. 64-bit elements are stored at addresses starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale). scale should be 1, 2, 4 or 8.
_mm256_i32scatter_pdavx512f and avx512vl
Stores 4 double-precision (64-bit) floating-point elements from a to memory starting at location base_addr at packed 32-bit integer indices stored in vindex scaled by scale
_mm256_i32scatter_psavx512f and avx512vl
Stores 8 single-precision (32-bit) floating-point elements from a to memory starting at location base_addr at packed 32-bit integer indices stored in vindex scaled by scale
_mm256_i64scatter_epi32avx512f and avx512vl
Stores 4 32-bit integer elements from a to memory starting at location base_addr at packed 64-bit integer indices stored in vindex scaled by scale
_mm256_i64scatter_epi64avx512f and avx512vl
Stores 4 64-bit integer elements from a to memory starting at location base_addr at packed 64-bit integer indices stored in vindex scaled by scale
_mm256_i64scatter_pdavx512f and avx512vl
Stores 4 double-precision (64-bit) floating-point elements from a to memory starting at location base_addr at packed 64-bit integer indices stored in vindex scaled by scale
_mm256_i64scatter_psavx512f and avx512vl
Stores 4 single-precision (32-bit) floating-point elements from a to memory starting at location base_addr at packed 64-bit integer indices stored in vindex scaled by scale
_mm256_insertf32x4avx512f and avx512vl
Copy a to dst, then insert 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from b into dst at the location specified by imm8.
_mm256_inserti32x4avx512f and avx512vl
Copy a to dst, then insert 128 bits (composed of 4 packed 32-bit integers) from b into dst at the location specified by imm8.
_mm256_load_epi32avx512f and avx512vl
Load 256-bits (composed of 8 packed 32-bit integers) from memory into dst. mem_addr must be aligned on a 32-byte boundary or a general-protection exception may be generated.
_mm256_load_epi64avx512f and avx512vl
Load 256-bits (composed of 4 packed 64-bit integers) from memory into dst. mem_addr must be aligned on a 32-byte boundary or a general-protection exception may be generated.
_mm256_loadu_epi32avx512f and avx512vl
Load 256-bits (composed of 8 packed 32-bit integers) from memory into dst. mem_addr does not need to be aligned on any particular boundary.
_mm256_loadu_epi64avx512f and avx512vl
Load 256-bits (composed of 4 packed 64-bit integers) from memory into dst. mem_addr does not need to be aligned on any particular boundary.
_mm256_mask2_permutex2var_epi32avx512f and avx512vl
Shuffle 32-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from idx when the corresponding mask bit is not set).
_mm256_mask2_permutex2var_epi64avx512f and avx512vl
Shuffle 64-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from idx when the corresponding mask bit is not set).
_mm256_mask2_permutex2var_pdavx512f and avx512vl
Shuffle double-precision (64-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from idx when the corresponding mask bit is not set)
_mm256_mask2_permutex2var_psavx512f and avx512vl
Shuffle single-precision (32-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from idx when the corresponding mask bit is not set).
_mm256_mask3_fmadd_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm256_mask3_fmadd_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm256_mask3_fmaddsub_pdavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm256_mask3_fmaddsub_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm256_mask3_fmsub_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm256_mask3_fmsub_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm256_mask3_fmsubadd_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm256_mask3_fmsubadd_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm256_mask3_fnmadd_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm256_mask3_fnmadd_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm256_mask3_fnmsub_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm256_mask3_fnmsub_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm256_mask_abs_epi32avx512f and avx512vl
Compute the absolute value of packed signed 32-bit integers in a, and store the unsigned results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_abs_epi64avx512f and avx512vl
Compute the absolute value of packed signed 64-bit integers in a, and store the unsigned results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_add_epi32avx512f and avx512vl
Add packed 32-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_add_epi64avx512f and avx512vl
Add packed 64-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_add_pdavx512f and avx512vl
Add packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_add_psavx512f and avx512vl
Add packed single-precision (32-bit) floating-point elements in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_alignr_epi32avx512f and avx512vl
Concatenate a and b into a 64-byte immediate result, shift the result right by imm8 32-bit elements, and store the low 32 bytes (8 elements) in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_alignr_epi64avx512f and avx512vl
Concatenate a and b into a 64-byte immediate result, shift the result right by imm8 64-bit elements, and store the low 32 bytes (4 elements) in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_and_epi32avx512f and avx512vl
Performs element-by-element bitwise AND between packed 32-bit integer elements of a and b, storing the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_and_epi64avx512f and avx512vl
Compute the bitwise AND of packed 64-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_andnot_epi32avx512f and avx512vl
Compute the bitwise NOT of packed 32-bit integers in a and then AND with b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_andnot_epi64avx512f and avx512vl
Compute the bitwise NOT of packed 64-bit integers in a and then AND with b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_blend_epi32avx512f and avx512vl
Blend packed 32-bit integers from a and b using control mask k, and store the results in dst.
_mm256_mask_blend_epi64avx512f and avx512vl
Blend packed 64-bit integers from a and b using control mask k, and store the results in dst.
_mm256_mask_blend_pdavx512f and avx512vl
Blend packed double-precision (64-bit) floating-point elements from a and b using control mask k, and store the results in dst.
_mm256_mask_blend_psavx512f and avx512vl
Blend packed single-precision (32-bit) floating-point elements from a and b using control mask k, and store the results in dst.
_mm256_mask_broadcast_f32x4avx512f and avx512vl
Broadcast the 4 packed single-precision (32-bit) floating-point elements from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_broadcast_i32x4avx512f and avx512vl
Broadcast the 4 packed 32-bit integers from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_broadcastd_epi32avx512f and avx512vl
Broadcast the low packed 32-bit integer from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_broadcastq_epi64avx512f and avx512vl
Broadcast the low packed 64-bit integer from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_broadcastsd_pdavx512f and avx512vl
Broadcast the low double-precision (64-bit) floating-point element from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_broadcastss_psavx512f and avx512vl
Broadcast the low single-precision (32-bit) floating-point element from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cmp_epi32_maskavx512f and avx512vl
Compare packed signed 32-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm256_mask_cmp_epi64_maskavx512f and avx512vl
Compare packed signed 64-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm256_mask_cmp_epu32_maskavx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm256_mask_cmp_epu64_maskavx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm256_mask_cmp_pd_maskavx512f and avx512vl
Compare packed double-precision (64-bit) floating-point elements in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm256_mask_cmp_ps_maskavx512f and avx512vl
Compare packed single-precision (32-bit) floating-point elements in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm256_mask_cmpeq_epi32_maskavx512f and avx512vl
Compare packed 32-bit integers in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm256_mask_cmpeq_epi64_maskavx512f and avx512vl
Compare packed 64-bit integers in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm256_mask_cmpeq_epu32_maskavx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm256_mask_cmpeq_epu64_maskavx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm256_mask_cmpge_epi32_maskavx512f and avx512vl
Compare packed signed 32-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm256_mask_cmpge_epi64_maskavx512f and avx512vl
Compare packed signed 64-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm256_mask_cmpge_epu32_maskavx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm256_mask_cmpge_epu64_maskavx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm256_mask_cmpgt_epi32_maskavx512f and avx512vl
Compare packed signed 32-bit integers in a and b for greater-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm256_mask_cmpgt_epi64_maskavx512f and avx512vl
Compare packed signed 64-bit integers in a and b for greater-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm256_mask_cmpgt_epu32_maskavx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b for greater-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm256_mask_cmpgt_epu64_maskavx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b for greater-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm256_mask_cmple_epi32_maskavx512f and avx512vl
Compare packed signed 32-bit integers in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm256_mask_cmple_epi64_maskavx512f and avx512vl
Compare packed signed 64-bit integers in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm256_mask_cmple_epu32_maskavx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm256_mask_cmple_epu64_maskavx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm256_mask_cmplt_epi32_maskavx512f and avx512vl
Compare packed signed 32-bit integers in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm256_mask_cmplt_epi64_maskavx512f and avx512vl
Compare packed signed 64-bit integers in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm256_mask_cmplt_epu32_maskavx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm256_mask_cmplt_epu64_maskavx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm256_mask_cmpneq_epi32_maskavx512f and avx512vl
Compare packed 32-bit integers in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm256_mask_cmpneq_epi64_maskavx512f and avx512vl
Compare packed signed 64-bit integers in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm256_mask_cmpneq_epu32_maskavx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm256_mask_cmpneq_epu64_maskavx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm256_mask_compress_epi32avx512f and avx512vl
Contiguously store the active 32-bit integers in a (those with their respective bit set in writemask k) to dst, and pass through the remaining elements from src.
_mm256_mask_compress_epi64avx512f and avx512vl
Contiguously store the active 64-bit integers in a (those with their respective bit set in writemask k) to dst, and pass through the remaining elements from src.
_mm256_mask_compress_pdavx512f and avx512vl
Contiguously store the active double-precision (64-bit) floating-point elements in a (those with their respective bit set in writemask k) to dst, and pass through the remaining elements from src.
_mm256_mask_compress_psavx512f and avx512vl
Contiguously store the active single-precision (32-bit) floating-point elements in a (those with their respective bit set in writemask k) to dst, and pass through the remaining elements from src.
_mm256_mask_compressstoreu_epi32avx512f and avx512vl
Contiguously store the active 32-bit integers in a (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm256_mask_compressstoreu_epi64avx512f and avx512vl
Contiguously store the active 64-bit integers in a (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm256_mask_compressstoreu_pdavx512f and avx512vl
Contiguously store the active double-precision (64-bit) floating-point elements in a (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm256_mask_compressstoreu_psavx512f and avx512vl
Contiguously store the active single-precision (32-bit) floating-point elements in a (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm256_mask_cvt_roundps_phavx512f and avx512vl
Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of:
_mm256_mask_cvtepi8_epi32avx512f and avx512vl
Sign extend packed 8-bit integers in a to packed 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtepi8_epi64avx512f and avx512vl
Sign extend packed 8-bit integers in the low 4 bytes of a to packed 64-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtepi16_epi32avx512f and avx512vl
Sign extend packed 16-bit integers in a to packed 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtepi16_epi64avx512f and avx512vl
Sign extend packed 16-bit integers in a to packed 64-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtepi32_epi8avx512f and avx512vl
Convert packed 32-bit integers in a to packed 8-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtepi32_epi16avx512f and avx512vl
Convert packed 32-bit integers in a to packed 16-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtepi32_epi64avx512f and avx512vl
Sign extend packed 32-bit integers in a to packed 64-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtepi32_pdavx512f and avx512vl
Convert packed signed 32-bit integers in a to packed double-precision (64-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtepi32_psavx512f and avx512vl
Convert packed signed 32-bit integers in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtepi32_storeu_epi8avx512f and avx512vl
Convert packed 32-bit integers in a to packed 8-bit integers with truncation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm256_mask_cvtepi32_storeu_epi16avx512f and avx512vl
Convert packed 32-bit integers in a to packed 16-bit integers with truncation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm256_mask_cvtepi64_epi8avx512f and avx512vl
Convert packed 64-bit integers in a to packed 8-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtepi64_epi16avx512f and avx512vl
Convert packed 64-bit integers in a to packed 16-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtepi64_epi32avx512f and avx512vl
Convert packed 64-bit integers in a to packed 32-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtepi64_storeu_epi8avx512f and avx512vl
Convert packed 64-bit integers in a to packed 8-bit integers with truncation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm256_mask_cvtepi64_storeu_epi16avx512f and avx512vl
Convert packed 64-bit integers in a to packed 16-bit integers with truncation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm256_mask_cvtepi64_storeu_epi32avx512f and avx512vl
Convert packed 64-bit integers in a to packed 32-bit integers with truncation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm256_mask_cvtepu8_epi32avx512f and avx512vl
Zero extend packed unsigned 8-bit integers in the low 8 bytes of a to packed 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtepu8_epi64avx512f and avx512vl
Zero extend packed unsigned 8-bit integers in the low 4 bytes of a to packed 64-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtepu16_epi32avx512f and avx512vl
Zero extend packed unsigned 16-bit integers in a to packed 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtepu16_epi64avx512f and avx512vl
Zero extend packed unsigned 16-bit integers in the low 8 bytes of a to packed 64-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtepu32_epi64avx512f and avx512vl
Zero extend packed unsigned 32-bit integers in a to packed 64-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtepu32_pdavx512f and avx512vl
Convert packed unsigned 32-bit integers in a to packed double-precision (64-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtpd_epi32avx512f and avx512vl
Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtpd_epu32avx512f and avx512vl
Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtpd_psavx512f and avx512vl
Convert packed double-precision (64-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtph_psavx512f and avx512vl
Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtps_epi32avx512f and avx512vl
Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtps_epu32avx512f and avx512vl
Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtps_phavx512f and avx512vl
Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm256_mask_cvtsepi32_epi8avx512f and avx512vl
Convert packed signed 32-bit integers in a to packed 8-bit integers with signed saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtsepi32_epi16avx512f and avx512vl
Convert packed signed 32-bit integers in a to packed 16-bit integers with signed saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtsepi32_storeu_epi8avx512f and avx512vl
Convert packed signed 32-bit integers in a to packed 8-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm256_mask_cvtsepi32_storeu_epi16avx512f and avx512vl
Convert packed signed 32-bit integers in a to packed 16-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm256_mask_cvtsepi64_epi8avx512f and avx512vl
Convert packed signed 64-bit integers in a to packed 8-bit integers with signed saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtsepi64_epi16avx512f and avx512vl
Convert packed signed 64-bit integers in a to packed 16-bit integers with signed saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtsepi64_epi32avx512f and avx512vl
Convert packed signed 64-bit integers in a to packed 32-bit integers with signed saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtsepi64_storeu_epi8avx512f and avx512vl
Convert packed signed 64-bit integers in a to packed 8-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm256_mask_cvtsepi64_storeu_epi16avx512f and avx512vl
Convert packed signed 64-bit integers in a to packed 16-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm256_mask_cvtsepi64_storeu_epi32avx512f and avx512vl
Convert packed signed 64-bit integers in a to packed 32-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm256_mask_cvttpd_epi32avx512f and avx512vl
Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvttpd_epu32avx512f and avx512vl
Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvttps_epi32avx512f and avx512vl
Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvttps_epu32avx512f and avx512vl
Convert packed double-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtusepi32_epi8avx512f and avx512vl
Convert packed unsigned 32-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtusepi32_epi16avx512f and avx512vl
Convert packed unsigned 32-bit integers in a to packed unsigned 16-bit integers with unsigned saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtusepi32_storeu_epi8avx512f and avx512vl
Convert packed unsigned 32-bit integers in a to packed 8-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm256_mask_cvtusepi32_storeu_epi16avx512f and avx512vl
Convert packed unsigned 32-bit integers in a to packed unsigned 16-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm256_mask_cvtusepi64_epi8avx512f and avx512vl
Convert packed unsigned 64-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtusepi64_epi16avx512f and avx512vl
Convert packed unsigned 64-bit integers in a to packed unsigned 16-bit integers with unsigned saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtusepi64_epi32avx512f and avx512vl
Convert packed unsigned 64-bit integers in a to packed unsigned 32-bit integers with unsigned saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_cvtusepi64_storeu_epi8avx512f and avx512vl
Convert packed unsigned 64-bit integers in a to packed 8-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm256_mask_cvtusepi64_storeu_epi16avx512f and avx512vl
Convert packed unsigned 64-bit integers in a to packed 16-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm256_mask_cvtusepi64_storeu_epi32avx512f and avx512vl
Convert packed unsigned 64-bit integers in a to packed 32-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm256_mask_div_pdavx512f and avx512vl
Divide packed double-precision (64-bit) floating-point elements in a by packed elements in b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_div_psavx512f and avx512vl
Divide packed single-precision (32-bit) floating-point elements in a by packed elements in b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_expand_epi32avx512f and avx512vl
Load contiguous active 32-bit integers from a (those with their respective bit set in mask k), and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_expand_epi64avx512f and avx512vl
Load contiguous active 64-bit integers from a (those with their respective bit set in mask k), and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_expand_pdavx512f and avx512vl
Load contiguous active double-precision (64-bit) floating-point elements from a (those with their respective bit set in mask k), and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_expand_psavx512f and avx512vl
Load contiguous active single-precision (32-bit) floating-point elements from a (those with their respective bit set in mask k), and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_expandloadu_epi32avx512f and avx512vl
Load contiguous active 32-bit integers from unaligned memory at mem_addr (those with their respective bit set in mask k), and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_expandloadu_epi64avx512f and avx512vl
Load contiguous active 64-bit integers from unaligned memory at mem_addr (those with their respective bit set in mask k), and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_expandloadu_pdavx512f and avx512vl
Load contiguous active double-precision (64-bit) floating-point elements from unaligned memory at mem_addr (those with their respective bit set in mask k), and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_expandloadu_psavx512f and avx512vl
Load contiguous active single-precision (32-bit) floating-point elements from unaligned memory at mem_addr (those with their respective bit set in mask k), and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_extractf32x4_psavx512f and avx512vl
Extract 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from a, selected with imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_extracti32x4_epi32avx512f and avx512vl
Extract 128 bits (composed of 4 packed 32-bit integers) from a, selected with IMM1, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_fixupimm_pdavx512f and avx512vl
Fix up packed double-precision (64-bit) floating-point elements in a and b using packed 64-bit integers in c, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set). imm8 is used to set the required flags reporting.
_mm256_mask_fixupimm_psavx512f and avx512vl
Fix up packed single-precision (32-bit) floating-point elements in a and b using packed 32-bit integers in c, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set). imm8 is used to set the required flags reporting.
_mm256_mask_fmadd_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm256_mask_fmadd_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm256_mask_fmaddsub_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm256_mask_fmaddsub_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm256_mask_fmsub_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm256_mask_fmsub_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm256_mask_fmsubadd_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm256_mask_fmsubadd_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm256_mask_fnmadd_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm256_mask_fnmadd_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm256_mask_fnmsub_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm256_mask_fnmsub_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm256_mask_getexp_pdavx512f and avx512vl
Convert the exponent of each packed double-precision (64-bit) floating-point element in a to a double-precision (64-bit) floating-point number representing the integer exponent, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). This intrinsic essentially calculates floor(log2(x)) for each element.
_mm256_mask_getexp_psavx512f and avx512vl
Convert the exponent of each packed single-precision (32-bit) floating-point element in a to a single-precision (32-bit) floating-point number representing the integer exponent, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). This intrinsic essentially calculates floor(log2(x)) for each element.
_mm256_mask_getmant_pdavx512f and avx512vl
Normalize the mantissas of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
_mm256_mask_getmant_psavx512f and avx512vl
Normalize the mantissas of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
_mm256_mask_i32scatter_epi32avx512f and avx512vl
Stores 8 32-bit integer elements from a to memory starting at location base_addr at packed 32-bit integer indices stored in vindex scaled by scale using writemask k (elements whose corresponding mask bit is not set are not written to memory).
_mm256_mask_i32scatter_epi64avx512f and avx512vl
Stores 4 64-bit integer elements from a to memory starting at location base_addr at packed 32-bit integer indices stored in vindex scaled by scale using writemask k (elements whose corresponding mask bit is not set are not written to memory).
_mm256_mask_i32scatter_pdavx512f and avx512vl
Stores 4 double-precision (64-bit) floating-point elements from a to memory starting at location base_addr at packed 32-bit integer indices stored in vindex scaled by scale using writemask k (elements whose corresponding mask bit is not set are not written to memory).
_mm256_mask_i32scatter_psavx512f and avx512vl
Stores 8 single-precision (32-bit) floating-point elements from a to memory starting at location base_addr at packed 32-bit integer indices stored in vindex scaled by scale using writemask k (elements whose corresponding mask bit is not set are not written to memory).
_mm256_mask_i64scatter_epi32avx512f and avx512vl
Stores 4 32-bit integer elements from a to memory starting at location base_addr at packed 64-bit integer indices stored in vindex scaled by scale using writemask k (elements whose corresponding mask bit is not set are not written to memory).
_mm256_mask_i64scatter_epi64avx512f and avx512vl
Stores 4 64-bit integer elements from a to memory starting at location base_addr at packed 64-bit integer indices stored in vindex scaled by scale using writemask k (elements whose corresponding mask bit is not set are not written to memory).
_mm256_mask_i64scatter_pdavx512f and avx512vl
Stores 4 double-precision (64-bit) floating-point elements from a to memory starting at location base_addr at packed 64-bit integer indices stored in vindex scaled by scale using writemask k (elements whose corresponding mask bit is not set are not written to memory).
_mm256_mask_i64scatter_psavx512f and avx512vl
Stores 4 single-precision (32-bit) floating-point elements from a to memory starting at location base_addr at packed 64-bit integer indices stored in vindex scaled by scale using writemask k (elements whose corresponding mask bit is not set are not written to memory).
_mm256_mask_insertf32x4avx512f and avx512vl
Copy a to tmp, then insert 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from b into tmp at the location specified by imm8. Store tmp to dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_inserti32x4avx512f and avx512vl
Copy a to tmp, then insert 128 bits (composed of 4 packed 32-bit integers) from b into tmp at the location specified by imm8. Store tmp to dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_load_epi32avx512f and avx512vl
Load packed 32-bit integers from memory into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr must be aligned on a 32-byte boundary or a general-protection exception may be generated.
_mm256_mask_load_epi64avx512f and avx512vl
Load packed 64-bit integers from memory into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr must be aligned on a 32-byte boundary or a general-protection exception may be generated.
_mm256_mask_load_pdavx512f and avx512vl
Load packed double-precision (64-bit) floating-point elements from memory into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr must be aligned on a 32-byte boundary or a general-protection exception may be generated.
_mm256_mask_load_psavx512f and avx512vl
Load packed single-precision (32-bit) floating-point elements from memory into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr must be aligned on a 32-byte boundary or a general-protection exception may be generated.
_mm256_mask_loadu_epi32avx512f and avx512vl
Load packed 32-bit integers from memory into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular boundary.
_mm256_mask_loadu_epi64avx512f and avx512vl
Load packed 64-bit integers from memory into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular boundary.
_mm256_mask_loadu_pdavx512f and avx512vl
Load packed double-precision (64-bit) floating-point elements from memory into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular boundary.
_mm256_mask_loadu_psavx512f and avx512vl
Load packed single-precision (32-bit) floating-point elements from memory into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular boundary.
_mm256_mask_max_epi32avx512f and avx512vl
Compare packed signed 32-bit integers in a and b, and store packed maximum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_max_epi64avx512f and avx512vl
Compare packed signed 64-bit integers in a and b, and store packed maximum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_max_epu32avx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b, and store packed maximum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_max_epu64avx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b, and store packed maximum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_max_pdavx512f and avx512vl
Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed maximum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_max_psavx512f and avx512vl
Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed maximum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_min_epi32avx512f and avx512vl
Compare packed signed 32-bit integers in a and b, and store packed minimum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_min_epi64avx512f and avx512vl
Compare packed signed 64-bit integers in a and b, and store packed minimum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_min_epu32avx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b, and store packed minimum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_min_epu64avx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b, and store packed minimum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_min_pdavx512f and avx512vl
Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed minimum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_min_psavx512f and avx512vl
Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed minimum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_mov_epi32avx512f and avx512vl
Move packed 32-bit integers from a to dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_mov_epi64avx512f and avx512vl
Move packed 64-bit integers from a to dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_mov_pdavx512f and avx512vl
Move packed double-precision (64-bit) floating-point elements from a to dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_mov_psavx512f and avx512vl
Move packed single-precision (32-bit) floating-point elements from a to dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_movedup_pdavx512f and avx512vl
Duplicate even-indexed double-precision (64-bit) floating-point elements from a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_movehdup_psavx512f and avx512vl
Duplicate odd-indexed single-precision (32-bit) floating-point elements from a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_moveldup_psavx512f and avx512vl
Duplicate even-indexed single-precision (32-bit) floating-point elements from a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_mul_epi32avx512f and avx512vl
Multiply the low signed 32-bit integers from each packed 64-bit element in a and b, and store the signed 64-bit results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_mul_epu32avx512f and avx512vl
Multiply the low unsigned 32-bit integers from each packed 64-bit element in a and b, and store the unsigned 64-bit results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_mul_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_mul_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_mullo_epi32avx512f and avx512vl
Multiply the packed 32-bit integers in a and b, producing intermediate 64-bit integers, and store the low 32 bits of the intermediate integers in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_or_epi32avx512f and avx512vl
Compute the bitwise OR of packed 32-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_or_epi64avx512f and avx512vl
Compute the bitwise OR of packed 64-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_permute_pdavx512f and avx512vl
Shuffle double-precision (64-bit) floating-point elements in a within 128-bit lanes using the control in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_permute_psavx512f and avx512vl
Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_permutevar_pdavx512f and avx512vl
Shuffle double-precision (64-bit) floating-point elements in a within 128-bit lanes using the control in b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_permutevar_psavx512f and avx512vl
Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_permutex2var_epi32avx512f and avx512vl
Shuffle 32-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm256_mask_permutex2var_epi64avx512f and avx512vl
Shuffle 64-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm256_mask_permutex2var_pdavx512f and avx512vl
Shuffle double-precision (64-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm256_mask_permutex2var_psavx512f and avx512vl
Shuffle single-precision (32-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm256_mask_permutex_epi64avx512f and avx512vl
Shuffle 64-bit integers in a within 256-bit lanes using the control in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_permutex_pdavx512f and avx512vl
Shuffle double-precision (64-bit) floating-point elements in a within 256-bit lanes using the control in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_permutexvar_epi32avx512f and avx512vl
Shuffle 32-bit integers in a across lanes using the corresponding index in idx, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_permutexvar_epi64avx512f and avx512vl
Shuffle 64-bit integers in a across lanes using the corresponding index in idx, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_permutexvar_pdavx512f and avx512vl
Shuffle double-precision (64-bit) floating-point elements in a across lanes using the corresponding index in idx, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_permutexvar_psavx512f and avx512vl
Shuffle single-precision (32-bit) floating-point elements in a across lanes using the corresponding index in idx, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_rcp14_pdavx512f and avx512vl
Compute the approximate reciprocal of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.
_mm256_mask_rcp14_psavx512f and avx512vl
Compute the approximate reciprocal of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.
_mm256_mask_rol_epi32avx512f and avx512vl
Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_rol_epi64avx512f and avx512vl
Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_rolv_epi32avx512f and avx512vl
Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in the corresponding element of b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_rolv_epi64avx512f and avx512vl
Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in the corresponding element of b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_ror_epi32avx512f and avx512vl
Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_ror_epi64avx512f and avx512vl
Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_rorv_epi32avx512f and avx512vl
Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in the corresponding element of b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_rorv_epi64avx512f and avx512vl
Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in the corresponding element of b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_roundscale_pdavx512f and avx512vl
Round packed double-precision (64-bit) floating-point elements in a to the number of fraction bits specified by imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm256_mask_roundscale_psavx512f and avx512vl
Round packed single-precision (32-bit) floating-point elements in a to the number of fraction bits specified by imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm256_mask_rsqrt14_pdavx512f and avx512vl
Compute the approximate reciprocal square root of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.
_mm256_mask_rsqrt14_psavx512f and avx512vl
Compute the approximate reciprocal square root of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.
_mm256_mask_scalef_pdavx512f and avx512vl
Scale the packed double-precision (64-bit) floating-point elements in a using values from b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_scalef_psavx512f and avx512vl
Scale the packed single-precision (32-bit) floating-point elements in a using values from b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_set1_epi32avx512f and avx512vl
Broadcast 32-bit integer a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_set1_epi64avx512f and avx512vl
Broadcast 64-bit integer a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_shuffle_epi32avx512f and avx512vl
Shuffle 32-bit integers in a within 128-bit lanes using the control in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_shuffle_f32x4avx512f and avx512vl
Shuffle 128-bits (composed of 4 single-precision (32-bit) floating-point elements) selected by imm8 from a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_shuffle_f64x2avx512f and avx512vl
Shuffle 128-bits (composed of 2 double-precision (64-bit) floating-point elements) selected by imm8 from a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_shuffle_i32x4avx512f and avx512vl
Shuffle 128-bits (composed of 4 32-bit integers) selected by imm8 from a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_shuffle_i64x2avx512f and avx512vl
Shuffle 128-bits (composed of 2 64-bit integers) selected by imm8 from a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_shuffle_pdavx512f and avx512vl
Shuffle double-precision (64-bit) floating-point elements within 128-bit lanes using the control in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_shuffle_psavx512f and avx512vl
Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_sll_epi32avx512f and avx512vl
Shift packed 32-bit integers in a left by count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_sll_epi64avx512f and avx512vl
Shift packed 64-bit integers in a left by count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_slli_epi32avx512f and avx512vl
Shift packed 32-bit integers in a left by imm8 while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_slli_epi64avx512f and avx512vl
Shift packed 64-bit integers in a left by imm8 while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_sllv_epi32avx512f and avx512vl
Shift packed 32-bit integers in a left by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_sllv_epi64avx512f and avx512vl
Shift packed 64-bit integers in a left by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_sqrt_pdavx512f and avx512vl
Compute the square root of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_sqrt_psavx512f and avx512vl
Compute the square root of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_sra_epi32avx512f and avx512vl
Shift packed 32-bit integers in a right by count while shifting in sign bits, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_sra_epi64avx512f and avx512vl
Shift packed 64-bit integers in a right by count while shifting in sign bits, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_srai_epi32avx512f and avx512vl
Shift packed 32-bit integers in a right by imm8 while shifting in sign bits, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_srai_epi64avx512f and avx512vl
Shift packed 64-bit integers in a right by imm8 while shifting in sign bits, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_srav_epi32avx512f and avx512vl
Shift packed 32-bit integers in a right by the amount specified by the corresponding element in count while shifting in sign bits, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_srav_epi64avx512f and avx512vl
Shift packed 64-bit integers in a right by the amount specified by the corresponding element in count while shifting in sign bits, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_srl_epi32avx512f and avx512vl
Shift packed 32-bit integers in a right by count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_srl_epi64avx512f and avx512vl
Shift packed 64-bit integers in a right by count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_srli_epi32avx512f and avx512vl
Shift packed 32-bit integers in a right by imm8 while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_srli_epi64avx512f and avx512vl
Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_srlv_epi32avx512f and avx512vl
Shift packed 32-bit integers in a right by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_srlv_epi64avx512f and avx512vl
Shift packed 64-bit integers in a right by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_store_epi32avx512f and avx512vl
Store packed 32-bit integers from a into memory using writemask k. mem_addr must be aligned on a 32-byte boundary or a general-protection exception may be generated.
_mm256_mask_store_epi64avx512f and avx512vl
Store packed 64-bit integers from a into memory using writemask k. mem_addr must be aligned on a 32-byte boundary or a general-protection exception may be generated.
_mm256_mask_store_pdavx512f and avx512vl
Store packed double-precision (64-bit) floating-point elements from a into memory using writemask k. mem_addr must be aligned on a 32-byte boundary or a general-protection exception may be generated.
_mm256_mask_store_psavx512f and avx512vl
Store packed single-precision (32-bit) floating-point elements from a into memory using writemask k. mem_addr must be aligned on a 32-byte boundary or a general-protection exception may be generated.
_mm256_mask_storeu_epi32avx512f and avx512vl
Store packed 32-bit integers from a into memory using writemask k. mem_addr does not need to be aligned on any particular boundary.
_mm256_mask_storeu_epi64avx512f and avx512vl
Store packed 64-bit integers from a into memory using writemask k. mem_addr does not need to be aligned on any particular boundary.
_mm256_mask_storeu_pdavx512f and avx512vl
Store packed double-precision (64-bit) floating-point elements from a into memory using writemask k. mem_addr does not need to be aligned on any particular boundary.
_mm256_mask_storeu_psavx512f and avx512vl
Store packed single-precision (32-bit) floating-point elements from a into memory using writemask k. mem_addr does not need to be aligned on any particular boundary.
_mm256_mask_sub_epi32avx512f and avx512vl
Subtract packed 32-bit integers in b from packed 32-bit integers in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_sub_epi64avx512f and avx512vl
Subtract packed 64-bit integers in b from packed 64-bit integers in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_sub_pdavx512f and avx512vl
Subtract packed double-precision (64-bit) floating-point elements in b from packed double-precision (64-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_sub_psavx512f and avx512vl
Subtract packed single-precision (32-bit) floating-point elements in b from packed single-precision (32-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_ternarylogic_epi32avx512f and avx512vl
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in imm8. For each bit in each packed 32-bit integer, the corresponding bit from src, a, and b are used to form a 3 bit index into imm8, and the value at that bit in imm8 is written to the corresponding bit in dst using writemask k at 32-bit granularity (32-bit elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_ternarylogic_epi64avx512f and avx512vl
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in imm8. For each bit in each packed 64-bit integer, the corresponding bit from src, a, and b are used to form a 3 bit index into imm8, and the value at that bit in imm8 is written to the corresponding bit in dst using writemask k at 64-bit granularity (64-bit elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_test_epi32_maskavx512f and avx512vl
Compute the bitwise AND of packed 32-bit integers in a and b, producing intermediate 32-bit values, and set the corresponding bit in result mask k (subject to writemask k) if the intermediate value is non-zero.
_mm256_mask_test_epi64_maskavx512f and avx512vl
Compute the bitwise AND of packed 64-bit integers in a and b, producing intermediate 64-bit values, and set the corresponding bit in result mask k (subject to writemask k) if the intermediate value is non-zero.
_mm256_mask_testn_epi32_maskavx512f and avx512vl
Compute the bitwise NAND of packed 32-bit integers in a and b, producing intermediate 32-bit values, and set the corresponding bit in result mask k (subject to writemask k) if the intermediate value is zero.
_mm256_mask_testn_epi64_maskavx512f and avx512vl
Compute the bitwise NAND of packed 64-bit integers in a and b, producing intermediate 64-bit values, and set the corresponding bit in result mask k (subject to writemask k) if the intermediate value is zero.
_mm256_mask_unpackhi_epi32avx512f and avx512vl
Unpack and interleave 32-bit integers from the high half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_unpackhi_epi64avx512f and avx512vl
Unpack and interleave 64-bit integers from the high half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_unpackhi_pdavx512f and avx512vl
Unpack and interleave double-precision (64-bit) floating-point elements from the high half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_unpackhi_psavx512f and avx512vl
Unpack and interleave single-precision (32-bit) floating-point elements from the high half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_unpacklo_epi32avx512f and avx512vl
Unpack and interleave 32-bit integers from the low half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_unpacklo_epi64avx512f and avx512vl
Unpack and interleave 64-bit integers from the low half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_unpacklo_pdavx512f and avx512vl
Unpack and interleave double-precision (64-bit) floating-point elements from the low half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_unpacklo_psavx512f and avx512vl
Unpack and interleave single-precision (32-bit) floating-point elements from the low half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_xor_epi32avx512f and avx512vl
Compute the bitwise XOR of packed 32-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mask_xor_epi64avx512f and avx512vl
Compute the bitwise XOR of packed 64-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_maskz_abs_epi32avx512f and avx512vl
Compute the absolute value of packed signed 32-bit integers in a, and store the unsigned results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_abs_epi64avx512f and avx512vl
Compute the absolute value of packed signed 64-bit integers in a, and store the unsigned results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_add_epi32avx512f and avx512vl
Add packed 32-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_add_epi64avx512f and avx512vl
Add packed 64-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_add_pdavx512f and avx512vl
Add packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_add_psavx512f and avx512vl
Add packed single-precision (32-bit) floating-point elements in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_alignr_epi32avx512f and avx512vl
Concatenate a and b into a 64-byte immediate result, shift the result right by imm8 32-bit elements, and store the low 32 bytes (8 elements) in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_alignr_epi64avx512f and avx512vl
Concatenate a and b into a 64-byte immediate result, shift the result right by imm8 64-bit elements, and store the low 32 bytes (4 elements) in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_and_epi32avx512f and avx512vl
Compute the bitwise AND of packed 32-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_and_epi64avx512f and avx512vl
Compute the bitwise AND of packed 64-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_andnot_epi32avx512f and avx512vl
Compute the bitwise NOT of packed 32-bit integers in a and then AND with b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_andnot_epi64avx512f and avx512vl
Compute the bitwise NOT of packed 64-bit integers in a and then AND with b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_broadcast_f32x4avx512f and avx512vl
Broadcast the 4 packed single-precision (32-bit) floating-point elements from a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_broadcast_i32x4avx512f and avx512vl
Broadcast the 4 packed 32-bit integers from a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_broadcastd_epi32avx512f and avx512vl
Broadcast the low packed 32-bit integer from a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_broadcastq_epi64avx512f and avx512vl
Broadcast the low packed 64-bit integer from a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_broadcastsd_pdavx512f and avx512vl
Broadcast the low double-precision (64-bit) floating-point element from a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_broadcastss_psavx512f and avx512vl
Broadcast the low single-precision (32-bit) floating-point element from a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_compress_epi32avx512f and avx512vl
Contiguously store the active 32-bit integers in a (those with their respective bit set in zeromask k) to dst, and set the remaining elements to zero.
_mm256_maskz_compress_epi64avx512f and avx512vl
Contiguously store the active 64-bit integers in a (those with their respective bit set in zeromask k) to dst, and set the remaining elements to zero.
_mm256_maskz_compress_pdavx512f and avx512vl
Contiguously store the active double-precision (64-bit) floating-point elements in a (those with their respective bit set in zeromask k) to dst, and set the remaining elements to zero.
_mm256_maskz_compress_psavx512f and avx512vl
Contiguously store the active single-precision (32-bit) floating-point elements in a (those with their respective bit set in zeromask k) to dst, and set the remaining elements to zero.
_mm256_maskz_cvt_roundps_phavx512f and avx512vl
Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm256_maskz_cvtepi8_epi32avx512f and avx512vl
Sign extend packed 8-bit integers in a to packed 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtepi8_epi64avx512f and avx512vl
Sign extend packed 8-bit integers in the low 4 bytes of a to packed 64-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtepi16_epi32avx512f and avx512vl
Sign extend packed 16-bit integers in a to packed 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtepi16_epi64avx512f and avx512vl
Sign extend packed 16-bit integers in a to packed 64-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtepi32_epi8avx512f and avx512vl
Convert packed 32-bit integers in a to packed 8-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtepi32_epi16avx512f and avx512vl
Convert packed 32-bit integers in a to packed 16-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtepi32_epi64avx512f and avx512vl
Sign extend packed 32-bit integers in a to packed 64-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtepi32_pdavx512f and avx512vl
Convert packed signed 32-bit integers in a to packed double-precision (64-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtepi32_psavx512f and avx512vl
Convert packed signed 32-bit integers in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtepi64_epi8avx512f and avx512vl
Convert packed 64-bit integers in a to packed 8-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtepi64_epi16avx512f and avx512vl
Convert packed 64-bit integers in a to packed 16-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtepi64_epi32avx512f and avx512vl
Convert packed 64-bit integers in a to packed 32-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtepu8_epi32avx512f and avx512vl
Zero extend packed unsigned 8-bit integers in the low 8 bytes of a to packed 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtepu8_epi64avx512f and avx512vl
Zero extend packed unsigned 8-bit integers in the low 4 bytes of a to packed 64-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtepu16_epi32avx512f and avx512vl
Zero extend packed unsigned 16-bit integers in a to packed 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtepu16_epi64avx512f and avx512vl
Zero extend packed unsigned 16-bit integers in the low 8 bytes of a to packed 64-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtepu32_epi64avx512f and avx512vl
Zero extend packed unsigned 32-bit integers in a to packed 64-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtepu32_pdavx512f and avx512vl
Convert packed unsigned 32-bit integers in a to packed double-precision (64-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtpd_epi32avx512f and avx512vl
Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtpd_epu32avx512f and avx512vl
Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtpd_psavx512f and avx512vl
Convert packed double-precision (64-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtph_psavx512f and avx512vl
Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtps_epi32avx512f and avx512vl
Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtps_epu32avx512f and avx512vl
Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtps_phavx512f and avx512vl
Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm256_maskz_cvtsepi32_epi8avx512f and avx512vl
Convert packed signed 32-bit integers in a to packed 8-bit integers with signed saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtsepi32_epi16avx512f and avx512vl
Convert packed signed 32-bit integers in a to packed 16-bit integers with signed saturation, and store the results in dst.
_mm256_maskz_cvtsepi64_epi8avx512f and avx512vl
Convert packed signed 64-bit integers in a to packed 8-bit integers with signed saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtsepi64_epi16avx512f and avx512vl
Convert packed signed 64-bit integers in a to packed 16-bit integers with signed saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtsepi64_epi32avx512f and avx512vl
Convert packed signed 64-bit integers in a to packed 32-bit integers with signed saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvttpd_epi32avx512f and avx512vl
Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvttpd_epu32avx512f and avx512vl
Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvttps_epi32avx512f and avx512vl
Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvttps_epu32avx512f and avx512vl
Convert packed double-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtusepi32_epi8avx512f and avx512vl
Convert packed unsigned 32-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtusepi32_epi16avx512f and avx512vl
Convert packed unsigned 32-bit integers in a to packed unsigned 16-bit integers with unsigned saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtusepi64_epi8avx512f and avx512vl
Convert packed unsigned 64-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtusepi64_epi16avx512f and avx512vl
Convert packed unsigned 64-bit integers in a to packed unsigned 16-bit integers with unsigned saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_cvtusepi64_epi32avx512f and avx512vl
Convert packed unsigned 64-bit integers in a to packed unsigned 32-bit integers with unsigned saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_div_pdavx512f and avx512vl
Divide packed double-precision (64-bit) floating-point elements in a by packed elements in b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_div_psavx512f and avx512vl
Divide packed single-precision (32-bit) floating-point elements in a by packed elements in b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_expand_epi32avx512f and avx512vl
Load contiguous active 32-bit integers from a (those with their respective bit set in mask k), and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_expand_epi64avx512f and avx512vl
Load contiguous active 64-bit integers from a (those with their respective bit set in mask k), and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_expand_pdavx512f and avx512vl
Load contiguous active double-precision (64-bit) floating-point elements from a (those with their respective bit set in mask k), and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_expand_psavx512f and avx512vl
Load contiguous active single-precision (32-bit) floating-point elements from a (those with their respective bit set in mask k), and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_expandloadu_epi32avx512f and avx512vl
Load contiguous active 32-bit integers from unaligned memory at mem_addr (those with their respective bit set in mask k), and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_expandloadu_epi64avx512f and avx512vl
Load contiguous active 64-bit integers from unaligned memory at mem_addr (those with their respective bit set in mask k), and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_expandloadu_pdavx512f and avx512vl
Load contiguous active double-precision (64-bit) floating-point elements from unaligned memory at mem_addr (those with their respective bit set in mask k), and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_expandloadu_psavx512f and avx512vl
Load contiguous active single-precision (32-bit) floating-point elements from unaligned memory at mem_addr (those with their respective bit set in mask k), and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_extractf32x4_psavx512f and avx512vl
Extract 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from a, selected with imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_extracti32x4_epi32avx512f and avx512vl
Extract 128 bits (composed of 4 packed 32-bit integers) from a, selected with IMM1, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_fixupimm_pdavx512f and avx512vl
Fix up packed double-precision (64-bit) floating-point elements in a and b using packed 64-bit integers in c, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). imm8 is used to set the required flags reporting.
_mm256_maskz_fixupimm_psavx512f and avx512vl
Fix up packed single-precision (32-bit) floating-point elements in a and b using packed 32-bit integers in c, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). imm8 is used to set the required flags reporting.
_mm256_maskz_fmadd_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_fmadd_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_fmaddsub_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_fmaddsub_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_fmsub_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_fmsub_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_fmsubadd_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_fmsubadd_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_fnmadd_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_fnmadd_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_fnmsub_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_fnmsub_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_getexp_pdavx512f and avx512vl
Convert the exponent of each packed double-precision (64-bit) floating-point element in a to a double-precision (64-bit) floating-point number representing the integer exponent, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates floor(log2(x)) for each element.
_mm256_maskz_getexp_psavx512f and avx512vl
Convert the exponent of each packed single-precision (32-bit) floating-point element in a to a single-precision (32-bit) floating-point number representing the integer exponent, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates floor(log2(x)) for each element.
_mm256_maskz_getmant_pdavx512f and avx512vl
Normalize the mantissas of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
_mm256_maskz_getmant_psavx512f and avx512vl
Normalize the mantissas of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
_mm256_maskz_insertf32x4avx512f and avx512vl
Copy a to tmp, then insert 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from b into tmp at the location specified by imm8. Store tmp to dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_inserti32x4avx512f and avx512vl
Copy a to tmp, then insert 128 bits (composed of 4 packed 32-bit integers) from b into tmp at the location specified by imm8. Store tmp to dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_load_epi32avx512f and avx512vl
Load packed 32-bit integers from memory into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr must be aligned on a 32-byte boundary or a general-protection exception may be generated.
_mm256_maskz_load_epi64avx512f and avx512vl
Load packed 64-bit integers from memory into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr must be aligned on a 32-byte boundary or a general-protection exception may be generated.
_mm256_maskz_load_pdavx512f and avx512vl
Load packed double-precision (64-bit) floating-point elements from memory into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr must be aligned on a 32-byte boundary or a general-protection exception may be generated.
_mm256_maskz_load_psavx512f and avx512vl
Load packed single-precision (32-bit) floating-point elements from memory into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr must be aligned on a 32-byte boundary or a general-protection exception may be generated.
_mm256_maskz_loadu_epi32avx512f and avx512vl
Load packed 32-bit integers from memory into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular boundary.
_mm256_maskz_loadu_epi64avx512f and avx512vl
Load packed 64-bit integers from memory into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular boundary.
_mm256_maskz_loadu_pdavx512f and avx512vl
Load packed double-precision (64-bit) floating-point elements from memory into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular boundary.
_mm256_maskz_loadu_psavx512f and avx512vl
Load packed single-precision (32-bit) floating-point elements from memory into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular boundary.
_mm256_maskz_max_epi32avx512f and avx512vl
Compare packed signed 32-bit integers in a and b, and store packed maximum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_max_epi64avx512f and avx512vl
Compare packed signed 64-bit integers in a and b, and store packed maximum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_max_epu32avx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b, and store packed maximum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_max_epu64avx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b, and store packed maximum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_max_pdavx512f and avx512vl
Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed maximum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_max_psavx512f and avx512vl
Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed maximum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_min_epi32avx512f and avx512vl
Compare packed signed 32-bit integers in a and b, and store packed minimum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_min_epi64avx512f and avx512vl
Compare packed signed 64-bit integers in a and b, and store packed minimum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_min_epu32avx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b, and store packed minimum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_min_epu64avx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b, and store packed minimum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_min_pdavx512f and avx512vl
Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed minimum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_min_psavx512f and avx512vl
Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed minimum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_mov_epi32avx512f and avx512vl
Move packed 32-bit integers from a into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_mov_epi64avx512f and avx512vl
Move packed 64-bit integers from a into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_mov_pdavx512f and avx512vl
Move packed double-precision (64-bit) floating-point elements from a into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_mov_psavx512f and avx512vl
Move packed single-precision (32-bit) floating-point elements from a into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_movedup_pdavx512f and avx512vl
Duplicate even-indexed double-precision (64-bit) floating-point elements from a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_movehdup_psavx512f and avx512vl
Duplicate odd-indexed single-precision (32-bit) floating-point elements from a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_moveldup_psavx512f and avx512vl
Duplicate even-indexed single-precision (32-bit) floating-point elements from a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_mul_epi32avx512f and avx512vl
Multiply the low signed 32-bit integers from each packed 64-bit element in a and b, and store the signed 64-bit results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_mul_epu32avx512f and avx512vl
Multiply the low unsigned 32-bit integers from each packed 64-bit element in a and b, and store the unsigned 64-bit results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_mul_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_mul_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_mullo_epi32avx512f and avx512vl
Multiply the packed 32-bit integers in a and b, producing intermediate 64-bit integers, and store the low 32 bits of the intermediate integers in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_or_epi32avx512f and avx512vl
Compute the bitwise OR of packed 32-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_or_epi64avx512f and avx512vl
Compute the bitwise OR of packed 64-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_permute_pdavx512f and avx512vl
Shuffle double-precision (64-bit) floating-point elements in a within 128-bit lanes using the control in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_permute_psavx512f and avx512vl
Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_permutevar_pdavx512f and avx512vl
Shuffle double-precision (64-bit) floating-point elements in a within 128-bit lanes using the control in b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_permutevar_psavx512f and avx512vl
Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_permutex2var_epi32avx512f and avx512vl
Shuffle 32-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_permutex2var_epi64avx512f and avx512vl
Shuffle 64-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_permutex2var_pdavx512f and avx512vl
Shuffle double-precision (64-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_permutex2var_psavx512f and avx512vl
Shuffle single-precision (32-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_permutex_epi64avx512f and avx512vl
Shuffle 64-bit integers in a within 256-bit lanes using the control in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_permutex_pdavx512f and avx512vl
Shuffle double-precision (64-bit) floating-point elements in a within 256-bit lanes using the control in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_permutexvar_epi32avx512f and avx512vl
Shuffle 32-bit integers in a across lanes using the corresponding index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_permutexvar_epi64avx512f and avx512vl
Shuffle 64-bit integers in a across lanes using the corresponding index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_permutexvar_pdavx512f and avx512vl
Shuffle double-precision (64-bit) floating-point elements in a across lanes using the corresponding index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_permutexvar_psavx512f and avx512vl
Shuffle single-precision (32-bit) floating-point elements in a across lanes using the corresponding index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_rcp14_pdavx512f and avx512vl
Compute the approximate reciprocal of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.
_mm256_maskz_rcp14_psavx512f and avx512vl
Compute the approximate reciprocal of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.
_mm256_maskz_rol_epi32avx512f and avx512vl
Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_rol_epi64avx512f and avx512vl
Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_rolv_epi32avx512f and avx512vl
Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in the corresponding element of b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_rolv_epi64avx512f and avx512vl
Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in the corresponding element of b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_ror_epi32avx512f and avx512vl
Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_ror_epi64avx512f and avx512vl
Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_rorv_epi32avx512f and avx512vl
Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in the corresponding element of b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_rorv_epi64avx512f and avx512vl
Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in the corresponding element of b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_roundscale_pdavx512f and avx512vl
Round packed double-precision (64-bit) floating-point elements in a to the number of fraction bits specified by imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm256_maskz_roundscale_psavx512f and avx512vl
Round packed single-precision (32-bit) floating-point elements in a to the number of fraction bits specified by imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm256_maskz_rsqrt14_pdavx512f and avx512vl
Compute the approximate reciprocal square root of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.
_mm256_maskz_rsqrt14_psavx512f and avx512vl
Compute the approximate reciprocal square root of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.
_mm256_maskz_scalef_pdavx512f and avx512vl
Scale the packed double-precision (64-bit) floating-point elements in a using values from b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_scalef_psavx512f and avx512vl
Scale the packed single-precision (32-bit) floating-point elements in a using values from b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_set1_epi32avx512f and avx512vl
Broadcast 32-bit integer a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_set1_epi64avx512f and avx512vl
Broadcast 64-bit integer a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_shuffle_epi32avx512f and avx512vl
Shuffle 32-bit integers in a within 128-bit lanes using the control in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_shuffle_f32x4avx512f and avx512vl
Shuffle 128-bits (composed of 4 single-precision (32-bit) floating-point elements) selected by imm8 from a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_shuffle_f64x2avx512f and avx512vl
Shuffle 128-bits (composed of 2 double-precision (64-bit) floating-point elements) selected by imm8 from a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_shuffle_i32x4avx512f and avx512vl
Shuffle 128-bits (composed of 4 32-bit integers) selected by imm8 from a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_shuffle_i64x2avx512f and avx512vl
Shuffle 128-bits (composed of 2 64-bit integers) selected by imm8 from a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_shuffle_pdavx512f and avx512vl
Shuffle double-precision (64-bit) floating-point elements within 128-bit lanes using the control in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_shuffle_psavx512f and avx512vl
Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_sll_epi32avx512f and avx512vl
Shift packed 32-bit integers in a left by count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_sll_epi64avx512f and avx512vl
Shift packed 64-bit integers in a left by count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_slli_epi32avx512f and avx512vl
Shift packed 32-bit integers in a left by imm8 while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_slli_epi64avx512f and avx512vl
Shift packed 64-bit integers in a left by imm8 while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_sllv_epi32avx512f and avx512vl
Shift packed 32-bit integers in a left by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_sllv_epi64avx512f and avx512vl
Shift packed 64-bit integers in a left by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_sqrt_pdavx512f and avx512vl
Compute the square root of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_sqrt_psavx512f and avx512vl
Compute the square root of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_sra_epi32avx512f and avx512vl
Shift packed 32-bit integers in a right by count while shifting in sign bits, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_sra_epi64avx512f and avx512vl
Shift packed 64-bit integers in a right by count while shifting in sign bits, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_srai_epi32avx512f and avx512vl
Shift packed 32-bit integers in a right by imm8 while shifting in sign bits, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_srai_epi64avx512f and avx512vl
Shift packed 64-bit integers in a right by imm8 while shifting in sign bits, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_srav_epi32avx512f and avx512vl
Shift packed 32-bit integers in a right by the amount specified by the corresponding element in count while shifting in sign bits, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_srav_epi64avx512f and avx512vl
Shift packed 64-bit integers in a right by the amount specified by the corresponding element in count while shifting in sign bits, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_srl_epi32avx512f and avx512vl
Shift packed 32-bit integers in a right by count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_srl_epi64avx512f and avx512vl
Shift packed 64-bit integers in a right by count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_srli_epi32avx512f and avx512vl
Shift packed 32-bit integers in a right by imm8 while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_srli_epi64avx512f and avx512vl
Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_srlv_epi32avx512f and avx512vl
Shift packed 32-bit integers in a right by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_srlv_epi64avx512f and avx512vl
Shift packed 64-bit integers in a right by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_sub_epi32avx512f and avx512vl
Subtract packed 32-bit integers in b from packed 32-bit integers in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_sub_epi64avx512f and avx512vl
Subtract packed 64-bit integers in b from packed 64-bit integers in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_sub_pdavx512f and avx512vl
Subtract packed double-precision (64-bit) floating-point elements in b from packed double-precision (64-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_sub_psavx512f and avx512vl
Subtract packed single-precision (32-bit) floating-point elements in b from packed single-precision (32-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_ternarylogic_epi32avx512f and avx512vl
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in imm8. For each bit in each packed 32-bit integer, the corresponding bit from a, b, and c are used to form a 3 bit index into imm8, and the value at that bit in imm8 is written to the corresponding bit in dst using zeromask k at 32-bit granularity (32-bit elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_ternarylogic_epi64avx512f and avx512vl
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in imm8. For each bit in each packed 64-bit integer, the corresponding bit from a, b, and c are used to form a 3 bit index into imm8, and the value at that bit in imm8 is written to the corresponding bit in dst using zeromask k at 64-bit granularity (64-bit elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_unpackhi_epi32avx512f and avx512vl
Unpack and interleave 32-bit integers from the high half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_unpackhi_epi64avx512f and avx512vl
Unpack and interleave 64-bit integers from the high half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_unpackhi_pdavx512f and avx512vl
Unpack and interleave double-precision (64-bit) floating-point elements from the high half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_unpackhi_psavx512f and avx512vl
Unpack and interleave single-precision (32-bit) floating-point elements from the high half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_unpacklo_epi32avx512f and avx512vl
Unpack and interleave 32-bit integers from the low half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_unpacklo_epi64avx512f and avx512vl
Unpack and interleave 64-bit integers from the low half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_unpacklo_pdavx512f and avx512vl
Unpack and interleave double-precision (64-bit) floating-point elements from the low half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_unpacklo_psavx512f and avx512vl
Unpack and interleave single-precision (32-bit) floating-point elements from the low half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_xor_epi32avx512f and avx512vl
Compute the bitwise XOR of packed 32-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_maskz_xor_epi64avx512f and avx512vl
Compute the bitwise XOR of packed 64-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm256_max_epi64avx512f and avx512vl
Compare packed signed 64-bit integers in a and b, and store packed maximum values in dst.
_mm256_max_epu64avx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b, and store packed maximum values in dst.
_mm256_min_epi64avx512f and avx512vl
Compare packed signed 64-bit integers in a and b, and store packed minimum values in dst.
_mm256_min_epu64avx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b, and store packed minimum values in dst.
_mm256_mmask_i32gather_epi32avx512f and avx512vl
Loads 8 32-bit integer elements from memory starting at location base_addr at packed 32-bit integer indices stored in vindex scaled by scale using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mmask_i32gather_epi64avx512f and avx512vl
Loads 4 64-bit integer elements from memory starting at location base_addr at packed 32-bit integer indices stored in vindex scaled by scale using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mmask_i32gather_pdavx512f and avx512vl
Loads 4 double-precision (64-bit) floating-point elements from memory starting at location base_addr at packed 32-bit integer indices stored in vindex scaled by scale using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mmask_i32gather_psavx512f and avx512vl
Loads 8 single-precision (32-bit) floating-point elements from memory starting at location base_addr at packed 32-bit integer indices stored in vindex scaled by scale using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mmask_i64gather_epi32avx512f and avx512vl
Loads 4 32-bit integer elements from memory starting at location base_addr at packed 64-bit integer indices stored in vindex scaled by scale using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mmask_i64gather_epi64avx512f and avx512vl
Loads 4 64-bit integer elements from memory starting at location base_addr at packed 32-bit integer indices stored in vindex scaled by scale using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mmask_i64gather_pdavx512f and avx512vl
Loads 4 double-precision (64-bit) floating-point elements from memory starting at location base_addr at packed 32-bit integer indices stored in vindex scaled by scale using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_mmask_i64gather_psavx512f and avx512vl
Loads 4 single-precision (32-bit) floating-point elements from memory starting at location base_addr at packed 32-bit integer indices stored in vindex scaled by scale using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm256_or_epi32avx512f and avx512vl
Compute the bitwise OR of packed 32-bit integers in a and b, and store the results in dst.
_mm256_or_epi64avx512f and avx512vl
Compute the bitwise OR of packed 64-bit integers in a and b, and store the resut in dst.
_mm256_permutex2var_epi32avx512f and avx512vl
Shuffle 32-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst.
_mm256_permutex2var_epi64avx512f and avx512vl
Shuffle 64-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst.
_mm256_permutex2var_pdavx512f and avx512vl
Shuffle double-precision (64-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst.
_mm256_permutex2var_psavx512f and avx512vl
Shuffle single-precision (32-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst.
_mm256_permutex_epi64avx512f and avx512vl
Shuffle 64-bit integers in a within 256-bit lanes using the control in imm8, and store the results in dst.
_mm256_permutex_pdavx512f and avx512vl
Shuffle double-precision (64-bit) floating-point elements in a within 256-bit lanes using the control in imm8, and store the results in dst.
_mm256_permutexvar_epi32avx512f and avx512vl
Shuffle 32-bit integers in a across lanes using the corresponding index in idx, and store the results in dst.
_mm256_permutexvar_epi64avx512f and avx512vl
Shuffle 64-bit integers in a across lanes using the corresponding index in idx, and store the results in dst.
_mm256_permutexvar_pdavx512f and avx512vl
Shuffle double-precision (64-bit) floating-point elements in a across lanes using the corresponding index in idx, and store the results in dst.
_mm256_permutexvar_psavx512f and avx512vl
Shuffle single-precision (32-bit) floating-point elements in a across lanes using the corresponding index in idx.
_mm256_rcp14_pdavx512f and avx512vl
Compute the approximate reciprocal of packed double-precision (64-bit) floating-point elements in a, and store the results in dst. The maximum relative error for this approximation is less than 2^-14.
_mm256_rcp14_psavx512f and avx512vl
Compute the approximate reciprocal of packed single-precision (32-bit) floating-point elements in a, and store the results in dst. The maximum relative error for this approximation is less than 2^-14.
_mm256_rol_epi32avx512f and avx512vl
Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in imm8, and store the results in dst.
_mm256_rol_epi64avx512f and avx512vl
Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in imm8, and store the results in dst.
_mm256_rolv_epi32avx512f and avx512vl
Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in the corresponding element of b, and store the results in dst.
_mm256_rolv_epi64avx512f and avx512vl
Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in the corresponding element of b, and store the results in dst.
_mm256_ror_epi32avx512f and avx512vl
Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in imm8, and store the results in dst.
_mm256_ror_epi64avx512f and avx512vl
Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in imm8, and store the results in dst.
_mm256_rorv_epi32avx512f and avx512vl
Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in the corresponding element of b, and store the results in dst.
_mm256_rorv_epi64avx512f and avx512vl
Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in the corresponding element of b, and store the results in dst.
_mm256_roundscale_pdavx512f and avx512vl
Round packed double-precision (64-bit) floating-point elements in a to the number of fraction bits specified by imm8, and store the results in dst.
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm256_roundscale_psavx512f and avx512vl
Round packed single-precision (32-bit) floating-point elements in a to the number of fraction bits specified by imm8, and store the results in dst.
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm256_rsqrt14_pdavx512f and avx512vl
Compute the approximate reciprocal square root of packed double-precision (64-bit) floating-point elements in a, and store the results in dst. The maximum relative error for this approximation is less than 2^-14.
_mm256_rsqrt14_psavx512f and avx512vl
Compute the approximate reciprocal square root of packed single-precision (32-bit) floating-point elements in a, and store the results in dst. The maximum relative error for this approximation is less than 2^-14.
_mm256_scalef_pdavx512f and avx512vl
Scale the packed double-precision (64-bit) floating-point elements in a using values from b, and store the results in dst.
_mm256_scalef_psavx512f and avx512vl
Scale the packed single-precision (32-bit) floating-point elements in a using values from b, and store the results in dst.
_mm256_shuffle_f32x4avx512f and avx512vl
Shuffle 128-bits (composed of 4 single-precision (32-bit) floating-point elements) selected by imm8 from a and b, and store the results in dst.
_mm256_shuffle_f64x2avx512f and avx512vl
Shuffle 128-bits (composed of 2 double-precision (64-bit) floating-point elements) selected by imm8 from a and b, and store the results in dst.
_mm256_shuffle_i32x4avx512f and avx512vl
Shuffle 128-bits (composed of 4 32-bit integers) selected by imm8 from a and b, and store the results in dst.
_mm256_shuffle_i64x2avx512f and avx512vl
Shuffle 128-bits (composed of 2 64-bit integers) selected by imm8 from a and b, and store the results in dst.
_mm256_sra_epi64avx512f and avx512vl
Shift packed 64-bit integers in a right by count while shifting in sign bits, and store the results in dst.
_mm256_srai_epi64avx512f and avx512vl
Shift packed 64-bit integers in a right by imm8 while shifting in sign bits, and store the results in dst.
_mm256_srav_epi64avx512f and avx512vl
Shift packed 64-bit integers in a right by the amount specified by the corresponding element in count while shifting in sign bits, and store the results in dst.
_mm256_store_epi32avx512f and avx512vl
Store 256-bits (composed of 8 packed 32-bit integers) from a into memory. mem_addr must be aligned on a 32-byte boundary or a general-protection exception may be generated.
_mm256_store_epi64avx512f and avx512vl
Store 256-bits (composed of 4 packed 64-bit integers) from a into memory. mem_addr must be aligned on a 32-byte boundary or a general-protection exception may be generated.
_mm256_storeu_epi32avx512f and avx512vl
Store 256-bits (composed of 8 packed 32-bit integers) from a into memory. mem_addr does not need to be aligned on any particular boundary.
_mm256_storeu_epi64avx512f and avx512vl
Store 256-bits (composed of 4 packed 64-bit integers) from a into memory. mem_addr does not need to be aligned on any particular boundary.
_mm256_ternarylogic_epi32avx512f and avx512vl
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in imm8. For each bit in each packed 32-bit integer, the corresponding bit from a, b, and c are used to form a 3 bit index into imm8, and the value at that bit in imm8 is written to the corresponding bit in dst.
_mm256_ternarylogic_epi64avx512f and avx512vl
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in imm8. For each bit in each packed 64-bit integer, the corresponding bit from a, b, and c are used to form a 3 bit index into imm8, and the value at that bit in imm8 is written to the corresponding bit in dst.
_mm256_test_epi32_maskavx512f and avx512vl
Compute the bitwise AND of packed 32-bit integers in a and b, producing intermediate 32-bit values, and set the corresponding bit in result mask k if the intermediate value is non-zero.
_mm256_test_epi64_maskavx512f and avx512vl
Compute the bitwise AND of packed 64-bit integers in a and b, producing intermediate 64-bit values, and set the corresponding bit in result mask k if the intermediate value is non-zero.
_mm256_testn_epi32_maskavx512f and avx512vl
Compute the bitwise NAND of packed 32-bit integers in a and b, producing intermediate 32-bit values, and set the corresponding bit in result mask k if the intermediate value is zero.
_mm256_testn_epi64_maskavx512f and avx512vl
Compute the bitwise NAND of packed 64-bit integers in a and b, producing intermediate 64-bit values, and set the corresponding bit in result mask k if the intermediate value is zero.
_mm256_xor_epi32avx512f and avx512vl
Compute the bitwise XOR of packed 32-bit integers in a and b, and store the results in dst.
_mm256_xor_epi64avx512f and avx512vl
Compute the bitwise XOR of packed 64-bit integers in a and b, and store the results in dst.
_mm512_abs_epi32avx512f
Computes the absolute values of packed 32-bit integers in a.
_mm512_abs_epi64avx512f
Compute the absolute value of packed signed 64-bit integers in a, and store the unsigned results in dst.
_mm512_abs_pdavx512f
Finds the absolute value of each packed double-precision (64-bit) floating-point element in v2, storing the results in dst.
_mm512_abs_psavx512f
Finds the absolute value of each packed single-precision (32-bit) floating-point element in v2, storing the results in dst.
_mm512_add_epi32avx512f
Add packed 32-bit integers in a and b, and store the results in dst.
_mm512_add_epi64avx512f
Add packed 64-bit integers in a and b, and store the results in dst.
_mm512_add_pdavx512f
Add packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst.
_mm512_add_psavx512f
Add packed single-precision (32-bit) floating-point elements in a and b, and store the results in dst.
_mm512_add_round_pdavx512f
Add packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst.\
_mm512_add_round_psavx512f
Add packed single-precision (32-bit) floating-point elements in a and b, and store the results in dst.\
_mm512_alignr_epi32avx512f
Concatenate a and b into a 128-byte immediate result, shift the result right by imm8 32-bit elements, and store the low 64 bytes (16 elements) in dst.
_mm512_alignr_epi64avx512f
Concatenate a and b into a 128-byte immediate result, shift the result right by imm8 64-bit elements, and store the low 64 bytes (8 elements) in dst.
_mm512_and_epi32avx512f
Compute the bitwise AND of packed 32-bit integers in a and b, and store the results in dst.
_mm512_and_epi64avx512f
Compute the bitwise AND of 512 bits (composed of packed 64-bit integers) in a and b, and store the results in dst.
_mm512_and_si512avx512f
Compute the bitwise AND of 512 bits (representing integer data) in a and b, and store the result in dst.
_mm512_andnot_epi32avx512f
Compute the bitwise NOT of packed 32-bit integers in a and then AND with b, and store the results in dst.
_mm512_andnot_epi64avx512f
Compute the bitwise NOT of 512 bits (composed of packed 64-bit integers) in a and then AND with b, and store the results in dst.
_mm512_andnot_si512avx512f
Compute the bitwise NOT of 512 bits (representing integer data) in a and then AND with b, and store the result in dst.
_mm512_broadcast_f32x4avx512f
Broadcast the 4 packed single-precision (32-bit) floating-point elements from a to all elements of dst.
_mm512_broadcast_f64x4avx512f
Broadcast the 4 packed double-precision (64-bit) floating-point elements from a to all elements of dst.
_mm512_broadcast_i32x4avx512f
Broadcast the 4 packed 32-bit integers from a to all elements of dst.
_mm512_broadcast_i64x4avx512f
Broadcast the 4 packed 64-bit integers from a to all elements of dst.
_mm512_broadcastd_epi32avx512f
Broadcast the low packed 32-bit integer from a to all elements of dst.
_mm512_broadcastq_epi64avx512f
Broadcast the low packed 64-bit integer from a to all elements of dst.
_mm512_broadcastsd_pdavx512f
Broadcast the low double-precision (64-bit) floating-point element from a to all elements of dst.
_mm512_broadcastss_psavx512f
Broadcast the low single-precision (32-bit) floating-point element from a to all elements of dst.
_mm512_castpd128_pd512avx512f
Cast vector of type __m128d to type __m512d; the upper 384 bits of the result are undefined. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.
_mm512_castpd256_pd512avx512f
Cast vector of type __m256d to type __m512d; the upper 256 bits of the result are undefined. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.
_mm512_castpd512_pd128avx512f
Cast vector of type __m512d to type __m128d. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.
_mm512_castpd512_pd256avx512f
Cast vector of type __m512d to type __m256d. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.
_mm512_castpd_psavx512f
Cast vector of type __m512d to type __m512. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.
_mm512_castpd_si512avx512f
Cast vector of type __m512d to type __m512i. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.
_mm512_castps128_ps512avx512f
Cast vector of type __m128 to type __m512; the upper 384 bits of the result are undefined. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.
_mm512_castps256_ps512avx512f
Cast vector of type __m256 to type __m512; the upper 256 bits of the result are undefined. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.
_mm512_castps512_ps128avx512f
Cast vector of type __m512 to type __m128. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.
_mm512_castps512_ps256avx512f
Cast vector of type __m512 to type __m256. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.
_mm512_castps_pdavx512f
Cast vector of type __m512 to type __m512d. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.
_mm512_castps_si512avx512f
Cast vector of type __m512 to type __m512i. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.
_mm512_castsi128_si512avx512f
Cast vector of type __m128i to type __m512i; the upper 384 bits of the result are undefined. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.
_mm512_castsi256_si512avx512f
Cast vector of type __m256i to type __m512i; the upper 256 bits of the result are undefined. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.
_mm512_castsi512_pdavx512f
Cast vector of type __m512i to type __m512d. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.
_mm512_castsi512_psavx512f
Cast vector of type __m512i to type __m512. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.
_mm512_castsi512_si128avx512f
Cast vector of type __m512i to type __m128i. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.
_mm512_castsi512_si256avx512f
Cast vector of type __m512i to type __m256i. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.
_mm512_cmp_epi32_maskavx512f
Compare packed signed 32-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.
_mm512_cmp_epi64_maskavx512f
Compare packed signed 64-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.
_mm512_cmp_epu32_maskavx512f
Compare packed unsigned 32-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.
_mm512_cmp_epu64_maskavx512f
Compare packed unsigned 64-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.
_mm512_cmp_pd_maskavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.
_mm512_cmp_ps_maskavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.
_mm512_cmp_round_pd_maskavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_cmp_round_ps_maskavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_cmpeq_epi32_maskavx512f
Compare packed 32-bit integers in a and b for equality, and store the results in mask vector k.
_mm512_cmpeq_epi64_maskavx512f
Compare packed 64-bit integers in a and b for equality, and store the results in mask vector k.
_mm512_cmpeq_epu32_maskavx512f
Compare packed unsigned 32-bit integers in a and b for equality, and store the results in mask vector k.
_mm512_cmpeq_epu64_maskavx512f
Compare packed unsigned 64-bit integers in a and b for equality, and store the results in mask vector k.
_mm512_cmpeq_pd_maskavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b for equality, and store the results in mask vector k.
_mm512_cmpeq_ps_maskavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b for equality, and store the results in mask vector k.
_mm512_cmpge_epi32_maskavx512f
Compare packed signed 32-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k.
_mm512_cmpge_epi64_maskavx512f
Compare packed signed 64-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k.
_mm512_cmpge_epu32_maskavx512f
Compare packed unsigned 32-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k.
_mm512_cmpge_epu64_maskavx512f
Compare packed unsigned 64-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k.
_mm512_cmpgt_epi32_maskavx512f
Compare packed signed 32-bit integers in a and b for greater-than, and store the results in mask vector k.
_mm512_cmpgt_epi64_maskavx512f
Compare packed signed 64-bit integers in a and b for greater-than, and store the results in mask vector k.
_mm512_cmpgt_epu32_maskavx512f
Compare packed unsigned 32-bit integers in a and b for greater-than, and store the results in mask vector k.
_mm512_cmpgt_epu64_maskavx512f
Compare packed unsigned 64-bit integers in a and b for greater-than, and store the results in mask vector k.
_mm512_cmple_epi32_maskavx512f
Compare packed signed 32-bit integers in a and b for less-than-or-equal, and store the results in mask vector k.
_mm512_cmple_epi64_maskavx512f
Compare packed signed 64-bit integers in a and b for less-than-or-equal, and store the results in mask vector k.
_mm512_cmple_epu32_maskavx512f
Compare packed unsigned 32-bit integers in a and b for less-than-or-equal, and store the results in mask vector k.
_mm512_cmple_epu64_maskavx512f
Compare packed unsigned 64-bit integers in a and b for less-than-or-equal, and store the results in mask vector k.
_mm512_cmple_pd_maskavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b for less-than-or-equal, and store the results in mask vector k.
_mm512_cmple_ps_maskavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b for less-than-or-equal, and store the results in mask vector k.
_mm512_cmplt_epi32_maskavx512f
Compare packed signed 32-bit integers in a and b for less-than, and store the results in mask vector k.
_mm512_cmplt_epi64_maskavx512f
Compare packed signed 64-bit integers in a and b for less-than, and store the results in mask vector k.
_mm512_cmplt_epu32_maskavx512f
Compare packed unsigned 32-bit integers in a and b for less-than, and store the results in mask vector k.
_mm512_cmplt_epu64_maskavx512f
Compare packed unsigned 64-bit integers in a and b for less-than, and store the results in mask vector k.
_mm512_cmplt_pd_maskavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b for less-than, and store the results in mask vector k.
_mm512_cmplt_ps_maskavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b for less-than, and store the results in mask vector k.
_mm512_cmpneq_epi32_maskavx512f
Compare packed 32-bit integers in a and b for not-equal, and store the results in mask vector k.
_mm512_cmpneq_epi64_maskavx512f
Compare packed signed 64-bit integers in a and b for not-equal, and store the results in mask vector k.
_mm512_cmpneq_epu32_maskavx512f
Compare packed unsigned 32-bit integers in a and b for not-equal, and store the results in mask vector k.
_mm512_cmpneq_epu64_maskavx512f
Compare packed unsigned 64-bit integers in a and b for not-equal, and store the results in mask vector k.
_mm512_cmpneq_pd_maskavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b for not-equal, and store the results in mask vector k.
_mm512_cmpneq_ps_maskavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b for not-equal, and store the results in mask vector k.
_mm512_cmpnle_pd_maskavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b for not-less-than-or-equal, and store the results in mask vector k.
_mm512_cmpnle_ps_maskavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b for not-less-than-or-equal, and store the results in mask vector k.
_mm512_cmpnlt_pd_maskavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b for not-less-than, and store the results in mask vector k.
_mm512_cmpnlt_ps_maskavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b for not-less-than, and store the results in mask vector k.
_mm512_cmpord_pd_maskavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b to see if neither is NaN, and store the results in mask vector k.
_mm512_cmpord_ps_maskavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b to see if neither is NaN, and store the results in mask vector k.
_mm512_cmpunord_pd_maskavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b to see if either is NaN, and store the results in mask vector k.
_mm512_cmpunord_ps_maskavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b to see if either is NaN, and store the results in mask vector k.
_mm512_cvt_roundepi32_psavx512f
Convert packed signed 32-bit integers in a to packed single-precision (32-bit) floating-point elements, and store the results in dst.\
_mm512_cvt_roundepu32_psavx512f
Convert packed unsigned 32-bit integers in a to packed single-precision (32-bit) floating-point elements, and store the results in dst.\
_mm512_cvt_roundpd_epi32avx512f
Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers, and store the results in dst.\
_mm512_cvt_roundpd_epu32avx512f
Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst.\
_mm512_cvt_roundpd_psavx512f
Convert packed double-precision (64-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst.\
_mm512_cvt_roundph_psavx512f
Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_cvt_roundps_epi32avx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers, and store the results in dst.
_mm512_cvt_roundps_epu32avx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst.\
_mm512_cvt_roundps_pdavx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed double-precision (64-bit) floating-point elements, and store the results in dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_cvt_roundps_phavx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) floating-point elements, and store the results in dst.
Rounding is done according to the rounding[3:0] parameter, which can be one of:
_mm512_cvtepi8_epi32avx512f
Sign extend packed 8-bit integers in a to packed 32-bit integers, and store the results in dst.
_mm512_cvtepi8_epi64avx512f
Sign extend packed 8-bit integers in the low 8 bytes of a to packed 64-bit integers, and store the results in dst.
_mm512_cvtepi16_epi32avx512f
Sign extend packed 16-bit integers in a to packed 32-bit integers, and store the results in dst.
_mm512_cvtepi16_epi64avx512f
Sign extend packed 16-bit integers in a to packed 64-bit integers, and store the results in dst.
_mm512_cvtepi32_epi8avx512f
Convert packed 32-bit integers in a to packed 8-bit integers with truncation, and store the results in dst.
_mm512_cvtepi32_epi16avx512f
Convert packed 32-bit integers in a to packed 16-bit integers with truncation, and store the results in dst.
_mm512_cvtepi32_epi64avx512f
Sign extend packed 32-bit integers in a to packed 64-bit integers, and store the results in dst.
_mm512_cvtepi32_pdavx512f
Convert packed signed 32-bit integers in a to packed double-precision (64-bit) floating-point elements, and store the results in dst.
_mm512_cvtepi32_psavx512f
Convert packed signed 32-bit integers in a to packed single-precision (32-bit) floating-point elements, and store the results in dst.
_mm512_cvtepi32lo_pdavx512f
Performs element-by-element conversion of the lower half of packed 32-bit integer elements in v2 to packed double-precision (64-bit) floating-point elements, storing the results in dst.
_mm512_cvtepi64_epi8avx512f
Convert packed 64-bit integers in a to packed 8-bit integers with truncation, and store the results in dst.
_mm512_cvtepi64_epi16avx512f
Convert packed 64-bit integers in a to packed 16-bit integers with truncation, and store the results in dst.
_mm512_cvtepi64_epi32avx512f
Convert packed 64-bit integers in a to packed 32-bit integers with truncation, and store the results in dst.
_mm512_cvtepu8_epi32avx512f
Zero extend packed unsigned 8-bit integers in a to packed 32-bit integers, and store the results in dst.
_mm512_cvtepu8_epi64avx512f
Zero extend packed unsigned 8-bit integers in the low 8 byte sof a to packed 64-bit integers, and store the results in dst.
_mm512_cvtepu16_epi32avx512f
Zero extend packed unsigned 16-bit integers in a to packed 32-bit integers, and store the results in dst.
_mm512_cvtepu16_epi64avx512f
Zero extend packed unsigned 16-bit integers in a to packed 64-bit integers, and store the results in dst.
_mm512_cvtepu32_epi64avx512f
Zero extend packed unsigned 32-bit integers in a to packed 64-bit integers, and store the results in dst.
_mm512_cvtepu32_pdavx512f
Convert packed unsigned 32-bit integers in a to packed double-precision (64-bit) floating-point elements, and store the results in dst.
_mm512_cvtepu32_psavx512f
Convert packed unsigned 32-bit integers in a to packed single-precision (32-bit) floating-point elements, and store the results in dst.
_mm512_cvtepu32lo_pdavx512f
Performs element-by-element conversion of the lower half of packed 32-bit unsigned integer elements in v2 to packed double-precision (64-bit) floating-point elements, storing the results in dst.
_mm512_cvtpd_epi32avx512f
Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers, and store the results in dst.
_mm512_cvtpd_epu32avx512f
Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst.
_mm512_cvtpd_psavx512f
Convert packed double-precision (64-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst.
_mm512_cvtpd_psloavx512f
Performs an element-by-element conversion of packed double-precision (64-bit) floating-point elements in v2 to single-precision (32-bit) floating-point elements and stores them in dst. The elements are stored in the lower half of the results vector, while the remaining upper half locations are set to 0.
_mm512_cvtph_psavx512f
Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst.
_mm512_cvtps_epi32avx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers, and store the results in dst.
_mm512_cvtps_epu32avx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst.
_mm512_cvtps_pdavx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed double-precision (64-bit) floating-point elements, and store the results in dst.
_mm512_cvtps_phavx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) floating-point elements, and store the results in dst.
Rounding is done according to the rounding[3:0] parameter, which can be one of:
_mm512_cvtpslo_pdavx512f
Performs element-by-element conversion of the lower half of packed single-precision (32-bit) floating-point elements in v2 to packed double-precision (64-bit) floating-point elements, storing the results in dst.
_mm512_cvtsd_f64avx512f
Copy the lower double-precision (64-bit) floating-point element of a to dst.
_mm512_cvtsepi32_epi8avx512f
Convert packed signed 32-bit integers in a to packed 8-bit integers with signed saturation, and store the results in dst.
_mm512_cvtsepi32_epi16avx512f
Convert packed signed 32-bit integers in a to packed 16-bit integers with signed saturation, and store the results in dst.
_mm512_cvtsepi64_epi8avx512f
Convert packed signed 64-bit integers in a to packed 8-bit integers with signed saturation, and store the results in dst.
_mm512_cvtsepi64_epi16avx512f
Convert packed signed 64-bit integers in a to packed 16-bit integers with signed saturation, and store the results in dst.
_mm512_cvtsepi64_epi32avx512f
Convert packed signed 64-bit integers in a to packed 32-bit integers with signed saturation, and store the results in dst.
_mm512_cvtsi512_si32avx512f
Copy the lower 32-bit integer in a to dst.
_mm512_cvtss_f32avx512f
Copy the lower single-precision (32-bit) floating-point element of a to dst.
_mm512_cvtt_roundpd_epi32avx512f
Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers with truncation, and store the results in dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_cvtt_roundpd_epu32avx512f
Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_cvtt_roundps_epi32avx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers with truncation, and store the results in dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_cvtt_roundps_epu32avx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_cvttpd_epi32avx512f
Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers with truncation, and store the results in dst.
_mm512_cvttpd_epu32avx512f
Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst.
_mm512_cvttps_epi32avx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers with truncation, and store the results in dst.
_mm512_cvttps_epu32avx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst.
_mm512_cvtusepi32_epi8avx512f
Convert packed unsigned 32-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and store the results in dst.
_mm512_cvtusepi32_epi16avx512f
Convert packed unsigned 32-bit integers in a to packed unsigned 16-bit integers with unsigned saturation, and store the results in dst.
_mm512_cvtusepi64_epi8avx512f
Convert packed unsigned 64-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and store the results in dst.
_mm512_cvtusepi64_epi16avx512f
Convert packed unsigned 64-bit integers in a to packed unsigned 16-bit integers with unsigned saturation, and store the results in dst.
_mm512_cvtusepi64_epi32avx512f
Convert packed unsigned 64-bit integers in a to packed unsigned 32-bit integers with unsigned saturation, and store the results in dst.
_mm512_div_pdavx512f
Divide packed double-precision (64-bit) floating-point elements in a by packed elements in b, and store the results in dst.
_mm512_div_psavx512f
Divide packed single-precision (32-bit) floating-point elements in a by packed elements in b, and store the results in dst.
_mm512_div_round_pdavx512f
Divide packed double-precision (64-bit) floating-point elements in a by packed elements in b, =and store the results in dst.\
_mm512_div_round_psavx512f
Divide packed single-precision (32-bit) floating-point elements in a by packed elements in b, and store the results in dst.\
_mm512_extractf32x4_psavx512f
Extract 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from a, selected with imm8, and store the result in dst.
_mm512_extractf64x4_pdavx512f
Extract 256 bits (composed of 4 packed double-precision (64-bit) floating-point elements) from a, selected with imm8, and store the result in dst.
_mm512_extracti32x4_epi32avx512f
Extract 128 bits (composed of 4 packed 32-bit integers) from a, selected with IMM2, and store the result in dst.
_mm512_extracti64x4_epi64avx512f
Extract 256 bits (composed of 4 packed 64-bit integers) from a, selected with IMM1, and store the result in dst.
_mm512_fixupimm_pdavx512f
Fix up packed double-precision (64-bit) floating-point elements in a and b using packed 64-bit integers in c, and store the results in dst. imm8 is used to set the required flags reporting.
_mm512_fixupimm_psavx512f
Fix up packed single-precision (32-bit) floating-point elements in a and b using packed 32-bit integers in c, and store the results in dst. imm8 is used to set the required flags reporting.
_mm512_fixupimm_round_pdavx512f
Fix up packed double-precision (64-bit) floating-point elements in a and b using packed 64-bit integers in c, and store the results in dst. imm8 is used to set the required flags reporting.\
_mm512_fixupimm_round_psavx512f
Fix up packed single-precision (32-bit) floating-point elements in a and b using packed 32-bit integers in c, and store the results in dst. imm8 is used to set the required flags reporting.\
_mm512_fmadd_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst.
_mm512_fmadd_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst.
_mm512_fmadd_round_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst.\
_mm512_fmadd_round_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst.\
_mm512_fmaddsub_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst.
_mm512_fmaddsub_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst.
_mm512_fmaddsub_round_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst.\
_mm512_fmaddsub_round_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst.\
_mm512_fmsub_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst.
_mm512_fmsub_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst.
_mm512_fmsub_round_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst.\
_mm512_fmsub_round_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst.\
_mm512_fmsubadd_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst.
_mm512_fmsubadd_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst.
_mm512_fmsubadd_round_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst.\
_mm512_fmsubadd_round_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst.\
_mm512_fnmadd_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst.
_mm512_fnmadd_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst.
_mm512_fnmadd_round_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst.\
_mm512_fnmadd_round_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst.\
_mm512_fnmsub_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst.
_mm512_fnmsub_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst.
_mm512_fnmsub_round_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst.\
_mm512_fnmsub_round_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst.\
_mm512_getexp_pdavx512f
Convert the exponent of each packed double-precision (64-bit) floating-point element in a to a double-precision (64-bit) floating-point number representing the integer exponent, and store the results in dst. This intrinsic essentially calculates floor(log2(x)) for each element.
_mm512_getexp_psavx512f
Convert the exponent of each packed single-precision (32-bit) floating-point element in a to a single-precision (32-bit) floating-point number representing the integer exponent, and store the results in dst. This intrinsic essentially calculates floor(log2(x)) for each element.
_mm512_getexp_round_pdavx512f
Convert the exponent of each packed double-precision (64-bit) floating-point element in a to a double-precision (64-bit) floating-point number representing the integer exponent, and store the results in dst. This intrinsic essentially calculates floor(log2(x)) for each element.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_getexp_round_psavx512f
Convert the exponent of each packed single-precision (32-bit) floating-point element in a to a single-precision (32-bit) floating-point number representing the integer exponent, and store the results in dst. This intrinsic essentially calculates floor(log2(x)) for each element.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_getmant_pdavx512f
Normalize the mantissas of packed double-precision (64-bit) floating-point elements in a, and store the results in dst. This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
_mm512_getmant_psavx512f
Normalize the mantissas of packed single-precision (32-bit) floating-point elements in a, and store the results in dst. This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign. The mantissa is normalized to the interval specified by interv, which can take the following values: _MM_MANT_NORM_1_2 // interval [1, 2) _MM_MANT_NORM_p5_2 // interval [0.5, 2) _MM_MANT_NORM_p5_1 // interval [0.5, 1) _MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5) The sign is determined by sc which can take the following values: _MM_MANT_SIGN_src // sign = sign(src) _MM_MANT_SIGN_zero // sign = 0 _MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
_mm512_getmant_round_pdavx512f
Normalize the mantissas of packed double-precision (64-bit) floating-point elements in a, and store the results in dst. This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_getmant_round_psavx512f
Normalize the mantissas of packed single-precision (32-bit) floating-point elements in a, and store the results in dst. This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_i32gather_epi32avx512f
Gather 32-bit integers from memory using 32-bit indices. 32-bit elements are loaded from addresses starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale). Gathered elements are merged into dst. scale should be 1, 2, 4 or 8.
_mm512_i32gather_epi64avx512f
Gather 64-bit integers from memory using 32-bit indices. 64-bit elements are loaded from addresses starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale). Gathered elements are merged into dst. scale should be 1, 2, 4 or 8.
_mm512_i32gather_pdavx512f
Gather double-precision (64-bit) floating-point elements from memory using 32-bit indices. 64-bit elements are loaded from addresses starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale). Gathered elements are merged into dst. scale should be 1, 2, 4 or 8.
_mm512_i32gather_psavx512f
Gather single-precision (32-bit) floating-point elements from memory using 32-bit indices. 32-bit elements are loaded from addresses starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale). Gathered elements are merged into dst. scale should be 1, 2, 4 or 8.
_mm512_i32logather_epi64avx512f
Loads 8 64-bit integer elements from memory starting at location base_addr at packed 32-bit integer indices stored in the lower half of vindex scaled by scale and stores them in dst.
_mm512_i32logather_pdavx512f
Loads 8 double-precision (64-bit) floating-point elements from memory starting at location base_addr at packed 32-bit integer indices stored in the lower half of vindex scaled by scale and stores them in dst.
_mm512_i32loscatter_epi64avx512f
Stores 8 64-bit integer elements from a to memory starting at location base_addr at packed 32-bit integer indices stored in the lower half of vindex scaled by scale.
_mm512_i32loscatter_pdavx512f
Stores 8 double-precision (64-bit) floating-point elements from a to memory starting at location base_addr at packed 32-bit integer indices stored in the lower half of vindex scaled by scale.
_mm512_i32scatter_epi32avx512f
Scatter 32-bit integers from a into memory using 32-bit indices. 32-bit elements are stored at addresses starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale). scale should be 1, 2, 4 or 8.
_mm512_i32scatter_epi64avx512f
Scatter 64-bit integers from a into memory using 32-bit indices. 64-bit elements are stored at addresses starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale). scale should be 1, 2, 4 or 8.
_mm512_i32scatter_pdavx512f
Scatter double-precision (64-bit) floating-point elements from a into memory using 32-bit indices. 64-bit elements are stored at addresses starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale). scale should be 1, 2, 4 or 8.
_mm512_i32scatter_psavx512f
Scatter single-precision (32-bit) floating-point elements from a into memory using 32-bit indices. 32-bit elements are stored at addresses starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale). scale should be 1, 2, 4 or 8.
_mm512_i64gather_epi32avx512f
Gather 32-bit integers from memory using 64-bit indices. 32-bit elements are loaded from addresses starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale). Gathered elements are merged into dst. scale should be 1, 2, 4 or 8.
_mm512_i64gather_epi64avx512f
Gather 64-bit integers from memory using 64-bit indices. 64-bit elements are loaded from addresses starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale). Gathered elements are merged into dst. scale should be 1, 2, 4 or 8.
_mm512_i64gather_pdavx512f
Gather double-precision (64-bit) floating-point elements from memory using 64-bit indices. 64-bit elements are loaded from addresses starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale). Gathered elements are merged into dst. scale should be 1, 2, 4 or 8.
_mm512_i64gather_psavx512f
Gather single-precision (32-bit) floating-point elements from memory using 64-bit indices. 32-bit elements are loaded from addresses starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale). Gathered elements are merged into dst. scale should be 1, 2, 4 or 8.
_mm512_i64scatter_epi32avx512f
Scatter 32-bit integers from a into memory using 64-bit indices. 32-bit elements are stored at addresses starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale). scale should be 1, 2, 4 or 8.
_mm512_i64scatter_epi64avx512f
Scatter 64-bit integers from a into memory using 64-bit indices. 64-bit elements are stored at addresses starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale). scale should be 1, 2, 4 or 8.
_mm512_i64scatter_pdavx512f
Scatter double-precision (64-bit) floating-point elements from a into memory using 64-bit indices. 64-bit elements are stored at addresses starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale). scale should be 1, 2, 4 or 8.
_mm512_i64scatter_psavx512f
Scatter single-precision (32-bit) floating-point elements from a into memory using 64-bit indices. 32-bit elements are stored at addresses starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale) subject to mask k (elements are not stored when the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.
_mm512_insertf32x4avx512f
Copy a to dst, then insert 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from b into dst at the location specified by imm8.
_mm512_insertf64x4avx512f
Copy a to dst, then insert 256 bits (composed of 4 packed double-precision (64-bit) floating-point elements) from b into dst at the location specified by imm8.
_mm512_inserti32x4avx512f
Copy a to dst, then insert 128 bits (composed of 4 packed 32-bit integers) from b into dst at the location specified by imm8.
_mm512_inserti64x4avx512f
Copy a to dst, then insert 256 bits (composed of 4 packed 64-bit integers) from b into dst at the location specified by imm8.
_mm512_int2maskavx512f
Converts integer mask into bitmask, storing the result in dst.
_mm512_kandavx512f
Compute the bitwise AND of 16-bit masks a and b, and store the result in k.
_mm512_kandnavx512f
Compute the bitwise NOT of 16-bit masks a and then AND with b, and store the result in k.
_mm512_kmovavx512f
Copy 16-bit mask a to k.
_mm512_knotavx512f
Compute the bitwise NOT of 16-bit mask a, and store the result in k.
_mm512_koravx512f
Compute the bitwise OR of 16-bit masks a and b, and store the result in k.
_mm512_kortestcavx512f
Performs bitwise OR between k1 and k2, storing the result in dst. CF flag is set if dst consists of all 1’s.
_mm512_kortestzavx512f
Performs bitwise OR between k1 and k2, storing the result in dst. ZF flag is set if dst is 0.
_mm512_kunpackbavx512f
Unpack and interleave 8 bits from masks a and b, and store the 16-bit result in k.
_mm512_kxnoravx512f
Compute the bitwise XNOR of 16-bit masks a and b, and store the result in k.
_mm512_kxoravx512f
Compute the bitwise XOR of 16-bit masks a and b, and store the result in k.
_mm512_load_epi32avx512f
Load 512-bits (composed of 16 packed 32-bit integers) from memory into dst. mem_addr must be aligned on a 64-byte boundary or a general-protection exception may be generated.
_mm512_load_epi64avx512f
Load 512-bits (composed of 8 packed 64-bit integers) from memory into dst. mem_addr must be aligned on a 64-byte boundary or a general-protection exception may be generated.
_mm512_load_pdavx512f
Load 512-bits (composed of 8 packed double-precision (64-bit) floating-point elements) from memory into dst. mem_addr must be aligned on a 64-byte boundary or a general-protection exception may be generated.
_mm512_load_psavx512f
Load 512-bits (composed of 16 packed single-precision (32-bit) floating-point elements) from memory into dst. mem_addr must be aligned on a 64-byte boundary or a general-protection exception may be generated.
_mm512_load_si512avx512f
Load 512-bits of integer data from memory into dst. mem_addr must be aligned on a 64-byte boundary or a general-protection exception may be generated.
_mm512_loadu_epi32avx512f
Load 512-bits (composed of 16 packed 32-bit integers) from memory into dst. mem_addr does not need to be aligned on any particular boundary.
_mm512_loadu_epi64avx512f
Load 512-bits (composed of 8 packed 64-bit integers) from memory into dst. mem_addr does not need to be aligned on any particular boundary.
_mm512_loadu_pdavx512f
Loads 512-bits (composed of 8 packed double-precision (64-bit) floating-point elements) from memory into result. mem_addr does not need to be aligned on any particular boundary.
_mm512_loadu_psavx512f
Loads 512-bits (composed of 16 packed single-precision (32-bit) floating-point elements) from memory into result. mem_addr does not need to be aligned on any particular boundary.
_mm512_loadu_si512avx512f
Load 512-bits of integer data from memory into dst. mem_addr does not need to be aligned on any particular boundary.
_mm512_mask2_permutex2var_epi32avx512f
Shuffle 32-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from idx when the corresponding mask bit is not set).
_mm512_mask2_permutex2var_epi64avx512f
Shuffle 64-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from idx when the corresponding mask bit is not set).
_mm512_mask2_permutex2var_pdavx512f
Shuffle double-precision (64-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from idx when the corresponding mask bit is not set)
_mm512_mask2_permutex2var_psavx512f
Shuffle single-precision (32-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from idx when the corresponding mask bit is not set).
_mm512_mask2intavx512f
Converts bit mask k1 into an integer value, storing the results in dst.
_mm512_mask3_fmadd_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm512_mask3_fmadd_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm512_mask3_fmadd_round_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).\
_mm512_mask3_fmadd_round_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).\
_mm512_mask3_fmaddsub_pdavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm512_mask3_fmaddsub_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm512_mask3_fmaddsub_round_pdavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).\
_mm512_mask3_fmaddsub_round_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).\
_mm512_mask3_fmsub_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm512_mask3_fmsub_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm512_mask3_fmsub_round_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).\
_mm512_mask3_fmsub_round_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).\
_mm512_mask3_fmsubadd_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm512_mask3_fmsubadd_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm512_mask3_fmsubadd_round_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).\
_mm512_mask3_fmsubadd_round_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).\
_mm512_mask3_fnmadd_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm512_mask3_fnmadd_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm512_mask3_fnmadd_round_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).\
_mm512_mask3_fnmadd_round_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).\
_mm512_mask3_fnmsub_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm512_mask3_fnmsub_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm512_mask3_fnmsub_round_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).\
_mm512_mask3_fnmsub_round_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).\
_mm512_mask_abs_epi32avx512f
Computes the absolute value of packed 32-bit integers in a, and store the unsigned results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_abs_epi64avx512f
Compute the absolute value of packed signed 64-bit integers in a, and store the unsigned results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_abs_pdavx512f
Finds the absolute value of each packed double-precision (64-bit) floating-point element in v2, storing the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_abs_psavx512f
Finds the absolute value of each packed single-precision (32-bit) floating-point element in v2, storing the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_add_epi32avx512f
Add packed 32-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_add_epi64avx512f
Add packed 64-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_add_pdavx512f
Add packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_add_psavx512f
Add packed single-precision (32-bit) floating-point elements in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_add_round_pdavx512f
Add packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).\
_mm512_mask_add_round_psavx512f
Add packed single-precision (32-bit) floating-point elements in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).\
_mm512_mask_alignr_epi32avx512f
Concatenate a and b into a 128-byte immediate result, shift the result right by imm8 32-bit elements, and store the low 64 bytes (16 elements) in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_alignr_epi64avx512f
Concatenate a and b into a 128-byte immediate result, shift the result right by imm8 64-bit elements, and store the low 64 bytes (8 elements) in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_and_epi32avx512f
Performs element-by-element bitwise AND between packed 32-bit integer elements of a and b, storing the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_and_epi64avx512f
Compute the bitwise AND of packed 64-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_andnot_epi32avx512f
Compute the bitwise NOT of packed 32-bit integers in a and then AND with b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_andnot_epi64avx512f
Compute the bitwise NOT of packed 64-bit integers in a and then AND with b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_blend_epi32avx512f
Blend packed 32-bit integers from a and b using control mask k, and store the results in dst.
_mm512_mask_blend_epi64avx512f
Blend packed 64-bit integers from a and b using control mask k, and store the results in dst.
_mm512_mask_blend_pdavx512f
Blend packed double-precision (64-bit) floating-point elements from a and b using control mask k, and store the results in dst.
_mm512_mask_blend_psavx512f
Blend packed single-precision (32-bit) floating-point elements from a and b using control mask k, and store the results in dst.
_mm512_mask_broadcast_f32x4avx512f
Broadcast the 4 packed single-precision (32-bit) floating-point elements from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_broadcast_f64x4avx512f
Broadcast the 4 packed double-precision (64-bit) floating-point elements from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_broadcast_i32x4avx512f
Broadcast the 4 packed 32-bit integers from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_broadcast_i64x4avx512f
Broadcast the 4 packed 64-bit integers from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_broadcastd_epi32avx512f
Broadcast the low packed 32-bit integer from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_broadcastq_epi64avx512f
Broadcast the low packed 64-bit integer from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_broadcastsd_pdavx512f
Broadcast the low double-precision (64-bit) floating-point element from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_broadcastss_psavx512f
Broadcast the low single-precision (32-bit) floating-point element from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cmp_epi32_maskavx512f
Compare packed signed 32-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmp_epi64_maskavx512f
Compare packed signed 64-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmp_epu32_maskavx512f
Compare packed unsigned 32-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmp_epu64_maskavx512f
Compare packed unsigned 64-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmp_pd_maskavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmp_ps_maskavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmp_round_pd_maskavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_mask_cmp_round_ps_maskavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_mask_cmpeq_epi32_maskavx512f
Compare packed 32-bit integers in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmpeq_epi64_maskavx512f
Compare packed 64-bit integers in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmpeq_epu32_maskavx512f
Compare packed unsigned 32-bit integers in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmpeq_epu64_maskavx512f
Compare packed unsigned 64-bit integers in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmpeq_pd_maskavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmpeq_ps_maskavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmpge_epi32_maskavx512f
Compare packed signed 32-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmpge_epi64_maskavx512f
Compare packed signed 64-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmpge_epu32_maskavx512f
Compare packed unsigned 32-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmpge_epu64_maskavx512f
Compare packed unsigned 64-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmpgt_epi32_maskavx512f
Compare packed signed 32-bit integers in a and b for greater-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmpgt_epi64_maskavx512f
Compare packed signed 64-bit integers in a and b for greater-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmpgt_epu32_maskavx512f
Compare packed unsigned 32-bit integers in a and b for greater-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmpgt_epu64_maskavx512f
Compare packed unsigned 64-bit integers in a and b for greater-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmple_epi32_maskavx512f
Compare packed signed 32-bit integers in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmple_epi64_maskavx512f
Compare packed signed 64-bit integers in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmple_epu32_maskavx512f
Compare packed unsigned 32-bit integers in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmple_epu64_maskavx512f
Compare packed unsigned 64-bit integers in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmple_pd_maskavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmple_ps_maskavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmplt_epi32_maskavx512f
Compare packed signed 32-bit integers in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmplt_epi64_maskavx512f
Compare packed signed 64-bit integers in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmplt_epu32_maskavx512f
Compare packed unsigned 32-bit integers in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmplt_epu64_maskavx512f
Compare packed unsigned 64-bit integers in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmplt_pd_maskavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmplt_ps_maskavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmpneq_epi32_maskavx512f
Compare packed 32-bit integers in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmpneq_epi64_maskavx512f
Compare packed signed 64-bit integers in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmpneq_epu32_maskavx512f
Compare packed unsigned 32-bit integers in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmpneq_epu64_maskavx512f
Compare packed unsigned 64-bit integers in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmpneq_pd_maskavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmpneq_ps_maskavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmpnle_pd_maskavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b for not-less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmpnle_ps_maskavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b for not-less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmpnlt_pd_maskavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b for not-less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmpnlt_ps_maskavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b for not-less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmpord_pd_maskavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b to see if neither is NaN, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmpord_ps_maskavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b to see if neither is NaN, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmpunord_pd_maskavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b to see if either is NaN, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_cmpunord_ps_maskavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b to see if either is NaN, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm512_mask_compress_epi32avx512f
Contiguously store the active 32-bit integers in a (those with their respective bit set in writemask k) to dst, and pass through the remaining elements from src.
_mm512_mask_compress_epi64avx512f
Contiguously store the active 64-bit integers in a (those with their respective bit set in writemask k) to dst, and pass through the remaining elements from src.
_mm512_mask_compress_pdavx512f
Contiguously store the active double-precision (64-bit) floating-point elements in a (those with their respective bit set in writemask k) to dst, and pass through the remaining elements from src.
_mm512_mask_compress_psavx512f
Contiguously store the active single-precision (32-bit) floating-point elements in a (those with their respective bit set in writemask k) to dst, and pass through the remaining elements from src.
_mm512_mask_compressstoreu_epi32avx512f
Contiguously store the active 32-bit integers in a (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm512_mask_compressstoreu_epi64avx512f
Contiguously store the active 64-bit integers in a (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm512_mask_compressstoreu_pdavx512f
Contiguously store the active double-precision (64-bit) floating-point elements in a (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm512_mask_compressstoreu_psavx512f
Contiguously store the active single-precision (32-bit) floating-point elements in a (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm512_mask_cvt_roundepi32_psavx512f
Convert packed signed 32-bit integers in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).\
_mm512_mask_cvt_roundepu32_psavx512f
Convert packed unsigned 32-bit integers in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).\
_mm512_mask_cvt_roundpd_epi32avx512f
Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).\
_mm512_mask_cvt_roundpd_epu32avx512f
Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).\
_mm512_mask_cvt_roundpd_psavx512f
Convert packed double-precision (64-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).\
_mm512_mask_cvt_roundph_psavx512f
Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_mask_cvt_roundps_epi32avx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).\
_mm512_mask_cvt_roundps_epu32avx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).\
_mm512_mask_cvt_roundps_pdavx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed double-precision (64-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_mask_cvt_roundps_phavx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
Rounding is done according to the rounding[3:0] parameter, which can be one of:
_mm512_mask_cvtepi8_epi32avx512f
Sign extend packed 8-bit integers in a to packed 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtepi8_epi64avx512f
Sign extend packed 8-bit integers in the low 8 bytes of a to packed 64-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtepi16_epi32avx512f
Sign extend packed 16-bit integers in a to packed 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtepi16_epi64avx512f
Sign extend packed 16-bit integers in a to packed 64-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtepi32_epi8avx512f
Convert packed 32-bit integers in a to packed 8-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtepi32_epi16avx512f
Convert packed 32-bit integers in a to packed 16-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtepi32_epi64avx512f
Sign extend packed 32-bit integers in a to packed 64-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtepi32_pdavx512f
Convert packed signed 32-bit integers in a to packed double-precision (64-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtepi32_psavx512f
Convert packed signed 32-bit integers in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtepi32_storeu_epi8avx512f
Convert packed 32-bit integers in a to packed 8-bit integers with truncation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm512_mask_cvtepi32_storeu_epi16avx512f
Convert packed 32-bit integers in a to packed 16-bit integers with truncation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm512_mask_cvtepi32lo_pdavx512f
Performs element-by-element conversion of the lower half of packed 32-bit integer elements in v2 to packed double-precision (64-bit) floating-point elements, storing the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtepi64_epi8avx512f
Convert packed 64-bit integers in a to packed 8-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtepi64_epi16avx512f
Convert packed 64-bit integers in a to packed 16-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtepi64_epi32avx512f
Convert packed 64-bit integers in a to packed 32-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtepi64_storeu_epi8avx512f
Convert packed 64-bit integers in a to packed 8-bit integers with truncation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm512_mask_cvtepi64_storeu_epi16avx512f
Convert packed 64-bit integers in a to packed 16-bit integers with truncation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm512_mask_cvtepi64_storeu_epi32avx512f
Convert packed 64-bit integers in a to packed 32-bit integers with truncation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm512_mask_cvtepu8_epi32avx512f
Zero extend packed unsigned 8-bit integers in a to packed 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtepu8_epi64avx512f
Zero extend packed unsigned 8-bit integers in the low 8 bytes of a to packed 64-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtepu16_epi32avx512f
Zero extend packed unsigned 16-bit integers in a to packed 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtepu16_epi64avx512f
Zero extend packed unsigned 16-bit integers in a to packed 64-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtepu32_epi64avx512f
Zero extend packed unsigned 32-bit integers in a to packed 64-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtepu32_pdavx512f
Convert packed unsigned 32-bit integers in a to packed double-precision (64-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtepu32_psavx512f
Convert packed unsigned 32-bit integers in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtepu32lo_pdavx512f
Performs element-by-element conversion of the lower half of 32-bit unsigned integer elements in v2 to packed double-precision (64-bit) floating-point elements, storing the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtpd_epi32avx512f
Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtpd_epu32avx512f
Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtpd_psavx512f
Convert packed double-precision (64-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtpd_psloavx512f
Performs an element-by-element conversion of packed double-precision (64-bit) floating-point elements in v2 to single-precision (32-bit) floating-point elements and stores them in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). The elements are stored in the lower half of the results vector, while the remaining upper half locations are set to 0.
_mm512_mask_cvtph_psavx512f
Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtps_epi32avx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtps_epu32avx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtps_pdavx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed double-precision (64-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtps_phavx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
Rounding is done according to the rounding[3:0] parameter, which can be one of:
_mm512_mask_cvtpslo_pdavx512f
Performs element-by-element conversion of the lower half of packed single-precision (32-bit) floating-point elements in v2 to packed double-precision (64-bit) floating-point elements, storing the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtsepi32_epi8avx512f
Convert packed signed 32-bit integers in a to packed 8-bit integers with signed saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtsepi32_epi16avx512f
Convert packed signed 32-bit integers in a to packed 16-bit integers with signed saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtsepi32_storeu_epi8avx512f
Convert packed signed 32-bit integers in a to packed 8-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm512_mask_cvtsepi32_storeu_epi16avx512f
Convert packed signed 32-bit integers in a to packed 16-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm512_mask_cvtsepi64_epi8avx512f
Convert packed signed 64-bit integers in a to packed 8-bit integers with signed saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtsepi64_epi16avx512f
Convert packed signed 64-bit integers in a to packed 16-bit integers with signed saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtsepi64_epi32avx512f
Convert packed signed 64-bit integers in a to packed 32-bit integers with signed saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtsepi64_storeu_epi8avx512f
Convert packed signed 64-bit integers in a to packed 8-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm512_mask_cvtsepi64_storeu_epi16avx512f
Convert packed signed 64-bit integers in a to packed 16-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm512_mask_cvtsepi64_storeu_epi32avx512f
Convert packed signed 64-bit integers in a to packed 32-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm512_mask_cvtt_roundpd_epi32avx512f
Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_mask_cvtt_roundpd_epu32avx512f
Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_mask_cvtt_roundps_epi32avx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_mask_cvtt_roundps_epu32avx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_mask_cvttpd_epi32avx512f
Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvttpd_epu32avx512f
Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvttps_epi32avx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvttps_epu32avx512f
Convert packed double-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtusepi32_epi8avx512f
Convert packed unsigned 32-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtusepi32_epi16avx512f
Convert packed unsigned 32-bit integers in a to packed unsigned 16-bit integers with unsigned saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtusepi32_storeu_epi8avx512f
Convert packed unsigned 32-bit integers in a to packed 8-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm512_mask_cvtusepi32_storeu_epi16avx512f
Convert packed unsigned 32-bit integers in a to packed 16-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm512_mask_cvtusepi64_epi8avx512f
Convert packed unsigned 64-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtusepi64_epi16avx512f
Convert packed unsigned 64-bit integers in a to packed unsigned 16-bit integers with unsigned saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtusepi64_epi32avx512f
Convert packed unsigned 64-bit integers in a to packed unsigned 32-bit integers with unsigned saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_cvtusepi64_storeu_epi8avx512f
Convert packed unsigned 64-bit integers in a to packed 8-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm512_mask_cvtusepi64_storeu_epi16avx512f
Convert packed unsigned 64-bit integers in a to packed 16-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm512_mask_cvtusepi64_storeu_epi32avx512f
Convert packed unsigned 64-bit integers in a to packed 32-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm512_mask_div_pdavx512f
Divide packed double-precision (64-bit) floating-point elements in a by packed elements in b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_div_psavx512f
Divide packed single-precision (32-bit) floating-point elements in a by packed elements in b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_div_round_pdavx512f
Divide packed double-precision (64-bit) floating-point elements in a by packed elements in b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).\
_mm512_mask_div_round_psavx512f
Divide packed single-precision (32-bit) floating-point elements in a by packed elements in b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).\
_mm512_mask_expand_epi32avx512f
Load contiguous active 32-bit integers from a (those with their respective bit set in mask k), and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_expand_epi64avx512f
Load contiguous active 64-bit integers from a (those with their respective bit set in mask k), and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_expand_pdavx512f
Load contiguous active double-precision (64-bit) floating-point elements from a (those with their respective bit set in mask k), and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_expand_psavx512f
Load contiguous active single-precision (32-bit) floating-point elements from a (those with their respective bit set in mask k), and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_expandloadu_epi32avx512f
Load contiguous active 32-bit integers from unaligned memory at mem_addr (those with their respective bit set in mask k), and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_expandloadu_epi64avx512f
Load contiguous active 64-bit integers from unaligned memory at mem_addr (those with their respective bit set in mask k), and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_expandloadu_pdavx512f
Load contiguous active double-precision (64-bit) floating-point elements from unaligned memory at mem_addr (those with their respective bit set in mask k), and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_expandloadu_psavx512f
Load contiguous active single-precision (32-bit) floating-point elements from unaligned memory at mem_addr (those with their respective bit set in mask k), and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_extractf32x4_psavx512f
Extract 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from a, selected with imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_extractf64x4_pdavx512f
Extract 256 bits (composed of 4 packed double-precision (64-bit) floating-point elements) from a, selected with imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_extracti32x4_epi32avx512f
Extract 128 bits (composed of 4 packed 32-bit integers) from a, selected with IMM2, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_extracti64x4_epi64avx512f
Extract 256 bits (composed of 4 packed 64-bit integers) from a, selected with IMM1, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_fixupimm_pdavx512f
Fix up packed double-precision (64-bit) floating-point elements in a and b using packed 64-bit integers in c, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set). imm8 is used to set the required flags reporting.
_mm512_mask_fixupimm_psavx512f
Fix up packed single-precision (32-bit) floating-point elements in a and b using packed 32-bit integers in c, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set). imm8 is used to set the required flags reporting.
_mm512_mask_fixupimm_round_pdavx512f
Fix up packed double-precision (64-bit) floating-point elements in a and b using packed 64-bit integers in c, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set). imm8 is used to set the required flags reporting.\
_mm512_mask_fixupimm_round_psavx512f
Fix up packed single-precision (32-bit) floating-point elements in a and b using packed 32-bit integers in c, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set). imm8 is used to set the required flags reporting.\
_mm512_mask_fmadd_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm512_mask_fmadd_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm512_mask_fmadd_round_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).\
_mm512_mask_fmadd_round_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).\
_mm512_mask_fmaddsub_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm512_mask_fmaddsub_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm512_mask_fmaddsub_round_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).\
_mm512_mask_fmaddsub_round_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).\
_mm512_mask_fmsub_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm512_mask_fmsub_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm512_mask_fmsub_round_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).\
_mm512_mask_fmsub_round_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).\
_mm512_mask_fmsubadd_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm512_mask_fmsubadd_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm512_mask_fmsubadd_round_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).\
_mm512_mask_fmsubadd_round_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).\
_mm512_mask_fnmadd_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm512_mask_fnmadd_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm512_mask_fnmadd_round_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).\
_mm512_mask_fnmadd_round_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).\
_mm512_mask_fnmsub_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm512_mask_fnmsub_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm512_mask_fnmsub_round_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).\
_mm512_mask_fnmsub_round_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).\
_mm512_mask_getexp_pdavx512f
Convert the exponent of each packed double-precision (64-bit) floating-point element in a to a double-precision (64-bit) floating-point number representing the integer exponent, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). This intrinsic essentially calculates floor(log2(x)) for each element.
_mm512_mask_getexp_psavx512f
Convert the exponent of each packed single-precision (32-bit) floating-point element in a to a single-precision (32-bit) floating-point number representing the integer exponent, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). This intrinsic essentially calculates floor(log2(x)) for each element.
_mm512_mask_getexp_round_pdavx512f
Convert the exponent of each packed double-precision (64-bit) floating-point element in a to a double-precision (64-bit) floating-point number representing the integer exponent, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). This intrinsic essentially calculates floor(log2(x)) for each element.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_mask_getexp_round_psavx512f
Convert the exponent of each packed single-precision (32-bit) floating-point element in a to a single-precision (32-bit) floating-point number representing the integer exponent, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). This intrinsic essentially calculates floor(log2(x)) for each element.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_mask_getmant_pdavx512f
Normalize the mantissas of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
_mm512_mask_getmant_psavx512f
Normalize the mantissas of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
_mm512_mask_getmant_round_pdavx512f
Normalize the mantissas of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_mask_getmant_round_psavx512f
Normalize the mantissas of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_mask_i32gather_epi32avx512f
Gather 32-bit integers from memory using 32-bit indices. 32-bit elements are loaded from addresses starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale). Gathered elements are merged into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.
_mm512_mask_i32gather_epi64avx512f
Gather 64-bit integers from memory using 32-bit indices. 64-bit elements are loaded from addresses starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale). Gathered elements are merged into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.
_mm512_mask_i32gather_pdavx512f
Gather double-precision (64-bit) floating-point elements from memory using 32-bit indices. 64-bit elements are loaded from addresses starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale). Gathered elements are merged into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.
_mm512_mask_i32gather_psavx512f
Gather single-precision (32-bit) floating-point elements from memory using 32-bit indices. 32-bit elements are loaded from addresses starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale). Gathered elements are merged into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.
_mm512_mask_i32logather_epi64avx512f
Loads 8 64-bit integer elements from memory starting at location base_addr at packed 32-bit integer indices stored in the lower half of vindex scaled by scale and stores them in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_i32logather_pdavx512f
Loads 8 double-precision (64-bit) floating-point elements from memory starting at location base_addr at packed 32-bit integer indices stored in the lower half of vindex scaled by scale and stores them in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_i32loscatter_epi64avx512f
Stores 8 64-bit integer elements from a to memory starting at location base_addr at packed 32-bit integer indices stored in the lower half of vindex scaled by scale using writemask k (elements whose corresponding mask bit is not set are not written to memory).
_mm512_mask_i32loscatter_pdavx512f
Stores 8 double-precision (64-bit) floating-point elements from a to memory starting at location base_addr at packed 32-bit integer indices stored in the lower half of vindex scaled by scale using writemask k (elements whose corresponding mask bit is not set are not written to memory).
_mm512_mask_i32scatter_epi32avx512f
Scatter 32-bit integers from a into memory using 32-bit indices. 32-bit elements are stored at addresses starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale) subject to mask k (elements are not stored when the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.
_mm512_mask_i32scatter_epi64avx512f
Scatter 64-bit integers from a into memory using 32-bit indices. 64-bit elements are stored at addresses starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale) subject to mask k (elements are not stored when the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.
_mm512_mask_i32scatter_pdavx512f
Scatter double-precision (64-bit) floating-point elements from a into memory using 32-bit indices. 64-bit elements are stored at addresses starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale) subject to mask k (elements are not stored when the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.
_mm512_mask_i32scatter_psavx512f
Scatter single-precision (32-bit) floating-point elements from a into memory using 32-bit indices. 32-bit elements are stored at addresses starting at base_addr and offset by each 32-bit element in vindex (each index is scaled by the factor in scale) subject to mask k (elements are not stored when the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.
_mm512_mask_i64gather_epi32avx512f
Gather 32-bit integers from memory using 64-bit indices. 32-bit elements are loaded from addresses starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale). Gathered elements are merged into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.
_mm512_mask_i64gather_epi64avx512f
Gather 64-bit integers from memory using 64-bit indices. 64-bit elements are loaded from addresses starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale). Gathered elements are merged into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.
_mm512_mask_i64gather_pdavx512f
Gather double-precision (64-bit) floating-point elements from memory using 64-bit indices. 64-bit elements are loaded from addresses starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale). Gathered elements are merged into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.
_mm512_mask_i64gather_psavx512f
Gather single-precision (32-bit) floating-point elements from memory using 64-bit indices. 32-bit elements are loaded from addresses starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale). Gathered elements are merged into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.
_mm512_mask_i64scatter_epi32avx512f
Scatter 32-bit integers from a into memory using 64-bit indices. 32-bit elements are stored at addresses starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale) subject to mask k (elements are not stored when the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.
_mm512_mask_i64scatter_epi64avx512f
Scatter 64-bit integers from a into memory using 64-bit indices. 64-bit elements are stored at addresses starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale) subject to mask k (elements are not stored when the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.
_mm512_mask_i64scatter_pdavx512f
Scatter double-precision (64-bit) floating-point elements from a into memory using 64-bit indices. 64-bit elements are stored at addresses starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale) subject to mask k (elements are not stored when the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.
_mm512_mask_i64scatter_psavx512f
Scatter single-precision (32-bit) floating-point elements from a into memory using 64-bit indices. 32-bit elements are stored at addresses starting at base_addr and offset by each 64-bit element in vindex (each index is scaled by the factor in scale) subject to mask k (elements are not stored when the corresponding mask bit is not set). scale should be 1, 2, 4 or 8.
_mm512_mask_insertf32x4avx512f
Copy a to tmp, then insert 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from b into tmp at the location specified by imm8. Store tmp to dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_insertf64x4avx512f
Copy a to tmp, then insert 256 bits (composed of 4 packed double-precision (64-bit) floating-point elements) from b into tmp at the location specified by imm8. Store tmp to dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_inserti32x4avx512f
Copy a to tmp, then insert 128 bits (composed of 4 packed 32-bit integers) from b into tmp at the location specified by imm8. Store tmp to dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_inserti64x4avx512f
Copy a to tmp, then insert 256 bits (composed of 4 packed 64-bit integers) from b into tmp at the location specified by imm8. Store tmp to dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_load_epi32avx512f
Load packed 32-bit integers from memory into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr must be aligned on a 64-byte boundary or a general-protection exception may be generated.
_mm512_mask_load_epi64avx512f
Load packed 64-bit integers from memory into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr must be aligned on a 64-byte boundary or a general-protection exception may be generated.
_mm512_mask_load_pdavx512f
Load packed double-precision (64-bit) floating-point elements from memory into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr must be aligned on a 64-byte boundary or a general-protection exception may be generated.
_mm512_mask_load_psavx512f
Load packed single-precision (32-bit) floating-point elements from memory into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr must be aligned on a 64-byte boundary or a general-protection exception may be generated.
_mm512_mask_loadu_epi32avx512f
Load packed 32-bit integers from memory into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular boundary.
_mm512_mask_loadu_epi64avx512f
Load packed 64-bit integers from memory into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular boundary.
_mm512_mask_loadu_pdavx512f
Load packed double-precision (64-bit) floating-point elements from memory into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular boundary.
_mm512_mask_loadu_psavx512f
Load packed single-precision (32-bit) floating-point elements from memory into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular boundary.
_mm512_mask_max_epi32avx512f
Compare packed signed 32-bit integers in a and b, and store packed maximum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_max_epi64avx512f
Compare packed signed 64-bit integers in a and b, and store packed maximum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_max_epu32avx512f
Compare packed unsigned 32-bit integers in a and b, and store packed maximum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_max_epu64avx512f
Compare packed unsigned 64-bit integers in a and b, and store packed maximum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_max_pdavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed maximum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_max_psavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed maximum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_max_round_pdavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed maximum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_mask_max_round_psavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed maximum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_mask_min_epi32avx512f
Compare packed signed 32-bit integers in a and b, and store packed minimum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_min_epi64avx512f
Compare packed signed 64-bit integers in a and b, and store packed minimum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_min_epu32avx512f
Compare packed unsigned 32-bit integers in a and b, and store packed minimum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_min_epu64avx512f
Compare packed unsigned 64-bit integers in a and b, and store packed minimum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_min_pdavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed minimum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_min_psavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed minimum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_min_round_pdavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed minimum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_mask_min_round_psavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed minimum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_mask_mov_epi32avx512f
Move packed 32-bit integers from a to dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_mov_epi64avx512f
Move packed 64-bit integers from a to dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_mov_pdavx512f
Move packed double-precision (64-bit) floating-point elements from a to dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_mov_psavx512f
Move packed single-precision (32-bit) floating-point elements from a to dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_movedup_pdavx512f
Duplicate even-indexed double-precision (64-bit) floating-point elements from a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_movehdup_psavx512f
Duplicate odd-indexed single-precision (32-bit) floating-point elements from a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_moveldup_psavx512f
Duplicate even-indexed single-precision (32-bit) floating-point elements from a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_mul_epi32avx512f
Multiply the low signed 32-bit integers from each packed 64-bit element in a and b, and store the signed 64-bit results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_mul_epu32avx512f
Multiply the low unsigned 32-bit integers from each packed 64-bit element in a and b, and store the unsigned 64-bit results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_mul_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_mul_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_mul_round_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).\
_mm512_mask_mul_round_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).\
_mm512_mask_mullo_epi32avx512f
Multiply the packed 32-bit integers in a and b, producing intermediate 64-bit integers, and store the low 32 bits of the intermediate integers in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_mullox_epi64avx512f
Multiplies elements in packed 64-bit integer vectors a and b together, storing the lower 64 bits of the result in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_or_epi32avx512f
Compute the bitwise OR of packed 32-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_or_epi64avx512f
Compute the bitwise OR of packed 64-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_permute_pdavx512f
Shuffle double-precision (64-bit) floating-point elements in a within 128-bit lanes using the control in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_permute_psavx512f
Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_permutevar_epi32avx512f
Shuffle 32-bit integers in a across lanes using the corresponding index in idx, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). Note that this intrinsic shuffles across 128-bit lanes, unlike past intrinsics that use the permutevar name. This intrinsic is identical to _mm512_mask_permutexvar_epi32, and it is recommended that you use that intrinsic name.
_mm512_mask_permutevar_pdavx512f
Shuffle double-precision (64-bit) floating-point elements in a within 128-bit lanes using the control in b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_permutevar_psavx512f
Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_permutex2var_epi32avx512f
Shuffle 32-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm512_mask_permutex2var_epi64avx512f
Shuffle 64-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm512_mask_permutex2var_pdavx512f
Shuffle double-precision (64-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm512_mask_permutex2var_psavx512f
Shuffle single-precision (32-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm512_mask_permutex_epi64avx512f
Shuffle 64-bit integers in a within 256-bit lanes using the control in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_permutex_pdavx512f
Shuffle double-precision (64-bit) floating-point elements in a within 256-bit lanes using the control in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_permutexvar_epi32avx512f
Shuffle 32-bit integers in a across lanes using the corresponding index in idx, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_permutexvar_epi64avx512f
Shuffle 64-bit integers in a across lanes using the corresponding index in idx, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_permutexvar_pdavx512f
Shuffle double-precision (64-bit) floating-point elements in a across lanes using the corresponding index in idx, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_permutexvar_psavx512f
Shuffle single-precision (32-bit) floating-point elements in a across lanes using the corresponding index in idx, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_rcp14_pdavx512f
Compute the approximate reciprocal of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.
_mm512_mask_rcp14_psavx512f
Compute the approximate reciprocal of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.
_mm512_mask_reduce_add_epi32avx512f
Reduce the packed 32-bit integers in a by addition using mask k. Returns the sum of all active elements in a.
_mm512_mask_reduce_add_epi64avx512f
Reduce the packed 64-bit integers in a by addition using mask k. Returns the sum of all active elements in a.
_mm512_mask_reduce_add_pdavx512f
Reduce the packed double-precision (64-bit) floating-point elements in a by addition using mask k. Returns the sum of all active elements in a.
_mm512_mask_reduce_add_psavx512f
Reduce the packed single-precision (32-bit) floating-point elements in a by addition using mask k. Returns the sum of all active elements in a.
_mm512_mask_reduce_and_epi32avx512f
Reduce the packed 32-bit integers in a by bitwise AND using mask k. Returns the bitwise AND of all active elements in a.
_mm512_mask_reduce_and_epi64avx512f
Reduce the packed 64-bit integers in a by addition using mask k. Returns the sum of all active elements in a.
_mm512_mask_reduce_max_epi32avx512f
Reduce the packed signed 32-bit integers in a by maximum using mask k. Returns the maximum of all active elements in a.
_mm512_mask_reduce_max_epi64avx512f
Reduce the packed signed 64-bit integers in a by maximum using mask k. Returns the maximum of all active elements in a.
_mm512_mask_reduce_max_epu32avx512f
Reduce the packed unsigned 32-bit integers in a by maximum using mask k. Returns the maximum of all active elements in a.
_mm512_mask_reduce_max_epu64avx512f
Reduce the packed unsigned 64-bit integers in a by maximum using mask k. Returns the maximum of all active elements in a.
_mm512_mask_reduce_max_pdavx512f
Reduce the packed double-precision (64-bit) floating-point elements in a by maximum using mask k. Returns the maximum of all active elements in a.
_mm512_mask_reduce_max_psavx512f
Reduce the packed single-precision (32-bit) floating-point elements in a by maximum using mask k. Returns the maximum of all active elements in a.
_mm512_mask_reduce_min_epi32avx512f
Reduce the packed signed 32-bit integers in a by maximum using mask k. Returns the minimum of all active elements in a.
_mm512_mask_reduce_min_epi64avx512f
Reduce the packed signed 64-bit integers in a by maximum using mask k. Returns the minimum of all active elements in a.
_mm512_mask_reduce_min_epu32avx512f
Reduce the packed unsigned 32-bit integers in a by maximum using mask k. Returns the minimum of all active elements in a.
_mm512_mask_reduce_min_epu64avx512f
Reduce the packed signed 64-bit integers in a by maximum using mask k. Returns the minimum of all active elements in a.
_mm512_mask_reduce_min_pdavx512f
Reduce the packed double-precision (64-bit) floating-point elements in a by maximum using mask k. Returns the minimum of all active elements in a.
_mm512_mask_reduce_min_psavx512f
Reduce the packed single-precision (32-bit) floating-point elements in a by maximum using mask k. Returns the minimum of all active elements in a.
_mm512_mask_reduce_mul_epi32avx512f
Reduce the packed 32-bit integers in a by multiplication using mask k. Returns the product of all active elements in a.
_mm512_mask_reduce_mul_epi64avx512f
Reduce the packed 64-bit integers in a by multiplication using mask k. Returns the product of all active elements in a.
_mm512_mask_reduce_mul_pdavx512f
Reduce the packed double-precision (64-bit) floating-point elements in a by multiplication using mask k. Returns the product of all active elements in a.
_mm512_mask_reduce_mul_psavx512f
Reduce the packed single-precision (32-bit) floating-point elements in a by multiplication using mask k. Returns the product of all active elements in a.
_mm512_mask_reduce_or_epi32avx512f
Reduce the packed 32-bit integers in a by bitwise OR using mask k. Returns the bitwise OR of all active elements in a.
_mm512_mask_reduce_or_epi64avx512f
Reduce the packed 64-bit integers in a by bitwise OR using mask k. Returns the bitwise OR of all active elements in a.
_mm512_mask_rol_epi32avx512f
Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_rol_epi64avx512f
Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_rolv_epi32avx512f
Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in the corresponding element of b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_rolv_epi64avx512f
Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in the corresponding element of b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_ror_epi32avx512f
Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_ror_epi64avx512f
Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_rorv_epi32avx512f
Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in the corresponding element of b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_rorv_epi64avx512f
Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in the corresponding element of b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_roundscale_pdavx512f
Round packed double-precision (64-bit) floating-point elements in a to the number of fraction bits specified by imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm512_mask_roundscale_psavx512f
Round packed single-precision (32-bit) floating-point elements in a to the number of fraction bits specified by imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm512_mask_roundscale_round_pdavx512f
Round packed double-precision (64-bit) floating-point elements in a to the number of fraction bits specified by imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm512_mask_roundscale_round_psavx512f
Round packed single-precision (32-bit) floating-point elements in a to the number of fraction bits specified by imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm512_mask_rsqrt14_pdavx512f
Compute the approximate reciprocal square root of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.
_mm512_mask_rsqrt14_psavx512f
Compute the approximate reciprocal square root of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.
_mm512_mask_scalef_pdavx512f
Scale the packed double-precision (64-bit) floating-point elements in a using values from b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_scalef_psavx512f
Scale the packed single-precision (32-bit) floating-point elements in a using values from b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_scalef_round_pdavx512f
Scale the packed double-precision (64-bit) floating-point elements in a using values from b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).\
_mm512_mask_scalef_round_psavx512f
Scale the packed single-precision (32-bit) floating-point elements in a using values from b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).\
_mm512_mask_set1_epi32avx512f
Broadcast 32-bit integer a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_set1_epi64avx512f
Broadcast 64-bit integer a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_shuffle_epi32avx512f
Shuffle 32-bit integers in a within 128-bit lanes using the control in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_shuffle_f32x4avx512f
Shuffle 128-bits (composed of 4 single-precision (32-bit) floating-point elements) selected by imm8 from a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_shuffle_f64x2avx512f
Shuffle 128-bits (composed of 2 double-precision (64-bit) floating-point elements) selected by imm8 from a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_shuffle_i32x4avx512f
Shuffle 128-bits (composed of 4 32-bit integers) selected by imm8 from a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_shuffle_i64x2avx512f
Shuffle 128-bits (composed of 2 64-bit integers) selected by imm8 from a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_shuffle_pdavx512f
Shuffle double-precision (64-bit) floating-point elements within 128-bit lanes using the control in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_shuffle_psavx512f
Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_sll_epi32avx512f
Shift packed 32-bit integers in a left by count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_sll_epi64avx512f
Shift packed 64-bit integers in a left by count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_slli_epi32avx512f
Shift packed 32-bit integers in a left by imm8 while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_slli_epi64avx512f
Shift packed 64-bit integers in a left by imm8 while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_sllv_epi32avx512f
Shift packed 32-bit integers in a left by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_sllv_epi64avx512f
Shift packed 64-bit integers in a left by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_sqrt_pdavx512f
Compute the square root of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_sqrt_psavx512f
Compute the square root of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_sqrt_round_pdavx512f
Compute the square root of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).\
_mm512_mask_sqrt_round_psavx512f
Compute the square root of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).\
_mm512_mask_sra_epi32avx512f
Shift packed 32-bit integers in a right by count while shifting in sign bits, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_sra_epi64avx512f
Shift packed 64-bit integers in a right by count while shifting in sign bits, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_srai_epi32avx512f
Shift packed 32-bit integers in a right by imm8 while shifting in sign bits, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_srai_epi64avx512f
Shift packed 64-bit integers in a right by imm8 while shifting in sign bits, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_srav_epi32avx512f
Shift packed 32-bit integers in a right by the amount specified by the corresponding element in count while shifting in sign bits, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_srav_epi64avx512f
Shift packed 64-bit integers in a right by the amount specified by the corresponding element in count while shifting in sign bits, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_srl_epi32avx512f
Shift packed 32-bit integers in a right by count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_srl_epi64avx512f
Shift packed 64-bit integers in a right by count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_srli_epi32avx512f
Shift packed 32-bit integers in a right by imm8 while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_srli_epi64avx512f
Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_srlv_epi32avx512f
Shift packed 32-bit integers in a right by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_srlv_epi64avx512f
Shift packed 64-bit integers in a right by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_store_epi32avx512f
Store packed 32-bit integers from a into memory using writemask k. mem_addr must be aligned on a 64-byte boundary or a general-protection exception may be generated.
_mm512_mask_store_epi64avx512f
Store packed 64-bit integers from a into memory using writemask k. mem_addr must be aligned on a 64-byte boundary or a general-protection exception may be generated.
_mm512_mask_store_pdavx512f
Store packed double-precision (64-bit) floating-point elements from a into memory using writemask k. mem_addr must be aligned on a 64-byte boundary or a general-protection exception may be generated.
_mm512_mask_store_psavx512f
Store packed single-precision (32-bit) floating-point elements from a into memory using writemask k. mem_addr must be aligned on a 64-byte boundary or a general-protection exception may be generated.
_mm512_mask_storeu_epi32avx512f
Store packed 32-bit integers from a into memory using writemask k. mem_addr does not need to be aligned on any particular boundary.
_mm512_mask_storeu_epi64avx512f
Store packed 64-bit integers from a into memory using writemask k. mem_addr does not need to be aligned on any particular boundary.
_mm512_mask_storeu_pdavx512f
Store packed double-precision (64-bit) floating-point elements from a into memory using writemask k. mem_addr does not need to be aligned on any particular boundary.
_mm512_mask_storeu_psavx512f
Store packed single-precision (32-bit) floating-point elements from a into memory using writemask k. mem_addr does not need to be aligned on any particular boundary.
_mm512_mask_sub_epi32avx512f
Subtract packed 32-bit integers in b from packed 32-bit integers in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_sub_epi64avx512f
Subtract packed 64-bit integers in b from packed 64-bit integers in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_sub_pdavx512f
Subtract packed double-precision (64-bit) floating-point elements in b from packed double-precision (64-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_sub_psavx512f
Subtract packed single-precision (32-bit) floating-point elements in b from packed single-precision (32-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_sub_round_pdavx512f
Subtract packed double-precision (64-bit) floating-point elements in b from packed double-precision (64-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).\
_mm512_mask_sub_round_psavx512f
Subtract packed single-precision (32-bit) floating-point elements in b from packed single-precision (32-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).\
_mm512_mask_ternarylogic_epi32avx512f
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in imm8. For each bit in each packed 32-bit integer, the corresponding bit from src, a, and b are used to form a 3 bit index into imm8, and the value at that bit in imm8 is written to the corresponding bit in dst using writemask k at 32-bit granularity (32-bit elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_ternarylogic_epi64avx512f
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in imm8. For each bit in each packed 64-bit integer, the corresponding bit from src, a, and b are used to form a 3 bit index into imm8, and the value at that bit in imm8 is written to the corresponding bit in dst using writemask k at 64-bit granularity (64-bit elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_test_epi32_maskavx512f
Compute the bitwise AND of packed 32-bit integers in a and b, producing intermediate 32-bit values, and set the corresponding bit in result mask k (subject to writemask k) if the intermediate value is non-zero.
_mm512_mask_test_epi64_maskavx512f
Compute the bitwise AND of packed 64-bit integers in a and b, producing intermediate 64-bit values, and set the corresponding bit in result mask k (subject to writemask k) if the intermediate value is non-zero.
_mm512_mask_testn_epi32_maskavx512f
Compute the bitwise NAND of packed 32-bit integers in a and b, producing intermediate 32-bit values, and set the corresponding bit in result mask k (subject to writemask k) if the intermediate value is zero.
_mm512_mask_testn_epi64_maskavx512f
Compute the bitwise NAND of packed 64-bit integers in a and b, producing intermediate 64-bit values, and set the corresponding bit in result mask k (subject to writemask k) if the intermediate value is zero.
_mm512_mask_unpackhi_epi32avx512f
Unpack and interleave 32-bit integers from the high half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_unpackhi_epi64avx512f
Unpack and interleave 64-bit integers from the high half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_unpackhi_pdavx512f
Unpack and interleave double-precision (64-bit) floating-point elements from the high half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_unpackhi_psavx512f
Unpack and interleave single-precision (32-bit) floating-point elements from the high half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_unpacklo_epi32avx512f
Unpack and interleave 32-bit integers from the low half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_unpacklo_epi64avx512f
Unpack and interleave 64-bit integers from the low half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_unpacklo_pdavx512f
Unpack and interleave double-precision (64-bit) floating-point elements from the low half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_unpacklo_psavx512f
Unpack and interleave single-precision (32-bit) floating-point elements from the low half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_xor_epi32avx512f
Compute the bitwise XOR of packed 32-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_mask_xor_epi64avx512f
Compute the bitwise XOR of packed 64-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm512_maskz_abs_epi32avx512f
Computes the absolute value of packed 32-bit integers in a, and store the unsigned results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_abs_epi64avx512f
Compute the absolute value of packed signed 64-bit integers in a, and store the unsigned results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_add_epi32avx512f
Add packed 32-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_add_epi64avx512f
Add packed 64-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_add_pdavx512f
Add packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_add_psavx512f
Add packed single-precision (32-bit) floating-point elements in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_add_round_pdavx512f
Add packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).\
_mm512_maskz_add_round_psavx512f
Add packed single-precision (32-bit) floating-point elements in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).\
_mm512_maskz_alignr_epi32avx512f
Concatenate a and b into a 128-byte immediate result, shift the result right by imm8 32-bit elements, and stores the low 64 bytes (16 elements) in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_alignr_epi64avx512f
Concatenate a and b into a 128-byte immediate result, shift the result right by imm8 64-bit elements, and stores the low 64 bytes (8 elements) in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_and_epi32avx512f
Compute the bitwise AND of packed 32-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_and_epi64avx512f
Compute the bitwise AND of packed 64-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_andnot_epi32avx512f
Compute the bitwise NOT of packed 32-bit integers in a and then AND with b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_andnot_epi64avx512f
Compute the bitwise NOT of packed 64-bit integers in a and then AND with b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_broadcast_f32x4avx512f
Broadcast the 4 packed single-precision (32-bit) floating-point elements from a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_broadcast_f64x4avx512f
Broadcast the 4 packed double-precision (64-bit) floating-point elements from a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_broadcast_i32x4avx512f
Broadcast the 4 packed 32-bit integers from a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_broadcast_i64x4avx512f
Broadcast the 4 packed 64-bit integers from a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_broadcastd_epi32avx512f
Broadcast the low packed 32-bit integer from a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_broadcastq_epi64avx512f
Broadcast the low packed 64-bit integer from a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_broadcastsd_pdavx512f
Broadcast the low double-precision (64-bit) floating-point element from a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_broadcastss_psavx512f
Broadcast the low single-precision (32-bit) floating-point element from a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_compress_epi32avx512f
Contiguously store the active 32-bit integers in a (those with their respective bit set in zeromask k) to dst, and set the remaining elements to zero.
_mm512_maskz_compress_epi64avx512f
Contiguously store the active 64-bit integers in a (those with their respective bit set in zeromask k) to dst, and set the remaining elements to zero.
_mm512_maskz_compress_pdavx512f
Contiguously store the active double-precision (64-bit) floating-point elements in a (those with their respective bit set in zeromask k) to dst, and set the remaining elements to zero.
_mm512_maskz_compress_psavx512f
Contiguously store the active single-precision (32-bit) floating-point elements in a (those with their respective bit set in zeromask k) to dst, and set the remaining elements to zero.
_mm512_maskz_cvt_roundepi32_psavx512f
Convert packed signed 32-bit integers in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).\
_mm512_maskz_cvt_roundepu32_psavx512f
Convert packed unsigned 32-bit integers in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).\
_mm512_maskz_cvt_roundpd_epi32avx512f
Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).\
_mm512_maskz_cvt_roundpd_epu32avx512f
Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).\
_mm512_maskz_cvt_roundpd_psavx512f
Convert packed double-precision (64-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).\
_mm512_maskz_cvt_roundph_psavx512f
Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_maskz_cvt_roundps_epi32avx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).\
_mm512_maskz_cvt_roundps_epu32avx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).\
_mm512_maskz_cvt_roundps_pdavx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed double-precision (64-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_maskz_cvt_roundps_phavx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
Rounding is done according to the rounding[3:0] parameter, which can be one of:
_mm512_maskz_cvtepi8_epi32avx512f
Sign extend packed 8-bit integers in a to packed 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtepi8_epi64avx512f
Sign extend packed 8-bit integers in the low 8 bytes of a to packed 64-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtepi16_epi32avx512f
Sign extend packed 16-bit integers in a to packed 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtepi16_epi64avx512f
Sign extend packed 16-bit integers in a to packed 64-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtepi32_epi8avx512f
Convert packed 32-bit integers in a to packed 8-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtepi32_epi16avx512f
Convert packed 32-bit integers in a to packed 16-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtepi32_epi64avx512f
Sign extend packed 32-bit integers in a to packed 64-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtepi32_pdavx512f
Convert packed signed 32-bit integers in a to packed double-precision (64-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtepi32_psavx512f
Convert packed signed 32-bit integers in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtepi64_epi8avx512f
Convert packed 64-bit integers in a to packed 8-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtepi64_epi16avx512f
Convert packed 64-bit integers in a to packed 16-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtepi64_epi32avx512f
Convert packed 64-bit integers in a to packed 32-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtepu8_epi32avx512f
Zero extend packed unsigned 8-bit integers in a to packed 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtepu8_epi64avx512f
Zero extend packed unsigned 8-bit integers in the low 8 bytes of a to packed 64-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtepu16_epi32avx512f
Zero extend packed unsigned 16-bit integers in a to packed 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtepu16_epi64avx512f
Zero extend packed unsigned 16-bit integers in a to packed 64-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtepu32_epi64avx512f
Zero extend packed unsigned 32-bit integers in a to packed 64-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtepu32_pdavx512f
Convert packed unsigned 32-bit integers in a to packed double-precision (64-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtepu32_psavx512f
Convert packed unsigned 32-bit integers in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtpd_epi32avx512f
Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtpd_epu32avx512f
Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtpd_psavx512f
Convert packed double-precision (64-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtph_psavx512f
Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtps_epi32avx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtps_epu32avx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtps_pdavx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed double-precision (64-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtps_phavx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
Rounding is done according to the rounding[3:0] parameter, which can be one of:
_mm512_maskz_cvtsepi32_epi8avx512f
Convert packed signed 32-bit integers in a to packed 8-bit integers with signed saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtsepi32_epi16avx512f
Convert packed signed 32-bit integers in a to packed 16-bit integers with signed saturation, and store the results in dst.
_mm512_maskz_cvtsepi64_epi8avx512f
Convert packed signed 64-bit integers in a to packed 8-bit integers with signed saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtsepi64_epi16avx512f
Convert packed signed 64-bit integers in a to packed 16-bit integers with signed saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtsepi64_epi32avx512f
Convert packed signed 64-bit integers in a to packed 32-bit integers with signed saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtt_roundpd_epi32avx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_maskz_cvtt_roundpd_epu32avx512f
Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_maskz_cvtt_roundps_epi32avx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_maskz_cvtt_roundps_epu32avx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_maskz_cvttpd_epi32avx512f
Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvttpd_epu32avx512f
Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvttps_epi32avx512f
Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvttps_epu32avx512f
Convert packed double-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtusepi32_epi8avx512f
Convert packed unsigned 32-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtusepi32_epi16avx512f
Convert packed unsigned 32-bit integers in a to packed unsigned 16-bit integers with unsigned saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtusepi64_epi8avx512f
Convert packed unsigned 64-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtusepi64_epi16avx512f
Convert packed unsigned 64-bit integers in a to packed unsigned 16-bit integers with unsigned saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_cvtusepi64_epi32avx512f
Convert packed unsigned 64-bit integers in a to packed unsigned 32-bit integers with unsigned saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_div_pdavx512f
Divide packed double-precision (64-bit) floating-point elements in a by packed elements in b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_div_psavx512f
Divide packed single-precision (32-bit) floating-point elements in a by packed elements in b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_div_round_pdavx512f
Divide packed double-precision (64-bit) floating-point elements in a by packed elements in b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).\
_mm512_maskz_div_round_psavx512f
Divide packed single-precision (32-bit) floating-point elements in a by packed elements in b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).\
_mm512_maskz_expand_epi32avx512f
Load contiguous active 32-bit integers from a (those with their respective bit set in mask k), and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_expand_epi64avx512f
Load contiguous active 64-bit integers from a (those with their respective bit set in mask k), and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_expand_pdavx512f
Load contiguous active double-precision (64-bit) floating-point elements from a (those with their respective bit set in mask k), and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_expand_psavx512f
Load contiguous active single-precision (32-bit) floating-point elements from a (those with their respective bit set in mask k), and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_expandloadu_epi32avx512f
Load contiguous active 32-bit integers from unaligned memory at mem_addr (those with their respective bit set in mask k), and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_expandloadu_epi64avx512f
Load contiguous active 64-bit integers from unaligned memory at mem_addr (those with their respective bit set in mask k), and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_expandloadu_pdavx512f
Load contiguous active double-precision (64-bit) floating-point elements from unaligned memory at mem_addr (those with their respective bit set in mask k), and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_expandloadu_psavx512f
Load contiguous active single-precision (32-bit) floating-point elements from unaligned memory at mem_addr (those with their respective bit set in mask k), and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_extractf32x4_psavx512f
Extract 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from a, selected with imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_extractf64x4_pdavx512f
Extract 256 bits (composed of 4 packed double-precision (64-bit) floating-point elements) from a, selected with imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_extracti32x4_epi32avx512f
Extract 128 bits (composed of 4 packed 32-bit integers) from a, selected with IMM2, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_extracti64x4_epi64avx512f
Extract 256 bits (composed of 4 packed 64-bit integers) from a, selected with IMM1, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_fixupimm_pdavx512f
Fix up packed double-precision (64-bit) floating-point elements in a and b using packed 64-bit integers in c, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). imm8 is used to set the required flags reporting.
_mm512_maskz_fixupimm_psavx512f
Fix up packed single-precision (32-bit) floating-point elements in a and b using packed 32-bit integers in c, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). imm8 is used to set the required flags reporting.
_mm512_maskz_fixupimm_round_pdavx512f
Fix up packed double-precision (64-bit) floating-point elements in a and b using packed 64-bit integers in c, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). imm8 is used to set the required flags reporting.\
_mm512_maskz_fixupimm_round_psavx512f
Fix up packed single-precision (32-bit) floating-point elements in a and b using packed 32-bit integers in c, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). imm8 is used to set the required flags reporting.\
_mm512_maskz_fmadd_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_fmadd_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_fmadd_round_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).\
_mm512_maskz_fmadd_round_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in a using zeromask k (elements are zeroed out when the corresponding mask bit is not set).\
_mm512_maskz_fmaddsub_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_fmaddsub_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_fmaddsub_round_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).\
_mm512_maskz_fmaddsub_round_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).\
_mm512_maskz_fmsub_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_fmsub_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_fmsub_round_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).\
_mm512_maskz_fmsub_round_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).\
_mm512_maskz_fmsubadd_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_fmsubadd_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_fmsubadd_round_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).\
_mm512_maskz_fmsubadd_round_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).\
_mm512_maskz_fnmadd_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_fnmadd_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_fnmadd_round_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).\
_mm512_maskz_fnmadd_round_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).\
_mm512_maskz_fnmsub_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_fnmsub_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_fnmsub_round_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).\
_mm512_maskz_fnmsub_round_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).\
_mm512_maskz_getexp_pdavx512f
Convert the exponent of each packed double-precision (64-bit) floating-point element in a to a double-precision (64-bit) floating-point number representing the integer exponent, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates floor(log2(x)) for each element.
_mm512_maskz_getexp_psavx512f
Convert the exponent of each packed single-precision (32-bit) floating-point element in a to a single-precision (32-bit) floating-point number representing the integer exponent, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates floor(log2(x)) for each element.
_mm512_maskz_getexp_round_pdavx512f
Convert the exponent of each packed double-precision (64-bit) floating-point element in a to a double-precision (64-bit) floating-point number representing the integer exponent, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates floor(log2(x)) for each element.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_maskz_getexp_round_psavx512f
Convert the exponent of each packed single-precision (32-bit) floating-point element in a to a single-precision (32-bit) floating-point number representing the integer exponent, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates floor(log2(x)) for each element.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_maskz_getmant_pdavx512f
Normalize the mantissas of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
_mm512_maskz_getmant_psavx512f
Normalize the mantissas of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
_mm512_maskz_getmant_round_pdavx512f
Normalize the mantissas of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_maskz_getmant_round_psavx512f
Normalize the mantissas of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_maskz_insertf32x4avx512f
Copy a to tmp, then insert 128 bits (composed of 4 packed single-precision (32-bit) floating-point elements) from b into tmp at the location specified by imm8. Store tmp to dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_insertf64x4avx512f
Copy a to tmp, then insert 256 bits (composed of 4 packed double-precision (64-bit) floating-point elements) from b into tmp at the location specified by imm8. Store tmp to dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_inserti32x4avx512f
Copy a to tmp, then insert 128 bits (composed of 4 packed 32-bit integers) from b into tmp at the location specified by imm8. Store tmp to dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_inserti64x4avx512f
Copy a to tmp, then insert 256 bits (composed of 4 packed 64-bit integers) from b into tmp at the location specified by imm8. Store tmp to dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_load_epi32avx512f
Load packed 32-bit integers from memory into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr must be aligned on a 64-byte boundary or a general-protection exception may be generated.
_mm512_maskz_load_epi64avx512f
Load packed 64-bit integers from memory into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr must be aligned on a 64-byte boundary or a general-protection exception may be generated.
_mm512_maskz_load_pdavx512f
Load packed double-precision (64-bit) floating-point elements from memory into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr must be aligned on a 64-byte boundary or a general-protection exception may be generated.
_mm512_maskz_load_psavx512f
Load packed single-precision (32-bit) floating-point elements from memory into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr must be aligned on a 64-byte boundary or a general-protection exception may be generated.
_mm512_maskz_loadu_epi32avx512f
Load packed 32-bit integers from memory into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular boundary.
_mm512_maskz_loadu_epi64avx512f
Load packed 64-bit integers from memory into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular boundary.
_mm512_maskz_loadu_pdavx512f
Load packed double-precision (64-bit) floating-point elements from memory into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular boundary.
_mm512_maskz_loadu_psavx512f
Load packed single-precision (32-bit) floating-point elements from memory into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular boundary.
_mm512_maskz_max_epi32avx512f
Compare packed signed 32-bit integers in a and b, and store packed maximum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_max_epi64avx512f
Compare packed signed 64-bit integers in a and b, and store packed maximum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_max_epu32avx512f
Compare packed unsigned 32-bit integers in a and b, and store packed maximum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_max_epu64avx512f
Compare packed unsigned 64-bit integers in a and b, and store packed maximum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_max_pdavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed maximum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_max_psavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed maximum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_max_round_pdavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed maximum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_maskz_max_round_psavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed maximum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_maskz_min_epi32avx512f
Compare packed signed 32-bit integers in a and b, and store packed minimum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_min_epi64avx512f
Compare packed signed 64-bit integers in a and b, and store packed minimum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_min_epu32avx512f
Compare packed unsigned 32-bit integers in a and b, and store packed minimum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_min_epu64avx512f
Compare packed unsigned 64-bit integers in a and b, and store packed minimum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_min_pdavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed minimum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_min_psavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed minimum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_min_round_pdavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed minimum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_maskz_min_round_psavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed minimum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_maskz_mov_epi32avx512f
Move packed 32-bit integers from a into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_mov_epi64avx512f
Move packed 64-bit integers from a into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_mov_pdavx512f
Move packed double-precision (64-bit) floating-point elements from a into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_mov_psavx512f
Move packed single-precision (32-bit) floating-point elements from a into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_movedup_pdavx512f
Duplicate even-indexed double-precision (64-bit) floating-point elements from a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_movehdup_psavx512f
Duplicate odd-indexed single-precision (32-bit) floating-point elements from a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_moveldup_psavx512f
Duplicate even-indexed single-precision (32-bit) floating-point elements from a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_mul_epi32avx512f
Multiply the low signed 32-bit integers from each packed 64-bit element in a and b, and store the signed 64-bit results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_mul_epu32avx512f
Multiply the low unsigned 32-bit integers from each packed 64-bit element in a and b, and store the unsigned 64-bit results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_mul_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_mul_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_mul_round_pdavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).\
_mm512_maskz_mul_round_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).\
_mm512_maskz_mullo_epi32avx512f
Multiply the packed 32-bit integers in a and b, producing intermediate 64-bit integers, and store the low 32 bits of the intermediate integers in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_or_epi32avx512f
Compute the bitwise OR of packed 32-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_or_epi64avx512f
Compute the bitwise OR of packed 64-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_permute_pdavx512f
Shuffle double-precision (64-bit) floating-point elements in a within 128-bit lanes using the control in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_permute_psavx512f
Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_permutevar_pdavx512f
Shuffle double-precision (64-bit) floating-point elements in a within 128-bit lanes using the control in b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_permutevar_psavx512f
Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_permutex2var_epi32avx512f
Shuffle 32-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_permutex2var_epi64avx512f
Shuffle 64-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_permutex2var_pdavx512f
Shuffle double-precision (64-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_permutex2var_psavx512f
Shuffle single-precision (32-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_permutex_epi64avx512f
Shuffle 64-bit integers in a within 256-bit lanes using the control in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_permutex_pdavx512f
Shuffle double-precision (64-bit) floating-point elements in a within 256-bit lanes using the control in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_permutexvar_epi32avx512f
Shuffle 32-bit integers in a across lanes using the corresponding index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_permutexvar_epi64avx512f
Shuffle 64-bit integers in a across lanes using the corresponding index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_permutexvar_pdavx512f
Shuffle double-precision (64-bit) floating-point elements in a across lanes using the corresponding index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_permutexvar_psavx512f
Shuffle single-precision (32-bit) floating-point elements in a across lanes using the corresponding index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_rcp14_pdavx512f
Compute the approximate reciprocal of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.
_mm512_maskz_rcp14_psavx512f
Compute the approximate reciprocal of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.
_mm512_maskz_rol_epi32avx512f
Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_rol_epi64avx512f
Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_rolv_epi32avx512f
Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in the corresponding element of b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_rolv_epi64avx512f
Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in the corresponding element of b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_ror_epi32avx512f
Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_ror_epi64avx512f
Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_rorv_epi32avx512f
Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in the corresponding element of b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_rorv_epi64avx512f
Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in the corresponding element of b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_roundscale_pdavx512f
Round packed double-precision (64-bit) floating-point elements in a to the number of fraction bits specified by imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm512_maskz_roundscale_psavx512f
Round packed single-precision (32-bit) floating-point elements in a to the number of fraction bits specified by imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm512_maskz_roundscale_round_pdavx512f
Round packed double-precision (64-bit) floating-point elements in a to the number of fraction bits specified by imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm512_maskz_roundscale_round_psavx512f
Round packed single-precision (32-bit) floating-point elements in a to the number of fraction bits specified by imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm512_maskz_rsqrt14_pdavx512f
Compute the approximate reciprocal square root of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.
_mm512_maskz_rsqrt14_psavx512f
Compute the approximate reciprocal square root of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.
_mm512_maskz_scalef_pdavx512f
Scale the packed double-precision (64-bit) floating-point elements in a using values from b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_scalef_psavx512f
Scale the packed single-precision (32-bit) floating-point elements in a using values from b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_scalef_round_pdavx512f
Scale the packed double-precision (64-bit) floating-point elements in a using values from b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).\
_mm512_maskz_scalef_round_psavx512f
Scale the packed single-precision (32-bit) floating-point elements in a using values from b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).\
_mm512_maskz_set1_epi32avx512f
Broadcast 32-bit integer a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_set1_epi64avx512f
Broadcast 64-bit integer a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_shuffle_epi32avx512f
Shuffle 32-bit integers in a within 128-bit lanes using the control in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_shuffle_f32x4avx512f
Shuffle 128-bits (composed of 4 single-precision (32-bit) floating-point elements) selected by imm8 from a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_shuffle_f64x2avx512f
Shuffle 128-bits (composed of 2 double-precision (64-bit) floating-point elements) selected by imm8 from a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_shuffle_i32x4avx512f
Shuffle 128-bits (composed of 4 32-bit integers) selected by imm8 from a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_shuffle_i64x2avx512f
Shuffle 128-bits (composed of 2 64-bit integers) selected by imm8 from a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_shuffle_pdavx512f
Shuffle double-precision (64-bit) floating-point elements within 128-bit lanes using the control in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_shuffle_psavx512f
Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_sll_epi32avx512f
Shift packed 32-bit integers in a left by count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_sll_epi64avx512f
Shift packed 64-bit integers in a left by count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_slli_epi32avx512f
Shift packed 32-bit integers in a left by imm8 while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_slli_epi64avx512f
Shift packed 64-bit integers in a left by imm8 while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_sllv_epi32avx512f
Shift packed 32-bit integers in a left by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_sllv_epi64avx512f
Shift packed 64-bit integers in a left by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_sqrt_pdavx512f
Compute the square root of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_sqrt_psavx512f
Compute the square root of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_sqrt_round_pdavx512f
Compute the square root of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).\
_mm512_maskz_sqrt_round_psavx512f
Compute the square root of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).\
_mm512_maskz_sra_epi32avx512f
Shift packed 32-bit integers in a right by count while shifting in sign bits, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_sra_epi64avx512f
Shift packed 64-bit integers in a right by count while shifting in sign bits, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_srai_epi32avx512f
Shift packed 32-bit integers in a right by imm8 while shifting in sign bits, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_srai_epi64avx512f
Shift packed 64-bit integers in a right by imm8 while shifting in sign bits, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_srav_epi32avx512f
Shift packed 32-bit integers in a right by the amount specified by the corresponding element in count while shifting in sign bits, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_srav_epi64avx512f
Shift packed 64-bit integers in a right by the amount specified by the corresponding element in count while shifting in sign bits, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_srl_epi32avx512f
Shift packed 32-bit integers in a right by count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_srl_epi64avx512f
Shift packed 64-bit integers in a right by count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_srli_epi32avx512f
Shift packed 32-bit integers in a right by imm8 while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_srli_epi64avx512f
Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_srlv_epi32avx512f
Shift packed 32-bit integers in a right by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_srlv_epi64avx512f
Shift packed 64-bit integers in a right by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_sub_epi32avx512f
Subtract packed 32-bit integers in b from packed 32-bit integers in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_sub_epi64avx512f
Subtract packed 64-bit integers in b from packed 64-bit integers in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_sub_pdavx512f
Subtract packed double-precision (64-bit) floating-point elements in b from packed double-precision (64-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_sub_psavx512f
Subtract packed single-precision (32-bit) floating-point elements in b from packed single-precision (32-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_sub_round_pdavx512f
Subtract packed double-precision (64-bit) floating-point elements in b from packed double-precision (64-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).\
_mm512_maskz_sub_round_psavx512f
Subtract packed single-precision (32-bit) floating-point elements in b from packed single-precision (32-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).\
_mm512_maskz_ternarylogic_epi32avx512f
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in imm8. For each bit in each packed 32-bit integer, the corresponding bit from a, b, and c are used to form a 3 bit index into imm8, and the value at that bit in imm8 is written to the corresponding bit in dst using zeromask k at 32-bit granularity (32-bit elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_ternarylogic_epi64avx512f
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in imm8. For each bit in each packed 64-bit integer, the corresponding bit from a, b, and c are used to form a 3 bit index into imm8, and the value at that bit in imm8 is written to the corresponding bit in dst using zeromask k at 64-bit granularity (64-bit elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_unpackhi_epi32avx512f
Unpack and interleave 32-bit integers from the high half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_unpackhi_epi64avx512f
Unpack and interleave 64-bit integers from the high half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_unpackhi_pdavx512f
Unpack and interleave double-precision (64-bit) floating-point elements from the high half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_unpackhi_psavx512f
Unpack and interleave single-precision (32-bit) floating-point elements from the high half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_unpacklo_epi32avx512f
Unpack and interleave 32-bit integers from the low half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_unpacklo_epi64avx512f
Unpack and interleave 64-bit integers from the low half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_unpacklo_pdavx512f
Unpack and interleave double-precision (64-bit) floating-point elements from the low half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_unpacklo_psavx512f
Unpack and interleave single-precision (32-bit) floating-point elements from the low half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_xor_epi32avx512f
Compute the bitwise XOR of packed 32-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_maskz_xor_epi64avx512f
Compute the bitwise XOR of packed 64-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm512_max_epi32avx512f
Compare packed signed 32-bit integers in a and b, and store packed maximum values in dst.
_mm512_max_epi64avx512f
Compare packed signed 64-bit integers in a and b, and store packed maximum values in dst.
_mm512_max_epu32avx512f
Compare packed unsigned 32-bit integers in a and b, and store packed maximum values in dst.
_mm512_max_epu64avx512f
Compare packed unsigned 64-bit integers in a and b, and store packed maximum values in dst.
_mm512_max_pdavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed maximum values in dst.
_mm512_max_psavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed maximum values in dst.
_mm512_max_round_pdavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed maximum values in dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_max_round_psavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed maximum values in dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_min_epi32avx512f
Compare packed signed 32-bit integers in a and b, and store packed minimum values in dst.
_mm512_min_epi64avx512f
Compare packed signed 64-bit integers in a and b, and store packed minimum values in dst.
_mm512_min_epu32avx512f
Compare packed unsigned 32-bit integers in a and b, and store packed minimum values in dst.
_mm512_min_epu64avx512f
Compare packed unsigned 64-bit integers in a and b, and store packed minimum values in dst.
_mm512_min_pdavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed minimum values in dst.
_mm512_min_psavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed minimum values in dst.
_mm512_min_round_pdavx512f
Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed minimum values in dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_min_round_psavx512f
Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed minimum values in dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm512_movedup_pdavx512f
Duplicate even-indexed double-precision (64-bit) floating-point elements from a, and store the results in dst.
_mm512_movehdup_psavx512f
Duplicate odd-indexed single-precision (32-bit) floating-point elements from a, and store the results in dst.
_mm512_moveldup_psavx512f
Duplicate even-indexed single-precision (32-bit) floating-point elements from a, and store the results in dst.
_mm512_mul_epi32avx512f
Multiply the low signed 32-bit integers from each packed 64-bit element in a and b, and store the signed 64-bit results in dst.
_mm512_mul_epu32avx512f
Multiply the low unsigned 32-bit integers from each packed 64-bit element in a and b, and store the unsigned 64-bit results in dst.
_mm512_mul_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst.
_mm512_mul_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, and store the results in dst.
_mm512_mul_round_pdavx512f
Multiply packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst.\
_mm512_mul_round_psavx512f
Multiply packed single-precision (32-bit) floating-point elements in a and b, and store the results in dst.\
_mm512_mullo_epi32avx512f
Multiply the packed 32-bit integers in a and b, producing intermediate 64-bit integers, and store the low 32 bits of the intermediate integers in dst.
_mm512_mullox_epi64avx512f
Multiplies elements in packed 64-bit integer vectors a and b together, storing the lower 64 bits of the result in dst.
_mm512_or_epi32avx512f
Compute the bitwise OR of packed 32-bit integers in a and b, and store the results in dst.
_mm512_or_epi64avx512f
Compute the bitwise OR of packed 64-bit integers in a and b, and store the resut in dst.
_mm512_or_si512avx512f
Compute the bitwise OR of 512 bits (representing integer data) in a and b, and store the result in dst.
_mm512_permute_pdavx512f
Shuffle double-precision (64-bit) floating-point elements in a within 128-bit lanes using the control in imm8, and store the results in dst.
_mm512_permute_psavx512f
Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in imm8, and store the results in dst.
_mm512_permutevar_epi32avx512f
Shuffle 32-bit integers in a across lanes using the corresponding index in idx, and store the results in dst. Note that this intrinsic shuffles across 128-bit lanes, unlike past intrinsics that use the permutevar name. This intrinsic is identical to _mm512_permutexvar_epi32, and it is recommended that you use that intrinsic name.
_mm512_permutevar_pdavx512f
Shuffle double-precision (64-bit) floating-point elements in a within 128-bit lanes using the control in b, and store the results in dst.
_mm512_permutevar_psavx512f
Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in b, and store the results in dst.
_mm512_permutex2var_epi32avx512f
Shuffle 32-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst.
_mm512_permutex2var_epi64avx512f
Shuffle 64-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst.
_mm512_permutex2var_pdavx512f
Shuffle double-precision (64-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst.
_mm512_permutex2var_psavx512f
Shuffle single-precision (32-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst.
_mm512_permutex_epi64avx512f
Shuffle 64-bit integers in a within 256-bit lanes using the control in imm8, and store the results in dst.
_mm512_permutex_pdavx512f
Shuffle double-precision (64-bit) floating-point elements in a within 256-bit lanes using the control in imm8, and store the results in dst.
_mm512_permutexvar_epi32avx512f
Shuffle 32-bit integers in a across lanes using the corresponding index in idx, and store the results in dst.
_mm512_permutexvar_epi64avx512f
Shuffle 64-bit integers in a across lanes using the corresponding index in idx, and store the results in dst.
_mm512_permutexvar_pdavx512f
Shuffle double-precision (64-bit) floating-point elements in a across lanes using the corresponding index in idx, and store the results in dst.
_mm512_permutexvar_psavx512f
Shuffle single-precision (32-bit) floating-point elements in a across lanes using the corresponding index in idx.
_mm512_rcp14_pdavx512f
Compute the approximate reciprocal of packed double-precision (64-bit) floating-point elements in a, and store the results in dst. The maximum relative error for this approximation is less than 2^-14.
_mm512_rcp14_psavx512f
Compute the approximate reciprocal of packed single-precision (32-bit) floating-point elements in a, and store the results in dst. The maximum relative error for this approximation is less than 2^-14.
_mm512_reduce_add_epi32avx512f
Reduce the packed 32-bit integers in a by addition. Returns the sum of all elements in a.
_mm512_reduce_add_epi64avx512f
Reduce the packed 64-bit integers in a by addition. Returns the sum of all elements in a.
_mm512_reduce_add_pdavx512f
Reduce the packed double-precision (64-bit) floating-point elements in a by addition. Returns the sum of all elements in a.
_mm512_reduce_add_psavx512f
Reduce the packed single-precision (32-bit) floating-point elements in a by addition. Returns the sum of all elements in a.
_mm512_reduce_and_epi32avx512f
Reduce the packed 32-bit integers in a by bitwise AND. Returns the bitwise AND of all elements in a.
_mm512_reduce_and_epi64avx512f
Reduce the packed 64-bit integers in a by bitwise AND. Returns the bitwise AND of all elements in a.
_mm512_reduce_max_epi32avx512f
Reduce the packed signed 32-bit integers in a by maximum. Returns the maximum of all elements in a.
_mm512_reduce_max_epi64avx512f
Reduce the packed signed 64-bit integers in a by maximum. Returns the maximum of all elements in a.
_mm512_reduce_max_epu32avx512f
Reduce the packed unsigned 32-bit integers in a by maximum. Returns the maximum of all elements in a.
_mm512_reduce_max_epu64avx512f
Reduce the packed unsigned 64-bit integers in a by maximum. Returns the maximum of all elements in a.
_mm512_reduce_max_pdavx512f
Reduce the packed double-precision (64-bit) floating-point elements in a by maximum. Returns the maximum of all elements in a.
_mm512_reduce_max_psavx512f
Reduce the packed single-precision (32-bit) floating-point elements in a by maximum. Returns the maximum of all elements in a.
_mm512_reduce_min_epi32avx512f
Reduce the packed signed 32-bit integers in a by minimum. Returns the minimum of all elements in a.
_mm512_reduce_min_epi64avx512f
Reduce the packed signed 64-bit integers in a by minimum. Returns the minimum of all elements in a.
_mm512_reduce_min_epu32avx512f
Reduce the packed unsigned 32-bit integers in a by minimum. Returns the minimum of all elements in a.
_mm512_reduce_min_epu64avx512f
Reduce the packed unsigned 64-bit integers in a by minimum. Returns the minimum of all elements in a.
_mm512_reduce_min_pdavx512f
Reduce the packed double-precision (64-bit) floating-point elements in a by minimum. Returns the minimum of all elements in a.
_mm512_reduce_min_psavx512f
Reduce the packed single-precision (32-bit) floating-point elements in a by minimum. Returns the minimum of all elements in a.
_mm512_reduce_mul_epi32avx512f
Reduce the packed 32-bit integers in a by multiplication. Returns the product of all elements in a.
_mm512_reduce_mul_epi64avx512f
Reduce the packed 64-bit integers in a by multiplication. Returns the product of all elements in a.
_mm512_reduce_mul_pdavx512f
Reduce the packed double-precision (64-bit) floating-point elements in a by multiplication. Returns the product of all elements in a.
_mm512_reduce_mul_psavx512f
Reduce the packed single-precision (32-bit) floating-point elements in a by multiplication. Returns the product of all elements in a.
_mm512_reduce_or_epi32avx512f
Reduce the packed 32-bit integers in a by bitwise OR. Returns the bitwise OR of all elements in a.
_mm512_reduce_or_epi64avx512f
Reduce the packed 64-bit integers in a by bitwise OR. Returns the bitwise OR of all elements in a.
_mm512_rol_epi32avx512f
Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in imm8, and store the results in dst.
_mm512_rol_epi64avx512f
Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in imm8, and store the results in dst.
_mm512_rolv_epi32avx512f
Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in the corresponding element of b, and store the results in dst.
_mm512_rolv_epi64avx512f
Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in the corresponding element of b, and store the results in dst.
_mm512_ror_epi32avx512f
Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in imm8, and store the results in dst.
_mm512_ror_epi64avx512f
Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in imm8, and store the results in dst.
_mm512_rorv_epi32avx512f
Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in the corresponding element of b, and store the results in dst.
_mm512_rorv_epi64avx512f
Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in the corresponding element of b, and store the results in dst.
_mm512_roundscale_pdavx512f
Round packed double-precision (64-bit) floating-point elements in a to the number of fraction bits specified by imm8, and store the results in dst.
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm512_roundscale_psavx512f
Round packed single-precision (32-bit) floating-point elements in a to the number of fraction bits specified by imm8, and store the results in dst.
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm512_roundscale_round_pdavx512f
Round packed double-precision (64-bit) floating-point elements in a to the number of fraction bits specified by imm8, and store the results in dst.
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm512_roundscale_round_psavx512f
Round packed single-precision (32-bit) floating-point elements in a to the number of fraction bits specified by imm8, and store the results in dst.
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm512_rsqrt14_pdavx512f
Compute the approximate reciprocal square root of packed double-precision (64-bit) floating-point elements in a, and store the results in dst. The maximum relative error for this approximation is less than 2^-14.
_mm512_rsqrt14_psavx512f
Compute the approximate reciprocal square root of packed single-precision (32-bit) floating-point elements in a, and store the results in dst. The maximum relative error for this approximation is less than 2^-14.
_mm512_scalef_pdavx512f
Scale the packed double-precision (64-bit) floating-point elements in a using values from b, and store the results in dst.
_mm512_scalef_psavx512f
Scale the packed single-precision (32-bit) floating-point elements in a using values from b, and store the results in dst.
_mm512_scalef_round_pdavx512f
Scale the packed double-precision (64-bit) floating-point elements in a using values from b, and store the results in dst.\
_mm512_scalef_round_psavx512f
Scale the packed single-precision (32-bit) floating-point elements in a using values from b, and store the results in dst.\
_mm512_set1_epi8avx512f
Broadcast 8-bit integer a to all elements of dst.
_mm512_set1_epi16avx512f
Broadcast the low packed 16-bit integer from a to all elements of dst.
_mm512_set1_epi32avx512f
Broadcast 32-bit integer a to all elements of dst.
_mm512_set1_epi64avx512f
Broadcast 64-bit integer a to all elements of dst.
_mm512_set1_pdavx512f
Broadcast 64-bit float a to all elements of dst.
_mm512_set1_psavx512f
Broadcast 32-bit float a to all elements of dst.
_mm512_set4_epi32avx512f
Set packed 32-bit integers in dst with the repeated 4 element sequence.
_mm512_set4_epi64avx512f
Set packed 64-bit integers in dst with the repeated 4 element sequence.
_mm512_set4_pdavx512f
Set packed double-precision (64-bit) floating-point elements in dst with the repeated 4 element sequence.
_mm512_set4_psavx512f
Set packed single-precision (32-bit) floating-point elements in dst with the repeated 4 element sequence.
_mm512_set_epi8avx512f
Set packed 8-bit integers in dst with the supplied values.
_mm512_set_epi16avx512f
Set packed 16-bit integers in dst with the supplied values.
_mm512_set_epi32avx512f
Sets packed 32-bit integers in dst with the supplied values.
_mm512_set_epi64avx512f
Set packed 64-bit integers in dst with the supplied values.
_mm512_set_pdavx512f
Set packed double-precision (64-bit) floating-point elements in dst with the supplied values.
_mm512_set_psavx512f
Sets packed 32-bit integers in dst with the supplied values.
_mm512_setr4_epi32avx512f
Set packed 32-bit integers in dst with the repeated 4 element sequence in reverse order.
_mm512_setr4_epi64avx512f
Set packed 64-bit integers in dst with the repeated 4 element sequence in reverse order.
_mm512_setr4_pdavx512f
Set packed double-precision (64-bit) floating-point elements in dst with the repeated 4 element sequence in reverse order.
_mm512_setr4_psavx512f
Set packed single-precision (32-bit) floating-point elements in dst with the repeated 4 element sequence in reverse order.
_mm512_setr_epi32avx512f
Sets packed 32-bit integers in dst with the supplied values in reverse order.
_mm512_setr_epi64avx512f
Set packed 64-bit integers in dst with the supplied values in reverse order.
_mm512_setr_pdavx512f
Set packed double-precision (64-bit) floating-point elements in dst with the supplied values in reverse order.
_mm512_setr_psavx512f
Sets packed 32-bit integers in dst with the supplied values in reverse order.
_mm512_setzeroavx512f
Return vector of type __m512 with all elements set to zero.
_mm512_setzero_epi32avx512f
Return vector of type __m512i with all elements set to zero.
_mm512_setzero_pdavx512f
Returns vector of type __m512d with all elements set to zero.
_mm512_setzero_psavx512f
Returns vector of type __m512 with all elements set to zero.
_mm512_setzero_si512avx512f
Returns vector of type __m512i with all elements set to zero.
_mm512_shuffle_epi32avx512f
Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in imm8, and store the results in dst.
_mm512_shuffle_f32x4avx512f
Shuffle 128-bits (composed of 4 single-precision (32-bit) floating-point elements) selected by imm8 from a and b, and store the results in dst.
_mm512_shuffle_f64x2avx512f
Shuffle 128-bits (composed of 2 double-precision (64-bit) floating-point elements) selected by imm8 from a and b, and store the results in dst.
_mm512_shuffle_i32x4avx512f
Shuffle 128-bits (composed of 4 32-bit integers) selected by imm8 from a and b, and store the results in dst.
_mm512_shuffle_i64x2avx512f
Shuffle 128-bits (composed of 2 64-bit integers) selected by imm8 from a and b, and store the results in dst.
_mm512_shuffle_pdavx512f
Shuffle double-precision (64-bit) floating-point elements within 128-bit lanes using the control in imm8, and store the results in dst.
_mm512_shuffle_psavx512f
Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in imm8, and store the results in dst.
_mm512_sll_epi32avx512f
Shift packed 32-bit integers in a left by count while shifting in zeros, and store the results in dst.
_mm512_sll_epi64avx512f
Shift packed 64-bit integers in a left by count while shifting in zeros, and store the results in dst.
_mm512_slli_epi32avx512f
Shift packed 32-bit integers in a left by imm8 while shifting in zeros, and store the results in dst.
_mm512_slli_epi64avx512f
Shift packed 64-bit integers in a left by imm8 while shifting in zeros, and store the results in dst.
_mm512_sllv_epi32avx512f
Shift packed 32-bit integers in a left by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst.
_mm512_sllv_epi64avx512f
Shift packed 64-bit integers in a left by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst.
_mm512_sqrt_pdavx512f
Compute the square root of packed double-precision (64-bit) floating-point elements in a, and store the results in dst.
_mm512_sqrt_psavx512f
Compute the square root of packed single-precision (32-bit) floating-point elements in a, and store the results in dst.
_mm512_sqrt_round_pdavx512f
Compute the square root of packed double-precision (64-bit) floating-point elements in a, and store the results in dst.\
_mm512_sqrt_round_psavx512f
Compute the square root of packed single-precision (32-bit) floating-point elements in a, and store the results in dst.\
_mm512_sra_epi32avx512f
Shift packed 32-bit integers in a right by count while shifting in sign bits, and store the results in dst.
_mm512_sra_epi64avx512f
Shift packed 64-bit integers in a right by count while shifting in sign bits, and store the results in dst.
_mm512_srai_epi32avx512f
Shift packed 32-bit integers in a right by imm8 while shifting in sign bits, and store the results in dst.
_mm512_srai_epi64avx512f
Shift packed 64-bit integers in a right by imm8 while shifting in sign bits, and store the results in dst.
_mm512_srav_epi32avx512f
Shift packed 32-bit integers in a right by the amount specified by the corresponding element in count while shifting in sign bits, and store the results in dst.
_mm512_srav_epi64avx512f
Shift packed 64-bit integers in a right by the amount specified by the corresponding element in count while shifting in sign bits, and store the results in dst.
_mm512_srl_epi32avx512f
Shift packed 32-bit integers in a right by count while shifting in zeros, and store the results in dst.
_mm512_srl_epi64avx512f
Shift packed 64-bit integers in a right by count while shifting in zeros, and store the results in dst.
_mm512_srli_epi32avx512f
Shift packed 32-bit integers in a right by imm8 while shifting in zeros, and store the results in dst.
_mm512_srli_epi64avx512f
Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and store the results in dst.
_mm512_srlv_epi32avx512f
Shift packed 32-bit integers in a right by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst.
_mm512_srlv_epi64avx512f
Shift packed 64-bit integers in a right by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst.
_mm512_store_epi32avx512f
Store 512-bits (composed of 16 packed 32-bit integers) from a into memory. mem_addr must be aligned on a 64-byte boundary or a general-protection exception may be generated.
_mm512_store_epi64avx512f
Store 512-bits (composed of 8 packed 64-bit integers) from a into memory. mem_addr must be aligned on a 64-byte boundary or a general-protection exception may be generated.
_mm512_store_pdavx512f
Store 512-bits (composed of 8 packed double-precision (64-bit) floating-point elements) from a into memory. mem_addr must be aligned on a 64-byte boundary or a general-protection exception may be generated.
_mm512_store_psavx512f
Store 512-bits of integer data from a into memory. mem_addr must be aligned on a 64-byte boundary or a general-protection exception may be generated.
_mm512_store_si512avx512f
Store 512-bits of integer data from a into memory. mem_addr must be aligned on a 64-byte boundary or a general-protection exception may be generated.
_mm512_storeu_epi32avx512f
Store 512-bits (composed of 16 packed 32-bit integers) from a into memory. mem_addr does not need to be aligned on any particular boundary.
_mm512_storeu_epi64avx512f
Store 512-bits (composed of 8 packed 64-bit integers) from a into memory. mem_addr does not need to be aligned on any particular boundary.
_mm512_storeu_pdavx512f
Stores 512-bits (composed of 8 packed double-precision (64-bit) floating-point elements) from a into memory. mem_addr does not need to be aligned on any particular boundary.
_mm512_storeu_psavx512f
Stores 512-bits (composed of 16 packed single-precision (32-bit) floating-point elements) from a into memory. mem_addr does not need to be aligned on any particular boundary.
_mm512_storeu_si512avx512f
Store 512-bits of integer data from a into memory. mem_addr does not need to be aligned on any particular boundary.
_mm512_stream_load_si512avx512f
Load 512-bits of integer data from memory into dst using a non-temporal memory hint. mem_addr must be aligned on a 64-byte boundary or a general-protection exception may be generated. To minimize caching, the data is flagged as non-temporal (unlikely to be used again soon)
_mm512_stream_pdavx512f
Store 512-bits (composed of 8 packed double-precision (64-bit) floating-point elements) from a into memory using a non-temporal memory hint. mem_addr must be aligned on a 64-byte boundary or a general-protection exception may be generated.
_mm512_stream_psavx512f
Store 512-bits (composed of 16 packed single-precision (32-bit) floating-point elements) from a into memory using a non-temporal memory hint. mem_addr must be aligned on a 64-byte boundary or a general-protection exception may be generated.
_mm512_stream_si512avx512f
Store 512-bits of integer data from a into memory using a non-temporal memory hint. mem_addr must be aligned on a 64-byte boundary or a general-protection exception may be generated.
_mm512_sub_epi32avx512f
Subtract packed 32-bit integers in b from packed 32-bit integers in a, and store the results in dst.
_mm512_sub_epi64avx512f
Subtract packed 64-bit integers in b from packed 64-bit integers in a, and store the results in dst.
_mm512_sub_pdavx512f
Subtract packed double-precision (64-bit) floating-point elements in b from packed double-precision (64-bit) floating-point elements in a, and store the results in dst.
_mm512_sub_psavx512f
Subtract packed single-precision (32-bit) floating-point elements in b from packed single-precision (32-bit) floating-point elements in a, and store the results in dst.
_mm512_sub_round_pdavx512f
Subtract packed double-precision (64-bit) floating-point elements in b from packed double-precision (64-bit) floating-point elements in a, and store the results in dst.\
_mm512_sub_round_psavx512f
Subtract packed single-precision (32-bit) floating-point elements in b from packed single-precision (32-bit) floating-point elements in a, and store the results in dst.\
_mm512_ternarylogic_epi32avx512f
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in imm8. For each bit in each packed 32-bit integer, the corresponding bit from a, b, and c are used to form a 3 bit index into imm8, and the value at that bit in imm8 is written to the corresponding bit in dst.
_mm512_ternarylogic_epi64avx512f
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in imm8. For each bit in each packed 64-bit integer, the corresponding bit from a, b, and c are used to form a 3 bit index into imm8, and the value at that bit in imm8 is written to the corresponding bit in dst.
_mm512_test_epi32_maskavx512f
Compute the bitwise AND of packed 32-bit integers in a and b, producing intermediate 32-bit values, and set the corresponding bit in result mask k if the intermediate value is non-zero.
_mm512_test_epi64_maskavx512f
Compute the bitwise AND of packed 64-bit integers in a and b, producing intermediate 64-bit values, and set the corresponding bit in result mask k if the intermediate value is non-zero.
_mm512_testn_epi32_maskavx512f
Compute the bitwise NAND of packed 32-bit integers in a and b, producing intermediate 32-bit values, and set the corresponding bit in result mask k if the intermediate value is zero.
_mm512_testn_epi64_maskavx512f
Compute the bitwise NAND of packed 64-bit integers in a and b, producing intermediate 64-bit values, and set the corresponding bit in result mask k if the intermediate value is zero.
_mm512_undefinedavx512f
Return vector of type __m512 with indeterminate elements. Despite using the word “undefined” (following Intel’s naming scheme), this non-deterministically picks some valid value and is not equivalent to mem::MaybeUninit. In practice, this is typically equivalent to mem::zeroed.
_mm512_undefined_epi32avx512f
Return vector of type __m512i with indeterminate elements. Despite using the word “undefined” (following Intel’s naming scheme), this non-deterministically picks some valid value and is not equivalent to mem::MaybeUninit. In practice, this is typically equivalent to mem::zeroed.
_mm512_undefined_pdavx512f
Returns vector of type __m512d with indeterminate elements. Despite using the word “undefined” (following Intel’s naming scheme), this non-deterministically picks some valid value and is not equivalent to mem::MaybeUninit. In practice, this is typically equivalent to mem::zeroed.
_mm512_undefined_psavx512f
Returns vector of type __m512 with indeterminate elements. Despite using the word “undefined” (following Intel’s naming scheme), this non-deterministically picks some valid value and is not equivalent to mem::MaybeUninit. In practice, this is typically equivalent to mem::zeroed.
_mm512_unpackhi_epi32avx512f
Unpack and interleave 32-bit integers from the high half of each 128-bit lane in a and b, and store the results in dst.
_mm512_unpackhi_epi64avx512f
Unpack and interleave 64-bit integers from the high half of each 128-bit lane in a and b, and store the results in dst.
_mm512_unpackhi_pdavx512f
Unpack and interleave double-precision (64-bit) floating-point elements from the high half of each 128-bit lane in a and b, and store the results in dst.
_mm512_unpackhi_psavx512f
Unpack and interleave single-precision (32-bit) floating-point elements from the high half of each 128-bit lane in a and b, and store the results in dst.
_mm512_unpacklo_epi32avx512f
Unpack and interleave 32-bit integers from the low half of each 128-bit lane in a and b, and store the results in dst.
_mm512_unpacklo_epi64avx512f
Unpack and interleave 64-bit integers from the low half of each 128-bit lane in a and b, and store the results in dst.
_mm512_unpacklo_pdavx512f
Unpack and interleave double-precision (64-bit) floating-point elements from the low half of each 128-bit lane in a and b, and store the results in dst.
_mm512_unpacklo_psavx512f
Unpack and interleave single-precision (32-bit) floating-point elements from the low half of each 128-bit lane in a and b, and store the results in dst.
_mm512_xor_epi32avx512f
Compute the bitwise XOR of packed 32-bit integers in a and b, and store the results in dst.
_mm512_xor_epi64avx512f
Compute the bitwise XOR of packed 64-bit integers in a and b, and store the results in dst.
_mm512_xor_si512avx512f
Compute the bitwise XOR of 512 bits (representing integer data) in a and b, and store the result in dst.
_mm512_zextpd128_pd512avx512f
Cast vector of type __m128d to type __m512d; the upper 384 bits of the result are zeroed. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.
_mm512_zextpd256_pd512avx512f
Cast vector of type __m256d to type __m512d; the upper 256 bits of the result are zeroed. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.
_mm512_zextps128_ps512avx512f
Cast vector of type __m128 to type __m512; the upper 384 bits of the result are zeroed. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.
_mm512_zextps256_ps512avx512f
Cast vector of type __m256 to type __m512; the upper 256 bits of the result are zeroed. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.
_mm512_zextsi128_si512avx512f
Cast vector of type __m128i to type __m512i; the upper 384 bits of the result are zeroed. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.
_mm512_zextsi256_si512avx512f
Cast vector of type __m256i to type __m512i; the upper 256 bits of the result are zeroed. This intrinsic is only used for compilation and does not generate any instructions, thus it has zero latency.
_mm_abs_epi64avx512f and avx512vl
Compute the absolute value of packed signed 64-bit integers in a, and store the unsigned results in dst.
_mm_add_round_sdavx512f
Add the lower double-precision (64-bit) floating-point element in a and b, store the result in the lower element of dst, and copy the upper element from a to the upper element of dst.\
_mm_add_round_ssavx512f
Add the lower single-precision (32-bit) floating-point element in a and b, store the result in the lower element of dst, and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_alignr_epi32avx512f and avx512vl
Concatenate a and b into a 32-byte immediate result, shift the result right by imm8 32-bit elements, and store the low 16 bytes (4 elements) in dst.
_mm_alignr_epi64avx512f and avx512vl
Concatenate a and b into a 32-byte immediate result, shift the result right by imm8 64-bit elements, and store the low 16 bytes (2 elements) in dst.
_mm_cmp_epi32_maskavx512f and avx512vl
Compare packed signed 32-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.
_mm_cmp_epi64_maskavx512f and avx512vl
Compare packed signed 64-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.
_mm_cmp_epu32_maskavx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.
_mm_cmp_epu64_maskavx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.
_mm_cmp_pd_maskavx512f and avx512vl
Compare packed double-precision (64-bit) floating-point elements in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.
_mm_cmp_ps_maskavx512f and avx512vl
Compare packed single-precision (32-bit) floating-point elements in a and b based on the comparison operand specified by imm8, and store the results in mask vector k.
_mm_cmp_round_sd_maskavx512f
Compare the lower double-precision (64-bit) floating-point element in a and b based on the comparison operand specified by imm8, and store the result in mask vector k.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_cmp_round_ss_maskavx512f
Compare the lower single-precision (32-bit) floating-point element in a and b based on the comparison operand specified by imm8, and store the result in mask vector k.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_cmp_sd_maskavx512f
Compare the lower double-precision (64-bit) floating-point element in a and b based on the comparison operand specified by imm8, and store the result in mask vector k.
_mm_cmp_ss_maskavx512f
Compare the lower single-precision (32-bit) floating-point element in a and b based on the comparison operand specified by imm8, and store the result in mask vector k.
_mm_cmpeq_epi32_maskavx512f and avx512vl
Compare packed 32-bit integers in a and b for equality, and store the results in mask vector k.
_mm_cmpeq_epi64_maskavx512f and avx512vl
Compare packed 64-bit integers in a and b for equality, and store the results in mask vector k.
_mm_cmpeq_epu32_maskavx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b for equality, and store the results in mask vector k.
_mm_cmpeq_epu64_maskavx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b for equality, and store the results in mask vector k.
_mm_cmpge_epi32_maskavx512f and avx512vl
Compare packed signed 32-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k.
_mm_cmpge_epi64_maskavx512f and avx512vl
Compare packed signed 64-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k.
_mm_cmpge_epu32_maskavx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k.
_mm_cmpge_epu64_maskavx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k.
_mm_cmpgt_epi32_maskavx512f and avx512vl
Compare packed signed 32-bit integers in a and b for greater-than, and store the results in mask vector k.
_mm_cmpgt_epi64_maskavx512f and avx512vl
Compare packed signed 64-bit integers in a and b for greater-than, and store the results in mask vector k.
_mm_cmpgt_epu32_maskavx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b for greater-than, and store the results in mask vector k.
_mm_cmpgt_epu64_maskavx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b for greater-than, and store the results in mask vector k.
_mm_cmple_epi32_maskavx512f and avx512vl
Compare packed signed 32-bit integers in a and b for less-than-or-equal, and store the results in mask vector k.
_mm_cmple_epi64_maskavx512f and avx512vl
Compare packed signed 64-bit integers in a and b for less-than-or-equal, and store the results in mask vector k.
_mm_cmple_epu32_maskavx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b for less-than-or-equal, and store the results in mask vector k.
_mm_cmple_epu64_maskavx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b for less-than-or-equal, and store the results in mask vector k.
_mm_cmplt_epi32_maskavx512f and avx512vl
Compare packed signed 32-bit integers in a and b for less-than, and store the results in mask vector k.
_mm_cmplt_epi64_maskavx512f and avx512vl
Compare packed signed 64-bit integers in a and b for less-than, and store the results in mask vector k.
_mm_cmplt_epu32_maskavx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b for less-than, and store the results in mask vector k.
_mm_cmplt_epu64_maskavx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b for less-than, and store the results in mask vector k.
_mm_cmpneq_epi32_maskavx512f and avx512vl
Compare packed 32-bit integers in a and b for not-equal, and store the results in mask vector k.
_mm_cmpneq_epi64_maskavx512f and avx512vl
Compare packed signed 64-bit integers in a and b for not-equal, and store the results in mask vector k.
_mm_cmpneq_epu32_maskavx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b for not-equal, and store the results in mask vector k.
_mm_cmpneq_epu64_maskavx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b for not-equal, and store the results in mask vector k.
_mm_comi_round_sdavx512f
Compare the lower double-precision (64-bit) floating-point element in a and b based on the comparison operand specified by imm8, and return the boolean result (0 or 1).
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_comi_round_ssavx512f
Compare the lower single-precision (32-bit) floating-point element in a and b based on the comparison operand specified by imm8, and return the boolean result (0 or 1).
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_cvt_roundi32_ssavx512f
Convert the signed 32-bit integer b to a single-precision (32-bit) floating-point element, store the result in the lower element of dst, and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_cvt_roundsd_i32avx512f
Convert the lower single-precision (32-bit) floating-point element in a to a 32-bit integer, and store the result in dst.
Rounding is done according to the rounding[3:0] parameter, which can be one of:\
_mm_cvt_roundsd_si32avx512f
Convert the lower double-precision (64-bit) floating-point element in a to a 32-bit integer, and store the result in dst.
Rounding is done according to the rounding[3:0] parameter, which can be one of:\
_mm_cvt_roundsd_ssavx512f
Convert the lower double-precision (64-bit) floating-point element in b to a single-precision (32-bit) floating-point element, store the result in the lower element of dst, and copy the upper 3 packed elements from a to the upper elements of dst.
Rounding is done according to the rounding[3:0] parameter, which can be one of:\
_mm_cvt_roundsd_u32avx512f
Convert the lower double-precision (64-bit) floating-point element in a to an unsigned 32-bit integer, and store the result in dst.
Rounding is done according to the rounding[3:0] parameter, which can be one of:\
_mm_cvt_roundsi32_ssavx512f
Convert the signed 32-bit integer b to a single-precision (32-bit) floating-point element, store the result in the lower element of dst, and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_cvt_roundss_i32avx512f
Convert the lower single-precision (32-bit) floating-point element in a to a 32-bit integer, and store the result in dst.
Rounding is done according to the rounding[3:0] parameter, which can be one of:\
_mm_cvt_roundss_sdavx512f
Convert the lower single-precision (32-bit) floating-point element in b to a double-precision (64-bit) floating-point element, store the result in the lower element of dst, and copy the upper element from a to the upper element of dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_cvt_roundss_si32avx512f
Convert the lower single-precision (32-bit) floating-point element in a to a 32-bit integer, and store the result in dst.
Rounding is done according to the rounding[3:0] parameter, which can be one of:\
_mm_cvt_roundss_u32avx512f
Convert the lower single-precision (32-bit) floating-point element in a to an unsigned 32-bit integer, and store the result in dst.
Rounding is done according to the rounding[3:0] parameter, which can be one of:\
_mm_cvt_roundu32_ssavx512f
Convert the unsigned 32-bit integer b to a single-precision (32-bit) floating-point element, store the result in the lower element of dst, and copy the upper 3 packed elements from a to the upper elements of dst.
Rounding is done according to the rounding[3:0] parameter, which can be one of:\
_mm_cvtepi32_epi8avx512f and avx512vl
Convert packed 32-bit integers in a to packed 8-bit integers with truncation, and store the results in dst.
_mm_cvtepi32_epi16avx512f and avx512vl
Convert packed 32-bit integers in a to packed 16-bit integers with truncation, and store the results in dst.
_mm_cvtepi64_epi8avx512f and avx512vl
Convert packed 64-bit integers in a to packed 8-bit integers with truncation, and store the results in dst.
_mm_cvtepi64_epi16avx512f and avx512vl
Convert packed 64-bit integers in a to packed 16-bit integers with truncation, and store the results in dst.
_mm_cvtepi64_epi32avx512f and avx512vl
Convert packed 64-bit integers in a to packed 32-bit integers with truncation, and store the results in dst.
_mm_cvtepu32_pdavx512f and avx512vl
Convert packed unsigned 32-bit integers in a to packed double-precision (64-bit) floating-point elements, and store the results in dst.
_mm_cvti32_sdavx512f
Convert the signed 32-bit integer b to a double-precision (64-bit) floating-point element, store the result in the lower element of dst, and copy the upper element from a to the upper element of dst.
_mm_cvti32_ssavx512f
Convert the signed 32-bit integer b to a single-precision (32-bit) floating-point element, store the result in the lower element of dst, and copy the upper 3 packed elements from a to the upper elements of dst.
_mm_cvtpd_epu32avx512f and avx512vl
Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst.
_mm_cvtps_epu32avx512f and avx512vl
Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst.
_mm_cvtsd_i32avx512f
Convert the lower double-precision (64-bit) floating-point element in a to a 32-bit integer, and store the result in dst.
_mm_cvtsd_u32avx512f
Convert the lower double-precision (64-bit) floating-point element in a to an unsigned 32-bit integer, and store the result in dst.
_mm_cvtsepi32_epi8avx512f and avx512vl
Convert packed signed 32-bit integers in a to packed 8-bit integers with signed saturation, and store the results in dst.
_mm_cvtsepi32_epi16avx512f and avx512vl
Convert packed signed 32-bit integers in a to packed 16-bit integers with signed saturation, and store the results in dst.
_mm_cvtsepi64_epi8avx512f and avx512vl
Convert packed signed 64-bit integers in a to packed 8-bit integers with signed saturation, and store the results in dst.
_mm_cvtsepi64_epi16avx512f and avx512vl
Convert packed signed 64-bit integers in a to packed 16-bit integers with signed saturation, and store the results in dst.
_mm_cvtsepi64_epi32avx512f and avx512vl
Convert packed signed 64-bit integers in a to packed 32-bit integers with signed saturation, and store the results in dst.
_mm_cvtss_i32avx512f
Convert the lower single-precision (32-bit) floating-point element in a to a 32-bit integer, and store the result in dst.
_mm_cvtss_u32avx512f
Convert the lower single-precision (32-bit) floating-point element in a to an unsigned 32-bit integer, and store the result in dst.
_mm_cvtt_roundsd_i32avx512f
Convert the lower double-precision (64-bit) floating-point element in a to a 32-bit integer with truncation, and store the result in dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_cvtt_roundsd_si32avx512f
Convert the lower double-precision (64-bit) floating-point element in a to a 32-bit integer with truncation, and store the result in dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_cvtt_roundsd_u32avx512f
Convert the lower double-precision (64-bit) floating-point element in a to an unsigned 32-bit integer with truncation, and store the result in dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_cvtt_roundss_i32avx512f
Convert the lower single-precision (32-bit) floating-point element in a to a 32-bit integer with truncation, and store the result in dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_cvtt_roundss_si32avx512f
Convert the lower single-precision (32-bit) floating-point element in a to a 32-bit integer with truncation, and store the result in dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_cvtt_roundss_u32avx512f
Convert the lower single-precision (32-bit) floating-point element in a to an unsigned 32-bit integer with truncation, and store the result in dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_cvttpd_epu32avx512f and avx512vl
Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst.
_mm_cvttps_epu32avx512f and avx512vl
Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst.
_mm_cvttsd_i32avx512f
Convert the lower double-precision (64-bit) floating-point element in a to a 32-bit integer with truncation, and store the result in dst.
_mm_cvttsd_u32avx512f
Convert the lower double-precision (64-bit) floating-point element in a to an unsigned 32-bit integer with truncation, and store the result in dst.
_mm_cvttss_i32avx512f
Convert the lower single-precision (32-bit) floating-point element in a to a 32-bit integer with truncation, and store the result in dst.
_mm_cvttss_u32avx512f
Convert the lower single-precision (32-bit) floating-point element in a to an unsigned 32-bit integer with truncation, and store the result in dst.
_mm_cvtu32_sdavx512f
Convert the unsigned 32-bit integer b to a double-precision (64-bit) floating-point element, store the result in the lower element of dst, and copy the upper element from a to the upper element of dst.
_mm_cvtu32_ssavx512f
Convert the unsigned 32-bit integer b to a single-precision (32-bit) floating-point element, store the result in the lower element of dst, and copy the upper 3 packed elements from a to the upper elements of dst.
_mm_cvtusepi32_epi8avx512f and avx512vl
Convert packed unsigned 32-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and store the results in dst.
_mm_cvtusepi32_epi16avx512f and avx512vl
Convert packed unsigned 32-bit integers in a to packed unsigned 16-bit integers with unsigned saturation, and store the results in dst.
_mm_cvtusepi64_epi8avx512f and avx512vl
Convert packed unsigned 64-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and store the results in dst.
_mm_cvtusepi64_epi16avx512f and avx512vl
Convert packed unsigned 64-bit integers in a to packed unsigned 16-bit integers with unsigned saturation, and store the results in dst.
_mm_cvtusepi64_epi32avx512f and avx512vl
Convert packed unsigned 64-bit integers in a to packed unsigned 32-bit integers with unsigned saturation, and store the results in dst.
_mm_div_round_sdavx512f
Divide the lower double-precision (64-bit) floating-point element in a by the lower double-precision (64-bit) floating-point element in b, store the result in the lower element of dst, and copy the upper element from a to the upper element of dst.\
_mm_div_round_ssavx512f
Divide the lower single-precision (32-bit) floating-point element in a by the lower single-precision (32-bit) floating-point element in b, store the result in the lower element of dst, and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_fixupimm_pdavx512f and avx512vl
Fix up packed double-precision (64-bit) floating-point elements in a and b using packed 64-bit integers in c, and store the results in dst. imm8 is used to set the required flags reporting.
_mm_fixupimm_psavx512f and avx512vl
Fix up packed single-precision (32-bit) floating-point elements in a and b using packed 32-bit integers in c, and store the results in dst. imm8 is used to set the required flags reporting.
_mm_fixupimm_round_sdavx512f
Fix up the lower double-precision (64-bit) floating-point elements in a and b using the lower 64-bit integer in c, store the result in the lower element of dst, and copy the upper element from a to the upper element of dst. imm8 is used to set the required flags reporting.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_fixupimm_round_ssavx512f
Fix up the lower single-precision (32-bit) floating-point elements in a and b using the lower 32-bit integer in c, store the result in the lower element of dst, and copy the upper 3 packed elements from a to the upper elements of dst. imm8 is used to set the required flags reporting.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_fixupimm_sdavx512f
Fix up the lower double-precision (64-bit) floating-point elements in a and b using the lower 64-bit integer in c, store the result in the lower element of dst, and copy the upper element from a to the upper element of dst. imm8 is used to set the required flags reporting.
_mm_fixupimm_ssavx512f
Fix up the lower single-precision (32-bit) floating-point elements in a and b using the lower 32-bit integer in c, store the result in the lower element of dst, and copy the upper 3 packed elements from a to the upper elements of dst. imm8 is used to set the required flags reporting.
_mm_fmadd_round_sdavx512f
Multiply the lower double-precision (64-bit) floating-point elements in a and b, and add the intermediate result to the lower element in c. Store the result in the lower element of dst, and copy the upper element from a to the upper element of dst.\
_mm_fmadd_round_ssavx512f
Multiply the lower single-precision (32-bit) floating-point elements in a and b, and add the intermediate result to the lower element in c. Store the result in the lower element of dst, and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_fmsub_round_sdavx512f
Multiply the lower double-precision (64-bit) floating-point elements in a and b, and subtract the lower element in c from the intermediate result. Store the result in the lower element of dst, and copy the upper element from a to the upper element of dst.\
_mm_fmsub_round_ssavx512f
Multiply the lower single-precision (32-bit) floating-point elements in a and b, and subtract the lower element in c from the intermediate result. Store the result in the lower element of dst, and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_fnmadd_round_sdavx512f
Multiply the lower double-precision (64-bit) floating-point elements in a and b, and add the negated intermediate result to the lower element in c. Store the result in the lower element of dst, and copy the upper element from a to the upper element of dst.\
_mm_fnmadd_round_ssavx512f
Multiply the lower single-precision (32-bit) floating-point elements in a and b, and add the negated intermediate result to the lower element in c. Store the result in the lower element of dst, and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_fnmsub_round_sdavx512f
Multiply the lower double-precision (64-bit) floating-point elements in a and b, and subtract the lower element in c from the negated intermediate result. Store the result in the lower element of dst, and copy the upper element from a to the upper element of dst.\
_mm_fnmsub_round_ssavx512f
Multiply the lower single-precision (32-bit) floating-point elements in a and b, subtract the lower element in c from the negated intermediate result, store the result in the lower element of dst, and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_getexp_pdavx512f and avx512vl
Convert the exponent of each packed double-precision (64-bit) floating-point element in a to a double-precision (64-bit) floating-point number representing the integer exponent, and store the results in dst. This intrinsic essentially calculates floor(log2(x)) for each element.
_mm_getexp_psavx512f and avx512vl
Convert the exponent of each packed single-precision (32-bit) floating-point element in a to a single-precision (32-bit) floating-point number representing the integer exponent, and store the results in dst. This intrinsic essentially calculates floor(log2(x)) for each element.
_mm_getexp_round_sdavx512f
Convert the exponent of the lower double-precision (64-bit) floating-point element in b to a double-precision (64-bit) floating-point number representing the integer exponent, store the result in the lower element of dst, and copy the upper element from a to the upper element of dst. This intrinsic essentially calculates floor(log2(x)) for the lower element.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_getexp_round_ssavx512f
Convert the exponent of the lower single-precision (32-bit) floating-point element in b to a single-precision (32-bit) floating-point number representing the integer exponent, store the result in the lower element of dst, and copy the upper 3 packed elements from a to the upper elements of dst. This intrinsic essentially calculates floor(log2(x)) for the lower element.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_getexp_sdavx512f
Convert the exponent of the lower double-precision (64-bit) floating-point element in b to a double-precision (64-bit) floating-point number representing the integer exponent, store the result in the lower element of dst, and copy the upper element from a to the upper element of dst. This intrinsic essentially calculates floor(log2(x)) for the lower element.
_mm_getexp_ssavx512f
Convert the exponent of the lower single-precision (32-bit) floating-point element in b to a single-precision (32-bit) floating-point number representing the integer exponent, store the result in the lower element of dst, and copy the upper 3 packed elements from a to the upper elements of dst. This intrinsic essentially calculates floor(log2(x)) for the lower element.
_mm_getmant_pdavx512f and avx512vl
Normalize the mantissas of packed double-precision (64-bit) floating-point elements in a, and store the results in dst. This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
_mm_getmant_psavx512f and avx512vl
Normalize the mantissas of packed single-precision (32-bit) floating-point elements in a, and store the results in dst. This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign. The mantissa is normalized to the interval specified by interv, which can take the following values: _MM_MANT_NORM_1_2 // interval [1, 2) _MM_MANT_NORM_p5_2 // interval [0.5, 2) _MM_MANT_NORM_p5_1 // interval [0.5, 1) _MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5) The sign is determined by sc which can take the following values: _MM_MANT_SIGN_src // sign = sign(src) _MM_MANT_SIGN_zero // sign = 0 _MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
_mm_getmant_round_sdavx512f
Normalize the mantissas of the lower double-precision (64-bit) floating-point element in b, store the result in the lower element of dst, and copy the upper element from a to the upper element of dst. This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_getmant_round_ssavx512f
Normalize the mantissas of the lower single-precision (32-bit) floating-point element in b, store the result in the lower element of dst, and copy the upper 3 packed elements from a to the upper elements of dst. This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_getmant_sdavx512f
Normalize the mantissas of the lower double-precision (64-bit) floating-point element in b, store the result in the lower element of dst, and copy the upper element from a to the upper element of dst. This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_getmant_ssavx512f
Normalize the mantissas of the lower single-precision (32-bit) floating-point element in b, store the result in the lower element of dst, and copy the upper 3 packed elements from a to the upper elements of dst. This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_i32scatter_epi32avx512f and avx512vl
Stores 4 32-bit integer elements from a to memory starting at location base_addr at packed 32-bit integer indices stored in vindex scaled by scale
_mm_i32scatter_epi64avx512f and avx512vl
Stores 2 64-bit integer elements from a to memory starting at location base_addr at packed 32-bit integer indices stored in vindex scaled by scale
_mm_i32scatter_pdavx512f and avx512vl
Stores 2 double-precision (64-bit) floating-point elements from a to memory starting at location base_addr at packed 32-bit integer indices stored in vindex scaled by scale
_mm_i32scatter_psavx512f and avx512vl
Stores 4 single-precision (32-bit) floating-point elements from a to memory starting at location base_addr at packed 32-bit integer indices stored in vindex scaled by scale
_mm_i64scatter_epi32avx512f and avx512vl
Stores 2 32-bit integer elements from a to memory starting at location base_addr at packed 64-bit integer indices stored in vindex scaled by scale
_mm_i64scatter_epi64avx512f and avx512vl
Stores 2 64-bit integer elements from a to memory starting at location base_addr at packed 64-bit integer indices stored in vindex scaled by scale
_mm_i64scatter_pdavx512f and avx512vl
Stores 2 double-precision (64-bit) floating-point elements from a to memory starting at location base_addr at packed 64-bit integer indices stored in vindex scaled by scale
_mm_i64scatter_psavx512f and avx512vl
Stores 2 single-precision (32-bit) floating-point elements from a to memory starting at location base_addr at packed 64-bit integer indices stored in vindex scaled by scale
_mm_load_epi32avx512f and avx512vl
Load 128-bits (composed of 4 packed 32-bit integers) from memory into dst. mem_addr must be aligned on a 16-byte boundary or a general-protection exception may be generated.
_mm_load_epi64avx512f and avx512vl
Load 128-bits (composed of 2 packed 64-bit integers) from memory into dst. mem_addr must be aligned on a 16-byte boundary or a general-protection exception may be generated.
_mm_loadu_epi32avx512f and avx512vl
Load 128-bits (composed of 4 packed 32-bit integers) from memory into dst. mem_addr does not need to be aligned on any particular boundary.
_mm_loadu_epi64avx512f and avx512vl
Load 128-bits (composed of 2 packed 64-bit integers) from memory into dst. mem_addr does not need to be aligned on any particular boundary.
_mm_mask2_permutex2var_epi32avx512f and avx512vl
Shuffle 32-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from idx when the corresponding mask bit is not set).
_mm_mask2_permutex2var_epi64avx512f and avx512vl
Shuffle 64-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from idx when the corresponding mask bit is not set).
_mm_mask2_permutex2var_pdavx512f and avx512vl
Shuffle double-precision (64-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from idx when the corresponding mask bit is not set)
_mm_mask2_permutex2var_psavx512f and avx512vl
Shuffle single-precision (32-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from idx when the corresponding mask bit is not set).
_mm_mask3_fmadd_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm_mask3_fmadd_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm_mask3_fmadd_round_sdavx512f
Multiply the lower double-precision (64-bit) floating-point elements in a and b, and add the intermediate result to the lower element in c. Store the result in the lower element of dst using writemask k (the element is copied from c when mask bit 0 is not set), and copy the upper element from c to the upper element of dst.\
_mm_mask3_fmadd_round_ssavx512f
Multiply the lower single-precision (32-bit) floating-point elements in a and b, and add the intermediate result to the lower element in c. Store the result in the lower element of dst using writemask k (the element is copied from c when mask bit 0 is not set), and copy the upper 3 packed elements from c to the upper elements of dst.\
_mm_mask3_fmadd_sdavx512f
Multiply the lower double-precision (64-bit) floating-point elements in a and b, and add the intermediate result to the lower element in c. Store the result in the lower element of dst using writemask k (the element is copied from c when mask bit 0 is not set), and copy the upper element from c to the upper element of dst.
_mm_mask3_fmadd_ssavx512f
Multiply the lower single-precision (32-bit) floating-point elements in a and b, and add the intermediate result to the lower element in c. Store the result in the lower element of dst using writemask k (the element is copied from c when mask bit 0 is not set), and copy the upper 3 packed elements from c to the upper elements of dst.
_mm_mask3_fmaddsub_pdavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm_mask3_fmaddsub_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm_mask3_fmsub_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm_mask3_fmsub_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm_mask3_fmsub_round_sdavx512f
Multiply the lower double-precision (64-bit) floating-point elements in a and b, and subtract the lower element in c from the intermediate result. Store the result in the lower element of dst using writemask k (the element is copied from c when mask bit 0 is not set), and copy the upper element from c to the upper element of dst.\
_mm_mask3_fmsub_round_ssavx512f
Multiply the lower single-precision (32-bit) floating-point elements in a and b, and subtract the lower element in c from the intermediate result. Store the result in the lower element of dst using writemask k (the element is copied from c when mask bit 0 is not set), and copy the upper 3 packed elements from c to the upper elements of dst.\
_mm_mask3_fmsub_sdavx512f
Multiply the lower double-precision (64-bit) floating-point elements in a and b, and subtract the lower element in c from the intermediate result. Store the result in the lower element of dst using writemask k (the element is copied from c when mask bit 0 is not set), and copy the upper element from c to the upper element of dst.
_mm_mask3_fmsub_ssavx512f
Multiply the lower single-precision (32-bit) floating-point elements in a and b, and subtract the lower element in c from the intermediate result. Store the result in the lower element of dst using writemask k (the element is copied from c when mask bit 0 is not set), and copy the upper 3 packed elements from c to the upper elements of dst.
_mm_mask3_fmsubadd_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm_mask3_fmsubadd_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm_mask3_fnmadd_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm_mask3_fnmadd_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm_mask3_fnmadd_round_sdavx512f
Multiply the lower double-precision (64-bit) floating-point elements in a and b, and add the negated intermediate result to the lower element in c. Store the result in the lower element of dst using writemask k (the element is copied from c when mask bit 0 is not set), and copy the upper element from c to the upper element of dst.\
_mm_mask3_fnmadd_round_ssavx512f
Multiply the lower single-precision (32-bit) floating-point elements in a and b, and add the negated intermediate result to the lower element in c. Store the result in the lower element of dst using writemask k (the element is copied from c when mask bit 0 is not set), and copy the upper 3 packed elements from c to the upper elements of dst.\
_mm_mask3_fnmadd_sdavx512f
Multiply the lower double-precision (64-bit) floating-point elements in a and b, and add the negated intermediate result to the lower element in c. Store the result in the lower element of dst using writemask k (the element is copied from c when mask bit 0 is not set), and copy the upper element from c to the upper element of dst.
_mm_mask3_fnmadd_ssavx512f
Multiply the lower single-precision (32-bit) floating-point elements in a and b, and add the negated intermediate result to the lower element in c. Store the result in the lower element of dst using writemask k (the element is copied from c when mask bit 0 is not set), and copy the upper 3 packed elements from c to the upper elements of dst.
_mm_mask3_fnmsub_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm_mask3_fnmsub_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using writemask k (elements are copied from c when the corresponding mask bit is not set).
_mm_mask3_fnmsub_round_sdavx512f
Multiply the lower double-precision (64-bit) floating-point elements in a and b, and subtract the lower element in c from the negated intermediate result. Store the result in the lower element of dst using writemask k (the element is copied from c when mask bit 0 is not set), and copy the upper element from c to the upper element of dst.\
_mm_mask3_fnmsub_round_ssavx512f
Multiply the lower single-precision (32-bit) floating-point elements in a and b, subtract the lower element in c from the negated intermediate result. Store the result in the lower element of dst using writemask k (the element is copied from c when mask bit 0 is not set), and copy the upper 3 packed elements from c to the upper elements of dst.\
_mm_mask3_fnmsub_sdavx512f
Multiply the lower double-precision (64-bit) floating-point elements in a and b, and subtract the lower element in c from the negated intermediate result. Store the result in the lower element of dst using writemask k (the element is copied from c when mask bit 0 is not set), and copy the upper element from c to the upper element of dst.
_mm_mask3_fnmsub_ssavx512f
Multiply the lower single-precision (32-bit) floating-point elements in a and b, and subtract the lower element in c from the negated intermediate result. Store the result in the lower element of dst using writemask k (the element is copied from c when mask bit 0 is not set), and copy the upper 3 packed elements from c to the upper elements of dst.
_mm_mask_abs_epi32avx512f and avx512vl
Compute the absolute value of packed signed 32-bit integers in a, and store the unsigned results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_abs_epi64avx512f and avx512vl
Compute the absolute value of packed signed 64-bit integers in a, and store the unsigned results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_add_epi32avx512f and avx512vl
Add packed 32-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_add_epi64avx512f and avx512vl
Add packed 64-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_add_pdavx512f and avx512vl
Add packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_add_psavx512f and avx512vl
Add packed single-precision (32-bit) floating-point elements in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_add_round_sdavx512f
Add the lower double-precision (64-bit) floating-point element in a and b, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.\
_mm_mask_add_round_ssavx512f
Add the lower single-precision (32-bit) floating-point element in a and b, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_mask_add_sdavx512f
Add the lower double-precision (64-bit) floating-point element in a and b, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
_mm_mask_add_ssavx512f
Add the lower single-precision (32-bit) floating-point element in a and b, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
_mm_mask_alignr_epi32avx512f and avx512vl
Concatenate a and b into a 32-byte immediate result, shift the result right by imm8 32-bit elements, and store the low 16 bytes (4 elements) in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_alignr_epi64avx512f and avx512vl
Concatenate a and b into a 32-byte immediate result, shift the result right by imm8 64-bit elements, and store the low 16 bytes (2 elements) in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_and_epi32avx512f and avx512vl
Performs element-by-element bitwise AND between packed 32-bit integer elements of a and b, storing the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_and_epi64avx512f and avx512vl
Compute the bitwise AND of packed 64-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_andnot_epi32avx512f and avx512vl
Compute the bitwise NOT of packed 32-bit integers in a and then AND with b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_andnot_epi64avx512f and avx512vl
Compute the bitwise NOT of packed 64-bit integers in a and then AND with b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_blend_epi32avx512f and avx512vl
Blend packed 32-bit integers from a and b using control mask k, and store the results in dst.
_mm_mask_blend_epi64avx512f and avx512vl
Blend packed 64-bit integers from a and b using control mask k, and store the results in dst.
_mm_mask_blend_pdavx512f and avx512vl
Blend packed double-precision (64-bit) floating-point elements from a and b using control mask k, and store the results in dst.
_mm_mask_blend_psavx512f and avx512vl
Blend packed single-precision (32-bit) floating-point elements from a and b using control mask k, and store the results in dst.
_mm_mask_broadcastd_epi32avx512f and avx512vl
Broadcast the low packed 32-bit integer from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_broadcastq_epi64avx512f and avx512vl
Broadcast the low packed 64-bit integer from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_broadcastss_psavx512f and avx512vl
Broadcast the low single-precision (32-bit) floating-point element from a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cmp_epi32_maskavx512f and avx512vl
Compare packed signed 32-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm_mask_cmp_epi64_maskavx512f and avx512vl
Compare packed signed 64-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm_mask_cmp_epu32_maskavx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm_mask_cmp_epu64_maskavx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm_mask_cmp_pd_maskavx512f and avx512vl
Compare packed double-precision (64-bit) floating-point elements in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm_mask_cmp_ps_maskavx512f and avx512vl
Compare packed single-precision (32-bit) floating-point elements in a and b based on the comparison operand specified by imm8, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm_mask_cmp_round_sd_maskavx512f
Compare the lower double-precision (64-bit) floating-point element in a and b based on the comparison operand specified by imm8, and store the result in mask vector k using zeromask k1 (the element is zeroed out when mask bit 0 is not set).
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_mask_cmp_round_ss_maskavx512f
Compare the lower single-precision (32-bit) floating-point element in a and b based on the comparison operand specified by imm8, and store the result in mask vector k using zeromask k1 (the element is zeroed out when mask bit 0 is not seti).
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_mask_cmp_sd_maskavx512f
Compare the lower double-precision (64-bit) floating-point element in a and b based on the comparison operand specified by imm8, and store the result in mask vector k using zeromask k1 (the element is zeroed out when mask bit 0 is not set).
_mm_mask_cmp_ss_maskavx512f
Compare the lower single-precision (32-bit) floating-point element in a and b based on the comparison operand specified by imm8, and store the result in mask vector k using zeromask k1 (the element is zeroed out when mask bit 0 is not set).
_mm_mask_cmpeq_epi32_maskavx512f and avx512vl
Compare packed 32-bit integers in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm_mask_cmpeq_epi64_maskavx512f and avx512vl
Compare packed 64-bit integers in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm_mask_cmpeq_epu32_maskavx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm_mask_cmpeq_epu64_maskavx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b for equality, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm_mask_cmpge_epi32_maskavx512f and avx512vl
Compare packed signed 32-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm_mask_cmpge_epi64_maskavx512f and avx512vl
Compare packed signed 64-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm_mask_cmpge_epu32_maskavx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm_mask_cmpge_epu64_maskavx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b for greater-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm_mask_cmpgt_epi32_maskavx512f and avx512vl
Compare packed signed 32-bit integers in a and b for greater-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm_mask_cmpgt_epi64_maskavx512f and avx512vl
Compare packed signed 64-bit integers in a and b for greater-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm_mask_cmpgt_epu32_maskavx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b for greater-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm_mask_cmpgt_epu64_maskavx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b for greater-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm_mask_cmple_epi32_maskavx512f and avx512vl
Compare packed signed 32-bit integers in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm_mask_cmple_epi64_maskavx512f and avx512vl
Compare packed signed 64-bit integers in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm_mask_cmple_epu32_maskavx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm_mask_cmple_epu64_maskavx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b for less-than-or-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm_mask_cmplt_epi32_maskavx512f and avx512vl
Compare packed signed 32-bit integers in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm_mask_cmplt_epi64_maskavx512f and avx512vl
Compare packed signed 64-bit integers in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm_mask_cmplt_epu32_maskavx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm_mask_cmplt_epu64_maskavx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b for less-than, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm_mask_cmpneq_epi32_maskavx512f and avx512vl
Compare packed 32-bit integers in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm_mask_cmpneq_epi64_maskavx512f and avx512vl
Compare packed signed 64-bit integers in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm_mask_cmpneq_epu32_maskavx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm_mask_cmpneq_epu64_maskavx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b for not-equal, and store the results in mask vector k using zeromask k1 (elements are zeroed out when the corresponding mask bit is not set).
_mm_mask_compress_epi32avx512f and avx512vl
Contiguously store the active 32-bit integers in a (those with their respective bit set in writemask k) to dst, and pass through the remaining elements from src.
_mm_mask_compress_epi64avx512f and avx512vl
Contiguously store the active 64-bit integers in a (those with their respective bit set in writemask k) to dst, and pass through the remaining elements from src.
_mm_mask_compress_pdavx512f and avx512vl
Contiguously store the active double-precision (64-bit) floating-point elements in a (those with their respective bit set in writemask k) to dst, and pass through the remaining elements from src.
_mm_mask_compress_psavx512f and avx512vl
Contiguously store the active single-precision (32-bit) floating-point elements in a (those with their respective bit set in writemask k) to dst, and pass through the remaining elements from src.
_mm_mask_compressstoreu_epi32avx512f and avx512vl
Contiguously store the active 32-bit integers in a (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm_mask_compressstoreu_epi64avx512f and avx512vl
Contiguously store the active 64-bit integers in a (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm_mask_compressstoreu_pdavx512f and avx512vl
Contiguously store the active double-precision (64-bit) floating-point elements in a (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm_mask_compressstoreu_psavx512f and avx512vl
Contiguously store the active single-precision (32-bit) floating-point elements in a (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm_mask_cvt_roundps_phavx512f and avx512vl
Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm_mask_cvt_roundsd_ssavx512f
Convert the lower double-precision (64-bit) floating-point element in b to a single-precision (32-bit) floating-point element, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
Rounding is done according to the rounding[3:0] parameter, which can be one of:\
_mm_mask_cvt_roundss_sdavx512f
Convert the lower single-precision (32-bit) floating-point element in b to a double-precision (64-bit) floating-point element, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_mask_cvtepi8_epi32avx512f and avx512vl
Sign extend packed 8-bit integers in a to packed 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtepi8_epi64avx512f and avx512vl
Sign extend packed 8-bit integers in the low 2 bytes of a to packed 64-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtepi16_epi32avx512f and avx512vl
Sign extend packed 16-bit integers in a to packed 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtepi16_epi64avx512f and avx512vl
Sign extend packed 16-bit integers in a to packed 64-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtepi32_epi8avx512f and avx512vl
Convert packed 32-bit integers in a to packed 8-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtepi32_epi16avx512f and avx512vl
Convert packed 32-bit integers in a to packed 16-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtepi32_epi64avx512f and avx512vl
Sign extend packed 32-bit integers in a to packed 64-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtepi32_pdavx512f and avx512vl
Convert packed signed 32-bit integers in a to packed double-precision (64-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtepi32_psavx512f and avx512vl
Convert packed signed 32-bit integers in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtepi32_storeu_epi8avx512f and avx512vl
Convert packed 32-bit integers in a to packed 8-bit integers with truncation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm_mask_cvtepi32_storeu_epi16avx512f and avx512vl
Convert packed 32-bit integers in a to packed 16-bit integers with truncation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm_mask_cvtepi64_epi8avx512f and avx512vl
Convert packed 64-bit integers in a to packed 8-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtepi64_epi16avx512f and avx512vl
Convert packed 64-bit integers in a to packed 16-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtepi64_epi32avx512f and avx512vl
Convert packed 64-bit integers in a to packed 32-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtepi64_storeu_epi8avx512f and avx512vl
Convert packed 64-bit integers in a to packed 8-bit integers with truncation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm_mask_cvtepi64_storeu_epi16avx512f and avx512vl
Convert packed 64-bit integers in a to packed 16-bit integers with truncation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm_mask_cvtepi64_storeu_epi32avx512f and avx512vl
Convert packed 64-bit integers in a to packed 32-bit integers with truncation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm_mask_cvtepu8_epi32avx512f and avx512vl
Zero extend packed unsigned 8-bit integers in the low 4 bytes of a to packed 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtepu8_epi64avx512f and avx512vl
Zero extend packed unsigned 8-bit integers in the low 2 bytes of a to packed 64-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtepu16_epi32avx512f and avx512vl
Zero extend packed unsigned 16-bit integers in a to packed 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtepu16_epi64avx512f and avx512vl
Zero extend packed unsigned 16-bit integers in the low 4 bytes of a to packed 64-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtepu32_epi64avx512f and avx512vl
Zero extend packed unsigned 32-bit integers in a to packed 64-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtepu32_pdavx512f and avx512vl
Convert packed unsigned 32-bit integers in a to packed double-precision (64-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtpd_epi32avx512f and avx512vl
Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtpd_epu32avx512f and avx512vl
Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtpd_psavx512f and avx512vl
Convert packed double-precision (64-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtph_psavx512f and avx512vl
Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtps_epi32avx512f and avx512vl
Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtps_epu32avx512f and avx512vl
Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtps_phavx512f and avx512vl
Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) floating-point elements, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm_mask_cvtsd_ssavx512f
Convert the lower double-precision (64-bit) floating-point element in b to a single-precision (32-bit) floating-point element, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
_mm_mask_cvtsepi32_epi8avx512f and avx512vl
Convert packed signed 32-bit integers in a to packed 8-bit integers with signed saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtsepi32_epi16avx512f and avx512vl
Convert packed signed 32-bit integers in a to packed 16-bit integers with signed saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtsepi32_storeu_epi8avx512f and avx512vl
Convert packed signed 32-bit integers in a to packed 8-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm_mask_cvtsepi32_storeu_epi16avx512f and avx512vl
Convert packed signed 32-bit integers in a to packed 16-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm_mask_cvtsepi64_epi8avx512f and avx512vl
Convert packed signed 64-bit integers in a to packed 8-bit integers with signed saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtsepi64_epi16avx512f and avx512vl
Convert packed signed 64-bit integers in a to packed 16-bit integers with signed saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtsepi64_epi32avx512f and avx512vl
Convert packed signed 64-bit integers in a to packed 32-bit integers with signed saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtsepi64_storeu_epi8avx512f and avx512vl
Convert packed signed 64-bit integers in a to packed 8-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm_mask_cvtsepi64_storeu_epi16avx512f and avx512vl
Convert packed signed 64-bit integers in a to packed 16-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm_mask_cvtsepi64_storeu_epi32avx512f and avx512vl
Convert packed signed 64-bit integers in a to packed 32-bit integers with signed saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm_mask_cvtss_sdavx512f
Convert the lower single-precision (32-bit) floating-point element in b to a double-precision (64-bit) floating-point element, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
_mm_mask_cvttpd_epi32avx512f and avx512vl
Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvttpd_epu32avx512f and avx512vl
Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvttps_epi32avx512f and avx512vl
Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvttps_epu32avx512f and avx512vl
Convert packed double-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtusepi32_epi8avx512f and avx512vl
Convert packed unsigned 32-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtusepi32_epi16avx512f and avx512vl
Convert packed unsigned 32-bit integers in a to packed unsigned 16-bit integers with unsigned saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtusepi32_storeu_epi8avx512f and avx512vl
Convert packed unsigned 32-bit integers in a to packed 8-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm_mask_cvtusepi32_storeu_epi16avx512f and avx512vl
Convert packed unsigned 32-bit integers in a to packed unsigned 16-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm_mask_cvtusepi64_epi8avx512f and avx512vl
Convert packed unsigned 64-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtusepi64_epi16avx512f and avx512vl
Convert packed unsigned 64-bit integers in a to packed unsigned 16-bit integers with unsigned saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtusepi64_epi32avx512f and avx512vl
Convert packed unsigned 64-bit integers in a to packed unsigned 32-bit integers with unsigned saturation, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_cvtusepi64_storeu_epi8avx512f and avx512vl
Convert packed unsigned 64-bit integers in a to packed 8-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm_mask_cvtusepi64_storeu_epi16avx512f and avx512vl
Convert packed unsigned 64-bit integers in a to packed 16-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm_mask_cvtusepi64_storeu_epi32avx512f and avx512vl
Convert packed unsigned 64-bit integers in a to packed 32-bit integers with unsigned saturation, and store the active results (those with their respective bit set in writemask k) to unaligned memory at base_addr.
_mm_mask_div_pdavx512f and avx512vl
Divide packed double-precision (64-bit) floating-point elements in a by packed elements in b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_div_psavx512f and avx512vl
Divide packed single-precision (32-bit) floating-point elements in a by packed elements in b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_div_round_sdavx512f
Divide the lower double-precision (64-bit) floating-point element in a by the lower double-precision (64-bit) floating-point element in b, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.\
_mm_mask_div_round_ssavx512f
Divide the lower single-precision (32-bit) floating-point element in a by the lower single-precision (32-bit) floating-point element in b, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_mask_div_sdavx512f
Divide the lower double-precision (64-bit) floating-point element in a by the lower double-precision (64-bit) floating-point element in b, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
_mm_mask_div_ssavx512f
Divide the lower single-precision (32-bit) floating-point element in a by the lower single-precision (32-bit) floating-point element in b, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
_mm_mask_expand_epi32avx512f and avx512vl
Load contiguous active 32-bit integers from a (those with their respective bit set in mask k), and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_expand_epi64avx512f and avx512vl
Load contiguous active 64-bit integers from a (those with their respective bit set in mask k), and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_expand_pdavx512f and avx512vl
Load contiguous active double-precision (64-bit) floating-point elements from a (those with their respective bit set in mask k), and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_expand_psavx512f and avx512vl
Load contiguous active single-precision (32-bit) floating-point elements from a (those with their respective bit set in mask k), and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_expandloadu_epi32avx512f and avx512vl
Load contiguous active 32-bit integers from unaligned memory at mem_addr (those with their respective bit set in mask k), and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_expandloadu_epi64avx512f and avx512vl
Load contiguous active 64-bit integers from unaligned memory at mem_addr (those with their respective bit set in mask k), and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_expandloadu_pdavx512f and avx512vl
Load contiguous active double-precision (64-bit) floating-point elements from unaligned memory at mem_addr (those with their respective bit set in mask k), and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_expandloadu_psavx512f and avx512vl
Load contiguous active single-precision (32-bit) floating-point elements from unaligned memory at mem_addr (those with their respective bit set in mask k), and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_fixupimm_pdavx512f and avx512vl
Fix up packed double-precision (64-bit) floating-point elements in a and b using packed 64-bit integers in c, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set). imm8 is used to set the required flags reporting.
_mm_mask_fixupimm_psavx512f and avx512vl
Fix up packed single-precision (32-bit) floating-point elements in a and b using packed 32-bit integers in c, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set). imm8 is used to set the required flags reporting.
_mm_mask_fixupimm_round_sdavx512f
Fix up the lower double-precision (64-bit) floating-point elements in a and b using the lower 64-bit integer in c, store the result in the lower element of dst using writemask k (the element is copied from a when mask bit 0 is not set), and copy the upper element from a to the upper element of dst. imm8 is used to set the required flags reporting.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_mask_fixupimm_round_ssavx512f
Fix up the lower single-precision (32-bit) floating-point elements in a and b using the lower 32-bit integer in c, store the result in the lower element of dst using writemask k (the element is copied from a when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst. imm8 is used to set the required flags reporting.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_mask_fixupimm_sdavx512f
Fix up the lower double-precision (64-bit) floating-point elements in a and b using the lower 64-bit integer in c, store the result in the lower element of dst using writemask k (the element is copied from a when mask bit 0 is not set), and copy the upper element from a to the upper element of dst. imm8 is used to set the required flags reporting.
_mm_mask_fixupimm_ssavx512f
Fix up the lower single-precision (32-bit) floating-point elements in a and b using the lower 32-bit integer in c, store the result in the lower element of dst using writemask k (the element is copied from a when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst. imm8 is used to set the required flags reporting.
_mm_mask_fmadd_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm_mask_fmadd_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm_mask_fmadd_round_sdavx512f
Multiply the lower double-precision (64-bit) floating-point elements in a and b, and add the intermediate result to the lower element in c. Store the result in the lower element of dst using writemask k (the element is copied from a when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.\
_mm_mask_fmadd_round_ssavx512f
Multiply the lower single-precision (32-bit) floating-point elements in a and b, and add the intermediate result to the lower element in c. Store the result in the lower element of dst using writemask k (the element is copied from a when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_mask_fmadd_sdavx512f
Multiply the lower double-precision (64-bit) floating-point elements in a and b, and add the intermediate result to the lower element in c. Store the result in the lower element of dst using writemask k (the element is copied from a when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
_mm_mask_fmadd_ssavx512f
Multiply the lower single-precision (32-bit) floating-point elements in a and b, and add the intermediate result to the lower element in c. Store the result in the lower element of dst using writemask k (the element is copied from a when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
_mm_mask_fmaddsub_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm_mask_fmaddsub_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm_mask_fmsub_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm_mask_fmsub_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm_mask_fmsub_round_sdavx512f
Multiply the lower double-precision (64-bit) floating-point elements in a and b, and subtract the lower element in c from the intermediate result. Store the result in the lower element of dst using writemask k (the element is copied from a when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.\
_mm_mask_fmsub_round_ssavx512f
Multiply the lower single-precision (32-bit) floating-point elements in a and b, and subtract the lower element in c from the intermediate result. Store the result in the lower element of dst using writemask k (the element is copied from a when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_mask_fmsub_sdavx512f
Multiply the lower double-precision (64-bit) floating-point elements in a and b, and subtract the lower element in c from the intermediate result. Store the result in the lower element of dst using writemask k (the element is copied from a when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
_mm_mask_fmsub_ssavx512f
Multiply the lower single-precision (32-bit) floating-point elements in a and b, and subtract the lower element in c from the intermediate result. Store the result in the lower element of dst, and copy the upper 3 packed elements from a to the upper elements of dst.
_mm_mask_fmsubadd_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm_mask_fmsubadd_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm_mask_fnmadd_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm_mask_fnmadd_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm_mask_fnmadd_round_sdavx512f
Multiply the lower double-precision (64-bit) floating-point elements in a and b, and add the negated intermediate result to the lower element in c. Store the result in the lower element of dst using writemask k (the element is copied from a when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.\
_mm_mask_fnmadd_round_ssavx512f
Multiply the lower single-precision (32-bit) floating-point elements in a and b, and add the negated intermediate result to the lower element in c. Store the result in the lower element of dst using writemask k (the element is copied from a when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_mask_fnmadd_sdavx512f
Multiply the lower double-precision (64-bit) floating-point elements in a and b, and add the negated intermediate result to the lower element in c. Store the result in the lower element of dst using writemask k (the element is copied from a when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
_mm_mask_fnmadd_ssavx512f
Multiply the lower single-precision (32-bit) floating-point elements in a and b, and add the negated intermediate result to the lower element in c. Store the result in the lower element of dst using writemask k (the element is copied from a when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
_mm_mask_fnmsub_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm_mask_fnmsub_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm_mask_fnmsub_round_sdavx512f
Multiply the lower double-precision (64-bit) floating-point elements in a and b, and subtract the lower element in c from the negated intermediate result. Store the result in the lower element of dst using writemask k (the element is copied from c when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.\
_mm_mask_fnmsub_round_ssavx512f
Multiply the lower single-precision (32-bit) floating-point elements in a and b, and subtract the lower element in c from the negated intermediate result. Store the result in the lower element of dst using writemask k (the element is copied from c when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_mask_fnmsub_sdavx512f
Multiply the lower double-precision (64-bit) floating-point elements in a and b, and subtract the lower element in c from the negated intermediate result. Store the result in the lower element of dst using writemask k (the element is copied from c when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
_mm_mask_fnmsub_ssavx512f
Multiply the lower single-precision (32-bit) floating-point elements in a and b, and subtract the lower element in c from the negated intermediate result. Store the result in the lower element of dst using writemask k (the element is copied from c when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
_mm_mask_getexp_pdavx512f and avx512vl
Convert the exponent of each packed double-precision (64-bit) floating-point element in a to a double-precision (64-bit) floating-point number representing the integer exponent, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). This intrinsic essentially calculates floor(log2(x)) for each element.
_mm_mask_getexp_psavx512f and avx512vl
Convert the exponent of each packed single-precision (32-bit) floating-point element in a to a single-precision (32-bit) floating-point number representing the integer exponent, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). This intrinsic essentially calculates floor(log2(x)) for each element.
_mm_mask_getexp_round_sdavx512f
Convert the exponent of the lower double-precision (64-bit) floating-point element in b to a double-precision (64-bit) floating-point number representing the integer exponent, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element from a to the upper element of dst. This intrinsic essentially calculates floor(log2(x)) for the lower element.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_mask_getexp_round_ssavx512f
Convert the exponent of the lower single-precision (32-bit) floating-point element in b to a single-precision (32-bit) floating-point number representing the integer exponent, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst. This intrinsic essentially calculates floor(log2(x)) for the lower element.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_mask_getexp_sdavx512f
Convert the exponent of the lower double-precision (64-bit) floating-point element in b to a double-precision (64-bit) floating-point number representing the integer exponent, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element from a to the upper element of dst. This intrinsic essentially calculates floor(log2(x)) for the lower element.
_mm_mask_getexp_ssavx512f
Convert the exponent of the lower single-precision (32-bit) floating-point element in b to a single-precision (32-bit) floating-point number representing the integer exponent, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst. This intrinsic essentially calculates floor(log2(x)) for the lower element.
_mm_mask_getmant_pdavx512f and avx512vl
Normalize the mantissas of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
_mm_mask_getmant_psavx512f and avx512vl
Normalize the mantissas of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
_mm_mask_getmant_round_sdavx512f
Normalize the mantissas of the lower double-precision (64-bit) floating-point element in b, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element from a to the upper element of dst. This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_mask_getmant_round_ssavx512f
Normalize the mantissas of the lower single-precision (32-bit) floating-point element in b, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst. This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_mask_getmant_sdavx512f
Normalize the mantissas of the lower double-precision (64-bit) floating-point element in b, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element from a to the upper element of dst. This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_mask_getmant_ssavx512f
Normalize the mantissas of the lower single-precision (32-bit) floating-point element in b, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst. This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_mask_i32scatter_epi32avx512f and avx512vl
Stores 4 32-bit integer elements from a to memory starting at location base_addr at packed 32-bit integer indices stored in vindex scaled by scale using writemask k (elements whose corresponding mask bit is not set are not written to memory).
_mm_mask_i32scatter_epi64avx512f and avx512vl
Stores 2 64-bit integer elements from a to memory starting at location base_addr at packed 32-bit integer indices stored in vindex scaled by scale using writemask k (elements whose corresponding mask bit is not set are not written to memory).
_mm_mask_i32scatter_pdavx512f and avx512vl
Stores 2 double-precision (64-bit) floating-point elements from a to memory starting at location base_addr at packed 32-bit integer indices stored in vindex scaled by scale using writemask k (elements whose corresponding mask bit is not set are not written to memory).
_mm_mask_i32scatter_psavx512f and avx512vl
Stores 4 single-precision (32-bit) floating-point elements from a to memory starting at location base_addr at packed 32-bit integer indices stored in vindex scaled by scale using writemask k (elements whose corresponding mask bit is not set are not written to memory).
_mm_mask_i64scatter_epi32avx512f and avx512vl
Stores 2 32-bit integer elements from a to memory starting at location base_addr at packed 64-bit integer indices stored in vindex scaled by scale using writemask k (elements whose corresponding mask bit is not set are not written to memory).
_mm_mask_i64scatter_epi64avx512f and avx512vl
Stores 2 64-bit integer elements from a to memory starting at location base_addr at packed 64-bit integer indices stored in vindex scaled by scale using writemask k (elements whose corresponding mask bit is not set are not written to memory).
_mm_mask_i64scatter_pdavx512f and avx512vl
Stores 2 double-precision (64-bit) floating-point elements from a to memory starting at location base_addr at packed 64-bit integer indices stored in vindex scaled by scale using writemask k (elements whose corresponding mask bit is not set are not written to memory).
_mm_mask_i64scatter_psavx512f and avx512vl
Stores 2 single-precision (32-bit) floating-point elements from a to memory starting at location base_addr at packed 64-bit integer indices stored in vindex scaled by scale using writemask k (elements whose corresponding
_mm_mask_load_epi32avx512f and avx512vl
Load packed 32-bit integers from memory into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr must be aligned on a 16-byte boundary or a general-protection exception may be generated.
_mm_mask_load_epi64avx512f and avx512vl
Load packed 64-bit integers from memory into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr must be aligned on a 16-byte boundary or a general-protection exception may be generated.
_mm_mask_load_pdavx512f and avx512vl
Load packed double-precision (64-bit) floating-point elements from memory into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr must be aligned on a 16-byte boundary or a general-protection exception may be generated.
_mm_mask_load_psavx512f and avx512vl
Load packed single-precision (32-bit) floating-point elements from memory into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr must be aligned on a 16-byte boundary or a general-protection exception may be generated.
_mm_mask_load_sdavx512f
Load a double-precision (64-bit) floating-point element from memory into the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and set the upper element of dst to zero. mem_addr must be aligned on a 16-byte boundary or a general-protection exception may be generated.
_mm_mask_load_ssavx512f
Load a single-precision (32-bit) floating-point element from memory into the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and set the upper 3 packed elements of dst to zero. mem_addr must be aligned on a 16-byte boundary or a general-protection exception may be generated.
_mm_mask_loadu_epi32avx512f and avx512vl
Load packed 32-bit integers from memory into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular boundary.
_mm_mask_loadu_epi64avx512f and avx512vl
Load packed 64-bit integers from memory into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular boundary.
_mm_mask_loadu_pdavx512f and avx512vl
Load packed double-precision (64-bit) floating-point elements from memory into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular boundary.
_mm_mask_loadu_psavx512f and avx512vl
Load packed single-precision (32-bit) floating-point elements from memory into dst using writemask k (elements are copied from src when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular boundary.
_mm_mask_max_epi32avx512f and avx512vl
Compare packed signed 32-bit integers in a and b, and store packed maximum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_max_epi64avx512f and avx512vl
Compare packed signed 64-bit integers in a and b, and store packed maximum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_max_epu32avx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b, and store packed maximum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_max_epu64avx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b, and store packed maximum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_max_pdavx512f and avx512vl
Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed maximum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_max_psavx512f and avx512vl
Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed maximum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_max_round_sdavx512f
Compare the lower double-precision (64-bit) floating-point elements in a and b, store the maximum value in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_mask_max_round_ssavx512f
Compare the lower single-precision (32-bit) floating-point elements in a and b, store the maximum value in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_mask_max_sdavx512f
Compare the lower double-precision (64-bit) floating-point elements in a and b, store the maximum value in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
_mm_mask_max_ssavx512f
Compare the lower single-precision (32-bit) floating-point elements in a and b, store the maximum value in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
_mm_mask_min_epi32avx512f and avx512vl
Compare packed signed 32-bit integers in a and b, and store packed minimum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_min_epi64avx512f and avx512vl
Compare packed signed 64-bit integers in a and b, and store packed minimum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_min_epu32avx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b, and store packed minimum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_min_epu64avx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b, and store packed minimum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_min_pdavx512f and avx512vl
Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed minimum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_min_psavx512f and avx512vl
Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed minimum values in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_min_round_sdavx512f
Compare the lower double-precision (64-bit) floating-point elements in a and b, store the minimum value in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_mask_min_round_ssavx512f
Compare the lower single-precision (32-bit) floating-point elements in a and b, store the minimum value in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_mask_min_sdavx512f
Compare the lower double-precision (64-bit) floating-point elements in a and b, store the minimum value in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
_mm_mask_min_ssavx512f
Compare the lower single-precision (32-bit) floating-point elements in a and b, store the minimum value in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
_mm_mask_mov_epi32avx512f and avx512vl
Move packed 32-bit integers from a to dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_mov_epi64avx512f and avx512vl
Move packed 64-bit integers from a to dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_mov_pdavx512f and avx512vl
Move packed double-precision (64-bit) floating-point elements from a to dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_mov_psavx512f and avx512vl
Move packed single-precision (32-bit) floating-point elements from a to dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_move_sdavx512f
Move the lower double-precision (64-bit) floating-point element from b to the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
_mm_mask_move_ssavx512f
Move the lower single-precision (32-bit) floating-point element from b to the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
_mm_mask_movedup_pdavx512f and avx512vl
Duplicate even-indexed double-precision (64-bit) floating-point elements from a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_movehdup_psavx512f and avx512vl
Duplicate odd-indexed single-precision (32-bit) floating-point elements from a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_moveldup_psavx512f and avx512vl
Duplicate even-indexed single-precision (32-bit) floating-point elements from a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_mul_epi32avx512f and avx512vl
Multiply the low signed 32-bit integers from each packed 64-bit element in a and b, and store the signed 64-bit results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_mul_epu32avx512f and avx512vl
Multiply the low unsigned 32-bit integers from each packed 64-bit element in a and b, and store the unsigned 64-bit results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_mul_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_mul_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_mul_round_sdavx512f
Multiply the lower double-precision (64-bit) floating-point element in a and b, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.\
_mm_mask_mul_round_ssavx512f
Multiply the lower single-precision (32-bit) floating-point element in a and b, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_mask_mul_sdavx512f
Multiply the lower double-precision (64-bit) floating-point element in a and b, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
_mm_mask_mul_ssavx512f
Multiply the lower single-precision (32-bit) floating-point element in a and b, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
_mm_mask_mullo_epi32avx512f and avx512vl
Multiply the packed 32-bit integers in a and b, producing intermediate 64-bit integers, and store the low 32 bits of the intermediate integers in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_or_epi32avx512f and avx512vl
Compute the bitwise OR of packed 32-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_or_epi64avx512f and avx512vl
Compute the bitwise OR of packed 64-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_permute_pdavx512f and avx512vl
Shuffle double-precision (64-bit) floating-point elements in a within 128-bit lanes using the control in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_permute_psavx512f and avx512vl
Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_permutevar_pdavx512f and avx512vl
Shuffle double-precision (64-bit) floating-point elements in a within 128-bit lanes using the control in b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_permutevar_psavx512f and avx512vl
Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_permutex2var_epi32avx512f and avx512vl
Shuffle 32-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm_mask_permutex2var_epi64avx512f and avx512vl
Shuffle 64-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm_mask_permutex2var_pdavx512f and avx512vl
Shuffle double-precision (64-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm_mask_permutex2var_psavx512f and avx512vl
Shuffle single-precision (32-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using writemask k (elements are copied from a when the corresponding mask bit is not set).
_mm_mask_rcp14_pdavx512f and avx512vl
Compute the approximate reciprocal of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.
_mm_mask_rcp14_psavx512f and avx512vl
Compute the approximate reciprocal of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.
_mm_mask_rcp14_sdavx512f
Compute the approximate reciprocal of the lower double-precision (64-bit) floating-point element in b, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element from a to the upper element of dst. The maximum relative error for this approximation is less than 2^-14.
_mm_mask_rcp14_ssavx512f
Compute the approximate reciprocal of the lower single-precision (32-bit) floating-point element in b, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst. The maximum relative error for this approximation is less than 2^-14.
_mm_mask_rol_epi32avx512f and avx512vl
Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_rol_epi64avx512f and avx512vl
Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_rolv_epi32avx512f and avx512vl
Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in the corresponding element of b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_rolv_epi64avx512f and avx512vl
Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in the corresponding element of b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_ror_epi32avx512f and avx512vl
Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_ror_epi64avx512f and avx512vl
Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_rorv_epi32avx512f and avx512vl
Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in the corresponding element of b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_rorv_epi64avx512f and avx512vl
Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in the corresponding element of b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_roundscale_pdavx512f and avx512vl
Round packed double-precision (64-bit) floating-point elements in a to the number of fraction bits specified by imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm_mask_roundscale_psavx512f and avx512vl
Round packed single-precision (32-bit) floating-point elements in a to the number of fraction bits specified by imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm_mask_roundscale_round_sdavx512f
Round the lower double-precision (64-bit) floating-point element in b to the number of fraction bits specified by imm8, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm_mask_roundscale_round_ssavx512f
Round the lower single-precision (32-bit) floating-point element in b to the number of fraction bits specified by imm8, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm_mask_roundscale_sdavx512f
Round the lower double-precision (64-bit) floating-point element in b to the number of fraction bits specified by imm8, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm_mask_roundscale_ssavx512f
Round the lower single-precision (32-bit) floating-point element in b to the number of fraction bits specified by imm8, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm_mask_rsqrt14_pdavx512f and avx512vl
Compute the approximate reciprocal square root of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.
_mm_mask_rsqrt14_psavx512f and avx512vl
Compute the approximate reciprocal square root of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.
_mm_mask_rsqrt14_sdavx512f
Compute the approximate reciprocal square root of the lower double-precision (64-bit) floating-point element in b, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element from a to the upper element of dst. The maximum relative error for this approximation is less than 2^-14.
_mm_mask_rsqrt14_ssavx512f
Compute the approximate reciprocal square root of the lower single-precision (32-bit) floating-point element in b, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst. The maximum relative error for this approximation is less than 2^-14.
_mm_mask_scalef_pdavx512f and avx512vl
Scale the packed double-precision (64-bit) floating-point elements in a using values from b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_scalef_psavx512f and avx512vl
Scale the packed single-precision (32-bit) floating-point elements in a using values from b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_scalef_round_sdavx512f
Scale the packed double-precision (64-bit) floating-point elements in a using values from b, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.\
_mm_mask_scalef_round_ssavx512f
Scale the packed single-precision (32-bit) floating-point elements in a using values from b, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_mask_scalef_sdavx512f
Scale the packed double-precision (64-bit) floating-point elements in a using values from b, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
_mm_mask_scalef_ssavx512f
Scale the packed single-precision (32-bit) floating-point elements in a using values from b, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
_mm_mask_set1_epi32avx512f and avx512vl
Broadcast 32-bit integer a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_set1_epi64avx512f and avx512vl
Broadcast 64-bit integer a to all elements of dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_shuffle_epi32avx512f and avx512vl
Shuffle 32-bit integers in a within 128-bit lanes using the control in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_shuffle_pdavx512f and avx512vl
Shuffle double-precision (64-bit) floating-point elements within 128-bit lanes using the control in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_shuffle_psavx512f and avx512vl
Shuffle single-precision (32-bit) floating-point elements in a using the control in imm8, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_sll_epi32avx512f and avx512vl
Shift packed 32-bit integers in a left by count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_sll_epi64avx512f and avx512vl
Shift packed 64-bit integers in a left by count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_slli_epi32avx512f and avx512vl
Shift packed 32-bit integers in a left by imm8 while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_slli_epi64avx512f and avx512vl
Shift packed 64-bit integers in a left by imm8 while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_sllv_epi32avx512f and avx512vl
Shift packed 32-bit integers in a left by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_sllv_epi64avx512f and avx512vl
Shift packed 64-bit integers in a left by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_sqrt_pdavx512f and avx512vl
Compute the square root of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_sqrt_psavx512f and avx512vl
Compute the square root of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_sqrt_round_sdavx512f
Compute the square root of the lower double-precision (64-bit) floating-point element in b, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.\
_mm_mask_sqrt_round_ssavx512f
Compute the square root of the lower single-precision (32-bit) floating-point element in b, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_mask_sqrt_sdavx512f
Compute the square root of the lower double-precision (64-bit) floating-point element in b, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
_mm_mask_sqrt_ssavx512f
Compute the square root of the lower single-precision (32-bit) floating-point element in b, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
_mm_mask_sra_epi32avx512f and avx512vl
Shift packed 32-bit integers in a right by count while shifting in sign bits, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_sra_epi64avx512f and avx512vl
Shift packed 64-bit integers in a right by count while shifting in sign bits, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_srai_epi32avx512f and avx512vl
Shift packed 32-bit integers in a right by imm8 while shifting in sign bits, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_srai_epi64avx512f and avx512vl
Shift packed 64-bit integers in a right by imm8 while shifting in sign bits, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_srav_epi32avx512f and avx512vl
Shift packed 32-bit integers in a right by the amount specified by the corresponding element in count while shifting in sign bits, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_srav_epi64avx512f and avx512vl
Shift packed 64-bit integers in a right by the amount specified by the corresponding element in count while shifting in sign bits, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_srl_epi32avx512f and avx512vl
Shift packed 32-bit integers in a right by count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_srl_epi64avx512f and avx512vl
Shift packed 64-bit integers in a right by count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_srli_epi32avx512f and avx512vl
Shift packed 32-bit integers in a right by imm8 while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_srli_epi64avx512f and avx512vl
Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_srlv_epi32avx512f and avx512vl
Shift packed 32-bit integers in a right by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_srlv_epi64avx512f and avx512vl
Shift packed 64-bit integers in a right by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_store_epi32avx512f and avx512vl
Store packed 32-bit integers from a into memory using writemask k. mem_addr must be aligned on a 16-byte boundary or a general-protection exception may be generated.
_mm_mask_store_epi64avx512f and avx512vl
Store packed 64-bit integers from a into memory using writemask k. mem_addr must be aligned on a 16-byte boundary or a general-protection exception may be generated.
_mm_mask_store_pdavx512f and avx512vl
Store packed double-precision (64-bit) floating-point elements from a into memory using writemask k. mem_addr must be aligned on a 16-byte boundary or a general-protection exception may be generated.
_mm_mask_store_psavx512f and avx512vl
Store packed single-precision (32-bit) floating-point elements from a into memory using writemask k. mem_addr must be aligned on a 16-byte boundary or a general-protection exception may be generated.
_mm_mask_store_sdavx512f
Store a double-precision (64-bit) floating-point element from a into memory using writemask k. mem_addr must be aligned on a 16-byte boundary or a general-protection exception may be generated.
_mm_mask_store_ssavx512f
Store a single-precision (32-bit) floating-point element from a into memory using writemask k. mem_addr must be aligned on a 16-byte boundary or a general-protection exception may be generated.
_mm_mask_storeu_epi32avx512f and avx512vl
Store packed 32-bit integers from a into memory using writemask k. mem_addr does not need to be aligned on any particular boundary.
_mm_mask_storeu_epi64avx512f and avx512vl
Store packed 64-bit integers from a into memory using writemask k. mem_addr does not need to be aligned on any particular boundary.
_mm_mask_storeu_pdavx512f and avx512vl
Store packed double-precision (64-bit) floating-point elements from a into memory using writemask k. mem_addr does not need to be aligned on any particular boundary.
_mm_mask_storeu_psavx512f and avx512vl
Store packed single-precision (32-bit) floating-point elements from a into memory using writemask k. mem_addr does not need to be aligned on any particular boundary.
_mm_mask_sub_epi32avx512f and avx512vl
Subtract packed 32-bit integers in b from packed 32-bit integers in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_sub_epi64avx512f and avx512vl
Subtract packed 64-bit integers in b from packed 64-bit integers in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_sub_pdavx512f and avx512vl
Subtract packed double-precision (64-bit) floating-point elements in b from packed double-precision (64-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_sub_psavx512f and avx512vl
Subtract packed single-precision (32-bit) floating-point elements in b from packed single-precision (32-bit) floating-point elements in a, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_sub_round_sdavx512f
Subtract the lower double-precision (64-bit) floating-point element in b from the lower double-precision (64-bit) floating-point element in a, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.\
_mm_mask_sub_round_ssavx512f
Subtract the lower single-precision (32-bit) floating-point element in b from the lower single-precision (32-bit) floating-point element in a, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_mask_sub_sdavx512f
Subtract the lower double-precision (64-bit) floating-point element in b from the lower double-precision (64-bit) floating-point element in a, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
_mm_mask_sub_ssavx512f
Subtract the lower single-precision (32-bit) floating-point element in b from the lower single-precision (32-bit) floating-point element in a, store the result in the lower element of dst using writemask k (the element is copied from src when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
_mm_mask_ternarylogic_epi32avx512f and avx512vl
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in imm8. For each bit in each packed 32-bit integer, the corresponding bit from src, a, and b are used to form a 3 bit index into imm8, and the value at that bit in imm8 is written to the corresponding bit in dst using writemask k at 32-bit granularity (32-bit elements are copied from src when the corresponding mask bit is not set).
_mm_mask_ternarylogic_epi64avx512f and avx512vl
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in imm8. For each bit in each packed 64-bit integer, the corresponding bit from src, a, and b are used to form a 3 bit index into imm8, and the value at that bit in imm8 is written to the corresponding bit in dst using writemask k at 64-bit granularity (64-bit elements are copied from src when the corresponding mask bit is not set).
_mm_mask_test_epi32_maskavx512f and avx512vl
Compute the bitwise AND of packed 32-bit integers in a and b, producing intermediate 32-bit values, and set the corresponding bit in result mask k (subject to writemask k) if the intermediate value is non-zero.
_mm_mask_test_epi64_maskavx512f and avx512vl
Compute the bitwise AND of packed 64-bit integers in a and b, producing intermediate 64-bit values, and set the corresponding bit in result mask k (subject to writemask k) if the intermediate value is non-zero.
_mm_mask_testn_epi32_maskavx512f and avx512vl
Compute the bitwise NAND of packed 32-bit integers in a and b, producing intermediate 32-bit values, and set the corresponding bit in result mask k (subject to writemask k) if the intermediate value is zero.
_mm_mask_testn_epi64_maskavx512f and avx512vl
Compute the bitwise NAND of packed 64-bit integers in a and b, producing intermediate 64-bit values, and set the corresponding bit in result mask k (subject to writemask k) if the intermediate value is zero.
_mm_mask_unpackhi_epi32avx512f and avx512vl
Unpack and interleave 32-bit integers from the high half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_unpackhi_epi64avx512f and avx512vl
Unpack and interleave 64-bit integers from the high half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_unpackhi_pdavx512f and avx512vl
Unpack and interleave double-precision (64-bit) floating-point elements from the high half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_unpackhi_psavx512f and avx512vl
Unpack and interleave single-precision (32-bit) floating-point elements from the high half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_unpacklo_epi32avx512f and avx512vl
Unpack and interleave 32-bit integers from the low half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_unpacklo_epi64avx512f and avx512vl
Unpack and interleave 64-bit integers from the low half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_unpacklo_pdavx512f and avx512vl
Unpack and interleave double-precision (64-bit) floating-point elements from the low half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_unpacklo_psavx512f and avx512vl
Unpack and interleave single-precision (32-bit) floating-point elements from the low half of each 128-bit lane in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_xor_epi32avx512f and avx512vl
Compute the bitwise XOR of packed 32-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mask_xor_epi64avx512f and avx512vl
Compute the bitwise XOR of packed 64-bit integers in a and b, and store the results in dst using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_maskz_abs_epi32avx512f and avx512vl
Compute the absolute value of packed signed 32-bit integers in a, and store the unsigned results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_abs_epi64avx512f and avx512vl
Compute the absolute value of packed signed 64-bit integers in a, and store the unsigned results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_add_epi32avx512f and avx512vl
Add packed 32-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_add_epi64avx512f and avx512vl
Add packed 64-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_add_pdavx512f and avx512vl
Add packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_add_psavx512f and avx512vl
Add packed single-precision (32-bit) floating-point elements in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_add_round_sdavx512f
Add the lower double-precision (64-bit) floating-point element in a and b, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.\
_mm_maskz_add_round_ssavx512f
Add the lower single-precision (32-bit) floating-point element in a and b, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_maskz_add_sdavx512f
Add the lower double-precision (64-bit) floating-point element in a and b, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
_mm_maskz_add_ssavx512f
Add the lower single-precision (32-bit) floating-point element in a and b, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
_mm_maskz_alignr_epi32avx512f and avx512vl
Concatenate a and b into a 32-byte immediate result, shift the result right by imm8 32-bit elements, and store the low 16 bytes (4 elements) in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_alignr_epi64avx512f and avx512vl
Concatenate a and b into a 32-byte immediate result, shift the result right by imm8 64-bit elements, and store the low 16 bytes (2 elements) in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_and_epi32avx512f and avx512vl
Compute the bitwise AND of packed 32-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_and_epi64avx512f and avx512vl
Compute the bitwise AND of packed 64-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_andnot_epi32avx512f and avx512vl
Compute the bitwise NOT of packed 32-bit integers in a and then AND with b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_andnot_epi64avx512f and avx512vl
Compute the bitwise NOT of packed 64-bit integers in a and then AND with b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_broadcastd_epi32avx512f and avx512vl
Broadcast the low packed 32-bit integer from a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_broadcastq_epi64avx512f and avx512vl
Broadcast the low packed 64-bit integer from a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_broadcastss_psavx512f and avx512vl
Broadcast the low single-precision (32-bit) floating-point element from a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_compress_epi32avx512f and avx512vl
Contiguously store the active 32-bit integers in a (those with their respective bit set in zeromask k) to dst, and set the remaining elements to zero.
_mm_maskz_compress_epi64avx512f and avx512vl
Contiguously store the active 64-bit integers in a (those with their respective bit set in zeromask k) to dst, and set the remaining elements to zero.
_mm_maskz_compress_pdavx512f and avx512vl
Contiguously store the active double-precision (64-bit) floating-point elements in a (those with their respective bit set in zeromask k) to dst, and set the remaining elements to zero.
_mm_maskz_compress_psavx512f and avx512vl
Contiguously store the active single-precision (32-bit) floating-point elements in a (those with their respective bit set in zeromask k) to dst, and set the remaining elements to zero.
_mm_maskz_cvt_roundps_phavx512f and avx512vl
Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm_maskz_cvt_roundsd_ssavx512f
Convert the lower double-precision (64-bit) floating-point element in b to a single-precision (32-bit) floating-point element, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
Rounding is done according to the rounding[3:0] parameter, which can be one of:\
_mm_maskz_cvt_roundss_sdavx512f
Convert the lower single-precision (32-bit) floating-point element in b to a double-precision (64-bit) floating-point element, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_maskz_cvtepi8_epi32avx512f and avx512vl
Sign extend packed 8-bit integers in a to packed 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtepi8_epi64avx512f and avx512vl
Sign extend packed 8-bit integers in the low 2 bytes of a to packed 64-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtepi16_epi32avx512f and avx512vl
Sign extend packed 16-bit integers in a to packed 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtepi16_epi64avx512f and avx512vl
Sign extend packed 16-bit integers in a to packed 64-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtepi32_epi8avx512f and avx512vl
Convert packed 32-bit integers in a to packed 8-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtepi32_epi16avx512f and avx512vl
Convert packed 32-bit integers in a to packed 16-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtepi32_epi64avx512f and avx512vl
Sign extend packed 32-bit integers in a to packed 64-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtepi32_pdavx512f and avx512vl
Convert packed signed 32-bit integers in a to packed double-precision (64-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtepi32_psavx512f and avx512vl
Convert packed signed 32-bit integers in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtepi64_epi8avx512f and avx512vl
Convert packed 64-bit integers in a to packed 8-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtepi64_epi16avx512f and avx512vl
Convert packed 64-bit integers in a to packed 16-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtepi64_epi32avx512f and avx512vl
Convert packed 64-bit integers in a to packed 32-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtepu8_epi32avx512f and avx512vl
Zero extend packed unsigned 8-bit integers in th elow 4 bytes of a to packed 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtepu8_epi64avx512f and avx512vl
Zero extend packed unsigned 8-bit integers in the low 2 bytes of a to packed 64-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtepu16_epi32avx512f and avx512vl
Zero extend packed unsigned 16-bit integers in a to packed 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtepu16_epi64avx512f and avx512vl
Zero extend packed unsigned 16-bit integers in the low 4 bytes of a to packed 64-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtepu32_epi64avx512f and avx512vl
Zero extend packed unsigned 32-bit integers in a to packed 64-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtepu32_pdavx512f and avx512vl
Convert packed unsigned 32-bit integers in a to packed double-precision (64-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtpd_epi32avx512f and avx512vl
Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtpd_epu32avx512f and avx512vl
Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtpd_psavx512f and avx512vl
Convert packed double-precision (64-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtph_psavx512f and avx512vl
Convert packed half-precision (16-bit) floating-point elements in a to packed single-precision (32-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtps_epi32avx512f and avx512vl
Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtps_epu32avx512f and avx512vl
Convert packed single-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtps_phavx512f and avx512vl
Convert packed single-precision (32-bit) floating-point elements in a to packed half-precision (16-bit) floating-point elements, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm_maskz_cvtsd_ssavx512f
Convert the lower double-precision (64-bit) floating-point element in b to a single-precision (32-bit) floating-point element, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
_mm_maskz_cvtsepi32_epi8avx512f and avx512vl
Convert packed signed 32-bit integers in a to packed 8-bit integers with signed saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtsepi32_epi16avx512f and avx512vl
Convert packed signed 32-bit integers in a to packed 16-bit integers with signed saturation, and store the results in dst.
_mm_maskz_cvtsepi64_epi8avx512f and avx512vl
Convert packed signed 64-bit integers in a to packed 8-bit integers with signed saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtsepi64_epi16avx512f and avx512vl
Convert packed signed 64-bit integers in a to packed 16-bit integers with signed saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtsepi64_epi32avx512f and avx512vl
Convert packed signed 64-bit integers in a to packed 32-bit integers with signed saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtss_sdavx512f
Convert the lower single-precision (32-bit) floating-point element in b to a double-precision (64-bit) floating-point element, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
_mm_maskz_cvttpd_epi32avx512f and avx512vl
Convert packed double-precision (64-bit) floating-point elements in a to packed 32-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvttpd_epu32avx512f and avx512vl
Convert packed double-precision (64-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvttps_epi32avx512f and avx512vl
Convert packed single-precision (32-bit) floating-point elements in a to packed 32-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvttps_epu32avx512f and avx512vl
Convert packed double-precision (32-bit) floating-point elements in a to packed unsigned 32-bit integers with truncation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtusepi32_epi8avx512f and avx512vl
Convert packed unsigned 32-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtusepi32_epi16avx512f and avx512vl
Convert packed unsigned 32-bit integers in a to packed unsigned 16-bit integers with unsigned saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtusepi64_epi8avx512f and avx512vl
Convert packed unsigned 64-bit integers in a to packed unsigned 8-bit integers with unsigned saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtusepi64_epi16avx512f and avx512vl
Convert packed unsigned 64-bit integers in a to packed unsigned 16-bit integers with unsigned saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_cvtusepi64_epi32avx512f and avx512vl
Convert packed unsigned 64-bit integers in a to packed unsigned 32-bit integers with unsigned saturation, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_div_pdavx512f and avx512vl
Divide packed double-precision (64-bit) floating-point elements in a by packed elements in b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_div_psavx512f and avx512vl
Divide packed single-precision (32-bit) floating-point elements in a by packed elements in b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_div_round_sdavx512f
Divide the lower double-precision (64-bit) floating-point element in a by the lower double-precision (64-bit) floating-point element in b, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.\
_mm_maskz_div_round_ssavx512f
Divide the lower single-precision (32-bit) floating-point element in a by the lower single-precision (32-bit) floating-point element in b, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_maskz_div_sdavx512f
Divide the lower double-precision (64-bit) floating-point element in a by the lower double-precision (64-bit) floating-point element in b, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
_mm_maskz_div_ssavx512f
Divide the lower single-precision (32-bit) floating-point element in a by the lower single-precision (32-bit) floating-point element in b, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
_mm_maskz_expand_epi32avx512f and avx512vl
Load contiguous active 32-bit integers from a (those with their respective bit set in mask k), and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_expand_epi64avx512f and avx512vl
Load contiguous active 64-bit integers from a (those with their respective bit set in mask k), and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_expand_pdavx512f and avx512vl
Load contiguous active double-precision (64-bit) floating-point elements from a (those with their respective bit set in mask k), and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_expand_psavx512f and avx512vl
Load contiguous active single-precision (32-bit) floating-point elements from a (those with their respective bit set in mask k), and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_expandloadu_epi32avx512f and avx512vl
Load contiguous active 32-bit integers from unaligned memory at mem_addr (those with their respective bit set in mask k), and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_expandloadu_epi64avx512f and avx512vl
Load contiguous active 64-bit integers from unaligned memory at mem_addr (those with their respective bit set in mask k), and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_expandloadu_pdavx512f and avx512vl
Load contiguous active double-precision (64-bit) floating-point elements from unaligned memory at mem_addr (those with their respective bit set in mask k), and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_expandloadu_psavx512f and avx512vl
Load contiguous active single-precision (32-bit) floating-point elements from unaligned memory at mem_addr (those with their respective bit set in mask k), and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_fixupimm_pdavx512f and avx512vl
Fix up packed double-precision (64-bit) floating-point elements in a and b using packed 64-bit integers in c, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). imm8 is used to set the required flags reporting.
_mm_maskz_fixupimm_psavx512f and avx512vl
Fix up packed single-precision (32-bit) floating-point elements in a and b using packed 32-bit integers in c, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). imm8 is used to set the required flags reporting.
_mm_maskz_fixupimm_round_sdavx512f
Fix up the lower double-precision (64-bit) floating-point elements in a and b using the lower 64-bit integer in c, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst. imm8 is used to set the required flags reporting.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_maskz_fixupimm_round_ssavx512f
Fix up the lower single-precision (32-bit) floating-point elements in a and b using the lower 32-bit integer in c, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst. imm8 is used to set the required flags reporting.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_maskz_fixupimm_sdavx512f
Fix up the lower double-precision (64-bit) floating-point elements in a and b using the lower 64-bit integer in c, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst. imm8 is used to set the required flags reporting.
_mm_maskz_fixupimm_ssavx512f
Fix up the lower single-precision (32-bit) floating-point elements in a and b using the lower 32-bit integer in c, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst. imm8 is used to set the required flags reporting.
_mm_maskz_fmadd_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_fmadd_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, add the intermediate result to packed elements in c, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_fmadd_round_sdavx512f
Multiply the lower double-precision (64-bit) floating-point elements in a and b, and add the intermediate result to the lower element in c. Store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.\
_mm_maskz_fmadd_round_ssavx512f
Multiply the lower single-precision (32-bit) floating-point elements in a and b, and add the intermediate result to the lower element in c. Store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_maskz_fmadd_sdavx512f
Multiply the lower double-precision (64-bit) floating-point elements in a and b, and add the intermediate result to the lower element in c. Store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
_mm_maskz_fmadd_ssavx512f
Multiply the lower single-precision (32-bit) floating-point elements in a and b, and add the intermediate result to the lower element in c. Store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
_mm_maskz_fmaddsub_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_fmaddsub_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_fmsub_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_fmsub_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_fmsub_round_sdavx512f
Multiply the lower double-precision (64-bit) floating-point elements in a and b, and subtract the lower element in c from the intermediate result. Store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.\
_mm_maskz_fmsub_round_ssavx512f
Multiply the lower single-precision (32-bit) floating-point elements in a and b, and subtract the lower element in c from the intermediate result. Store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_maskz_fmsub_sdavx512f
Multiply the lower double-precision (64-bit) floating-point elements in a and b, and subtract the lower element in c from the intermediate result. Store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
_mm_maskz_fmsub_ssavx512f
Multiply the lower single-precision (32-bit) floating-point elements in a and b, and subtract the lower element in c from the intermediate result. Store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
_mm_maskz_fmsubadd_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, alternatively add and subtract packed elements in c to/from the intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_fmsubadd_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, alternatively subtract and add packed elements in c from/to the intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_fnmadd_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_fnmadd_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, add the negated intermediate result to packed elements in c, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_fnmadd_round_sdavx512f
Multiply the lower double-precision (64-bit) floating-point elements in a and b, and add the negated intermediate result to the lower element in c. Store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.\
_mm_maskz_fnmadd_round_ssavx512f
Multiply the lower single-precision (32-bit) floating-point elements in a and b, and add the negated intermediate result to the lower element in c. Store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_maskz_fnmadd_sdavx512f
Multiply the lower double-precision (64-bit) floating-point elements in a and b, and add the negated intermediate result to the lower element in c. Store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
_mm_maskz_fnmadd_ssavx512f
Multiply the lower single-precision (32-bit) floating-point elements in a and b, and add the negated intermediate result to the lower element in c. Store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
_mm_maskz_fnmsub_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_fnmsub_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, subtract packed elements in c from the negated intermediate result, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_fnmsub_round_sdavx512f
Multiply the lower double-precision (64-bit) floating-point elements in a and b, and subtract the lower element in c from the negated intermediate result. Store the result in dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.\
_mm_maskz_fnmsub_round_ssavx512f
Multiply the lower single-precision (32-bit) floating-point elements in a and b, and subtract the lower element in c from the negated intermediate result. Store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_maskz_fnmsub_sdavx512f
Multiply the lower double-precision (64-bit) floating-point elements in a and b, and subtract the lower element in c from the negated intermediate result. Store the result in dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
_mm_maskz_fnmsub_ssavx512f
Multiply the lower single-precision (32-bit) floating-point elements in a and b, and subtract the lower element in c from the negated intermediate result. Store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
_mm_maskz_getexp_pdavx512f and avx512vl
Convert the exponent of each packed double-precision (64-bit) floating-point element in a to a double-precision (64-bit) floating-point number representing the integer exponent, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates floor(log2(x)) for each element.
_mm_maskz_getexp_psavx512f and avx512vl
Convert the exponent of each packed single-precision (32-bit) floating-point element in a to a single-precision (32-bit) floating-point number representing the integer exponent, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates floor(log2(x)) for each element.
_mm_maskz_getexp_round_sdavx512f
Convert the exponent of the lower double-precision (64-bit) floating-point element in b to a double-precision (64-bit) floating-point number representing the integer exponent, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst. This intrinsic essentially calculates floor(log2(x)) for the lower element.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_maskz_getexp_round_ssavx512f
Convert the exponent of the lower single-precision (32-bit) floating-point element in b to a single-precision (32-bit) floating-point number representing the integer exponent, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst. This intrinsic essentially calculates floor(log2(x)) for the lower element.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_maskz_getexp_sdavx512f
Convert the exponent of the lower double-precision (64-bit) floating-point element in b to a double-precision (64-bit) floating-point number representing the integer exponent, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst. This intrinsic essentially calculates floor(log2(x)) for the lower element.
_mm_maskz_getexp_ssavx512f
Convert the exponent of the lower single-precision (32-bit) floating-point element in b to a single-precision (32-bit) floating-point number representing the integer exponent, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst. This intrinsic essentially calculates floor(log2(x)) for the lower element.
_mm_maskz_getmant_pdavx512f and avx512vl
Normalize the mantissas of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
_mm_maskz_getmant_psavx512f and avx512vl
Normalize the mantissas of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
_mm_maskz_getmant_round_sdavx512f
Normalize the mantissas of the lower double-precision (64-bit) floating-point element in b, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst. This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_maskz_getmant_round_ssavx512f
Normalize the mantissas of the lower single-precision (32-bit) floating-point element in b, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst. This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_maskz_getmant_sdavx512f
Normalize the mantissas of the lower double-precision (64-bit) floating-point element in b, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst. This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_maskz_getmant_ssavx512f
Normalize the mantissas of the lower single-precision (32-bit) floating-point element in b, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst. This intrinsic essentially calculates ±(2^k)*|x.significand|, where k depends on the interval range defined by interv and the sign depends on sc and the source sign.
The mantissa is normalized to the interval specified by interv, which can take the following values:
_MM_MANT_NORM_1_2 // interval [1, 2)
_MM_MANT_NORM_p5_2 // interval [0.5, 2)
_MM_MANT_NORM_p5_1 // interval [0.5, 1)
_MM_MANT_NORM_p75_1p5 // interval [0.75, 1.5)
The sign is determined by sc which can take the following values:
_MM_MANT_SIGN_src // sign = sign(src)
_MM_MANT_SIGN_zero // sign = 0
_MM_MANT_SIGN_nan // dst = NaN if sign(src) = 1
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_maskz_load_epi32avx512f and avx512vl
Load packed 32-bit integers from memory into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr must be aligned on a 16-byte boundary or a general-protection exception may be generated.
_mm_maskz_load_epi64avx512f and avx512vl
Load packed 64-bit integers from memory into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr must be aligned on a 16-byte boundary or a general-protection exception may be generated.
_mm_maskz_load_pdavx512f and avx512vl
Load packed double-precision (64-bit) floating-point elements from memory into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr must be aligned on a 16-byte boundary or a general-protection exception may be generated.
_mm_maskz_load_psavx512f and avx512vl
Load packed single-precision (32-bit) floating-point elements from memory into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr must be aligned on a 16-byte boundary or a general-protection exception may be generated.
_mm_maskz_load_sdavx512f
Load a double-precision (64-bit) floating-point element from memory into the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and set the upper element of dst to zero. mem_addr must be aligned on a 16-byte boundary or a general-protection exception may be generated.
_mm_maskz_load_ssavx512f
Load a single-precision (32-bit) floating-point element from memory into the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and set the upper 3 packed elements of dst to zero. mem_addr must be aligned on a 16-byte boundary or a general-protection exception may be generated.
_mm_maskz_loadu_epi32avx512f and avx512vl
Load packed 32-bit integers from memory into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular boundary.
_mm_maskz_loadu_epi64avx512f and avx512vl
Load packed 64-bit integers from memory into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular boundary.
_mm_maskz_loadu_pdavx512f and avx512vl
Load packed double-precision (64-bit) floating-point elements from memory into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular boundary.
_mm_maskz_loadu_psavx512f and avx512vl
Load packed single-precision (32-bit) floating-point elements from memory into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). mem_addr does not need to be aligned on any particular boundary.
_mm_maskz_max_epi32avx512f and avx512vl
Compare packed signed 32-bit integers in a and b, and store packed maximum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_max_epi64avx512f and avx512vl
Compare packed signed 64-bit integers in a and b, and store packed maximum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_max_epu32avx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b, and store packed maximum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_max_epu64avx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b, and store packed maximum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_max_pdavx512f and avx512vl
Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed maximum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_max_psavx512f and avx512vl
Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed maximum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_max_round_sdavx512f
Compare the lower double-precision (64-bit) floating-point elements in a and b, store the maximum value in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_maskz_max_round_ssavx512f
Compare the lower single-precision (32-bit) floating-point elements in a and b, store the maximum value in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_maskz_max_sdavx512f
Compare the lower double-precision (64-bit) floating-point elements in a and b, store the maximum value in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
_mm_maskz_max_ssavx512f
Compare the lower single-precision (32-bit) floating-point elements in a and b, store the maximum value in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
_mm_maskz_min_epi32avx512f and avx512vl
Compare packed signed 32-bit integers in a and b, and store packed minimum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_min_epi64avx512f and avx512vl
Compare packed signed 64-bit integers in a and b, and store packed minimum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_min_epu32avx512f and avx512vl
Compare packed unsigned 32-bit integers in a and b, and store packed minimum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_min_epu64avx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b, and store packed minimum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_min_pdavx512f and avx512vl
Compare packed double-precision (64-bit) floating-point elements in a and b, and store packed minimum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_min_psavx512f and avx512vl
Compare packed single-precision (32-bit) floating-point elements in a and b, and store packed minimum values in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_min_round_sdavx512f
Compare the lower double-precision (64-bit) floating-point elements in a and b, store the minimum value in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_maskz_min_round_ssavx512f
Compare the lower single-precision (32-bit) floating-point elements in a and b, store the minimum value in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_maskz_min_sdavx512f
Compare the lower double-precision (64-bit) floating-point elements in a and b, store the minimum value in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
_mm_maskz_min_ssavx512f
Compare the lower single-precision (32-bit) floating-point elements in a and b, store the minimum value in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
_mm_maskz_mov_epi32avx512f and avx512vl
Move packed 32-bit integers from a into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_mov_epi64avx512f and avx512vl
Move packed 64-bit integers from a into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_mov_pdavx512f and avx512vl
Move packed double-precision (64-bit) floating-point elements from a into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_mov_psavx512f and avx512vl
Move packed single-precision (32-bit) floating-point elements from a into dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_move_sdavx512f
Move the lower double-precision (64-bit) floating-point element from b to the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
_mm_maskz_move_ssavx512f
Move the lower single-precision (32-bit) floating-point element from b to the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
_mm_maskz_movedup_pdavx512f and avx512vl
Duplicate even-indexed double-precision (64-bit) floating-point elements from a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_movehdup_psavx512f and avx512vl
Duplicate odd-indexed single-precision (32-bit) floating-point elements from a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_moveldup_psavx512f and avx512vl
Duplicate even-indexed single-precision (32-bit) floating-point elements from a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_mul_epi32avx512f and avx512vl
Multiply the low signed 32-bit integers from each packed 64-bit element in a and b, and store the signed 64-bit results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_mul_epu32avx512f and avx512vl
Multiply the low unsigned 32-bit integers from each packed 64-bit element in a and b, and store the unsigned 64-bit results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_mul_pdavx512f and avx512vl
Multiply packed double-precision (64-bit) floating-point elements in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_mul_psavx512f and avx512vl
Multiply packed single-precision (32-bit) floating-point elements in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_mul_round_sdavx512f
Multiply the lower double-precision (64-bit) floating-point element in a and b, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.\
_mm_maskz_mul_round_ssavx512f
Multiply the lower single-precision (32-bit) floating-point element in a and b, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_maskz_mul_sdavx512f
Multiply the lower double-precision (64-bit) floating-point element in a and b, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
_mm_maskz_mul_ssavx512f
Multiply the lower single-precision (32-bit) floating-point element in a and b, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
_mm_maskz_mullo_epi32avx512f and avx512vl
Multiply the packed 32-bit integers in a and b, producing intermediate 64-bit integers, and store the low 32 bits of the intermediate integers in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_or_epi32avx512f and avx512vl
Compute the bitwise OR of packed 32-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_or_epi64avx512f and avx512vl
Compute the bitwise OR of packed 64-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_permute_pdavx512f and avx512vl
Shuffle double-precision (64-bit) floating-point elements in a within 128-bit lanes using the control in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_permute_psavx512f and avx512vl
Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_permutevar_pdavx512f and avx512vl
Shuffle double-precision (64-bit) floating-point elements in a within 128-bit lanes using the control in b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_permutevar_psavx512f and avx512vl
Shuffle single-precision (32-bit) floating-point elements in a within 128-bit lanes using the control in b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_permutex2var_epi32avx512f and avx512vl
Shuffle 32-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_permutex2var_epi64avx512f and avx512vl
Shuffle 64-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_permutex2var_pdavx512f and avx512vl
Shuffle double-precision (64-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_permutex2var_psavx512f and avx512vl
Shuffle single-precision (32-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_rcp14_pdavx512f and avx512vl
Compute the approximate reciprocal of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.
_mm_maskz_rcp14_psavx512f and avx512vl
Compute the approximate reciprocal of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.
_mm_maskz_rcp14_sdavx512f
Compute the approximate reciprocal of the lower double-precision (64-bit) floating-point element in b, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst. The maximum relative error for this approximation is less than 2^-14.
_mm_maskz_rcp14_ssavx512f
Compute the approximate reciprocal of the lower single-precision (32-bit) floating-point element in b, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst. The maximum relative error for this approximation is less than 2^-14.
_mm_maskz_rol_epi32avx512f and avx512vl
Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_rol_epi64avx512f and avx512vl
Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_rolv_epi32avx512f and avx512vl
Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in the corresponding element of b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_rolv_epi64avx512f and avx512vl
Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in the corresponding element of b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_ror_epi32avx512f and avx512vl
Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_ror_epi64avx512f and avx512vl
Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_rorv_epi32avx512f and avx512vl
Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in the corresponding element of b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_rorv_epi64avx512f and avx512vl
Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in the corresponding element of b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_roundscale_pdavx512f and avx512vl
Round packed double-precision (64-bit) floating-point elements in a to the number of fraction bits specified by imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm_maskz_roundscale_psavx512f and avx512vl
Round packed single-precision (32-bit) floating-point elements in a to the number of fraction bits specified by imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm_maskz_roundscale_round_sdavx512f
Round the lower double-precision (64-bit) floating-point element in b to the number of fraction bits specified by imm8, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm_maskz_roundscale_round_ssavx512f
Round the lower single-precision (32-bit) floating-point element in b to the number of fraction bits specified by imm8, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm_maskz_roundscale_sdavx512f
Round the lower double-precision (64-bit) floating-point element in b to the number of fraction bits specified by imm8, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm_maskz_roundscale_ssavx512f
Round the lower single-precision (32-bit) floating-point element in b to the number of fraction bits specified by imm8, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm_maskz_rsqrt14_pdavx512f and avx512vl
Compute the approximate reciprocal square root of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.
_mm_maskz_rsqrt14_psavx512f and avx512vl
Compute the approximate reciprocal square root of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set). The maximum relative error for this approximation is less than 2^-14.
_mm_maskz_rsqrt14_sdavx512f
Compute the approximate reciprocal square root of the lower double-precision (64-bit) floating-point element in b, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst. The maximum relative error for this approximation is less than 2^-14.
_mm_maskz_rsqrt14_ssavx512f
Compute the approximate reciprocal square root of the lower single-precision (32-bit) floating-point element in b, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst. The maximum relative error for this approximation is less than 2^-14.
_mm_maskz_scalef_pdavx512f and avx512vl
Scale the packed double-precision (64-bit) floating-point elements in a using values from b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_scalef_psavx512f and avx512vl
Scale the packed single-precision (32-bit) floating-point elements in a using values from b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_scalef_round_sdavx512f
Scale the packed double-precision (64-bit) floating-point elements in a using values from b, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.\
_mm_maskz_scalef_round_ssavx512f
Scale the packed single-precision (32-bit) floating-point elements in a using values from b, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_maskz_scalef_sdavx512f
Scale the packed double-precision (64-bit) floating-point elements in a using values from b, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
_mm_maskz_scalef_ssavx512f
Scale the packed single-precision (32-bit) floating-point elements in a using values from b, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
_mm_maskz_set1_epi32avx512f and avx512vl
Broadcast 32-bit integer a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_set1_epi64avx512f and avx512vl
Broadcast 64-bit integer a to all elements of dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_shuffle_epi32avx512f and avx512vl
Shuffle 32-bit integers in a within 128-bit lanes using the control in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_shuffle_pdavx512f and avx512vl
Shuffle double-precision (64-bit) floating-point elements within 128-bit lanes using the control in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_shuffle_psavx512f and avx512vl
Shuffle single-precision (32-bit) floating-point elements in a using the control in imm8, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_sll_epi32avx512f and avx512vl
Shift packed 32-bit integers in a left by count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_sll_epi64avx512f and avx512vl
Shift packed 64-bit integers in a left by count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_slli_epi32avx512f and avx512vl
Shift packed 32-bit integers in a left by imm8 while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_slli_epi64avx512f and avx512vl
Shift packed 64-bit integers in a left by imm8 while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_sllv_epi32avx512f and avx512vl
Shift packed 32-bit integers in a left by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_sllv_epi64avx512f and avx512vl
Shift packed 64-bit integers in a left by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_sqrt_pdavx512f and avx512vl
Compute the square root of packed double-precision (64-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_sqrt_psavx512f and avx512vl
Compute the square root of packed single-precision (32-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_sqrt_round_sdavx512f
Compute the square root of the lower double-precision (64-bit) floating-point element in b, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.\
_mm_maskz_sqrt_round_ssavx512f
Compute the square root of the lower single-precision (32-bit) floating-point element in b, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_maskz_sqrt_sdavx512f
Compute the square root of the lower double-precision (64-bit) floating-point element in b, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
_mm_maskz_sqrt_ssavx512f
Compute the square root of the lower single-precision (32-bit) floating-point element in b, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
_mm_maskz_sra_epi32avx512f and avx512vl
Shift packed 32-bit integers in a right by count while shifting in sign bits, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_sra_epi64avx512f and avx512vl
Shift packed 64-bit integers in a right by count while shifting in sign bits, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_srai_epi32avx512f and avx512vl
Shift packed 32-bit integers in a right by imm8 while shifting in sign bits, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_srai_epi64avx512f and avx512vl
Shift packed 64-bit integers in a right by imm8 while shifting in sign bits, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_srav_epi32avx512f and avx512vl
Shift packed 32-bit integers in a right by the amount specified by the corresponding element in count while shifting in sign bits, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_srav_epi64avx512f and avx512vl
Shift packed 64-bit integers in a right by the amount specified by the corresponding element in count while shifting in sign bits, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_srl_epi32avx512f and avx512vl
Shift packed 32-bit integers in a right by count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_srl_epi64avx512f and avx512vl
Shift packed 64-bit integers in a right by count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_srli_epi32avx512f and avx512vl
Shift packed 32-bit integers in a right by imm8 while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_srli_epi64avx512f and avx512vl
Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_srlv_epi32avx512f and avx512vl
Shift packed 32-bit integers in a right by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_srlv_epi64avx512f and avx512vl
Shift packed 64-bit integers in a right by the amount specified by the corresponding element in count while shifting in zeros, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_sub_epi32avx512f and avx512vl
Subtract packed 32-bit integers in b from packed 32-bit integers in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_sub_epi64avx512f and avx512vl
Subtract packed 64-bit integers in b from packed 64-bit integers in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_sub_pdavx512f and avx512vl
Subtract packed double-precision (64-bit) floating-point elements in b from packed double-precision (64-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_sub_psavx512f and avx512vl
Subtract packed single-precision (32-bit) floating-point elements in b from packed single-precision (32-bit) floating-point elements in a, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_sub_round_sdavx512f
Subtract the lower double-precision (64-bit) floating-point element in b from the lower double-precision (64-bit) floating-point element in a, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.\
_mm_maskz_sub_round_ssavx512f
Subtract the lower single-precision (32-bit) floating-point element in b from the lower single-precision (32-bit) floating-point element in a, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_maskz_sub_sdavx512f
Subtract the lower double-precision (64-bit) floating-point element in b from the lower double-precision (64-bit) floating-point element in a, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper element from a to the upper element of dst.
_mm_maskz_sub_ssavx512f
Subtract the lower single-precision (32-bit) floating-point element in b from the lower single-precision (32-bit) floating-point element in a, store the result in the lower element of dst using zeromask k (the element is zeroed out when mask bit 0 is not set), and copy the upper 3 packed elements from a to the upper elements of dst.
_mm_maskz_ternarylogic_epi32avx512f and avx512vl
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in imm8. For each bit in each packed 32-bit integer, the corresponding bit from a, b, and c are used to form a 3 bit index into imm8, and the value at that bit in imm8 is written to the corresponding bit in dst using zeromask k at 32-bit granularity (32-bit elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_ternarylogic_epi64avx512f and avx512vl
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in imm8. For each bit in each packed 64-bit integer, the corresponding bit from a, b, and c are used to form a 3 bit index into imm8, and the value at that bit in imm8 is written to the corresponding bit in dst using zeromask k at 64-bit granularity (64-bit elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_unpackhi_epi32avx512f and avx512vl
Unpack and interleave 32-bit integers from the high half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_unpackhi_epi64avx512f and avx512vl
Unpack and interleave 64-bit integers from the high half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_unpackhi_pdavx512f and avx512vl
Unpack and interleave double-precision (64-bit) floating-point elements from the high half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_unpackhi_psavx512f and avx512vl
Unpack and interleave single-precision (32-bit) floating-point elements from the high half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_unpacklo_epi32avx512f and avx512vl
Unpack and interleave 32-bit integers from the low half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_unpacklo_epi64avx512f and avx512vl
Unpack and interleave 64-bit integers from the low half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_unpacklo_pdavx512f and avx512vl
Unpack and interleave double-precision (64-bit) floating-point elements from the low half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_unpacklo_psavx512f and avx512vl
Unpack and interleave single-precision (32-bit) floating-point elements from the low half of each 128-bit lane in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_xor_epi32avx512f and avx512vl
Compute the bitwise XOR of packed 32-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_maskz_xor_epi64avx512f and avx512vl
Compute the bitwise XOR of packed 64-bit integers in a and b, and store the results in dst using zeromask k (elements are zeroed out when the corresponding mask bit is not set).
_mm_max_epi64avx512f and avx512vl
Compare packed signed 64-bit integers in a and b, and store packed maximum values in dst.
_mm_max_epu64avx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b, and store packed maximum values in dst.
_mm_max_round_sdavx512f
Compare the lower double-precision (64-bit) floating-point elements in a and b, store the maximum value in the lower element of dst, and copy the upper element from a to the upper element of dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_max_round_ssavx512f
Compare the lower single-precision (32-bit) floating-point elements in a and b, store the maximum value in the lower element of dst, and copy the upper 3 packed elements from a to the upper elements of dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_min_epi64avx512f and avx512vl
Compare packed signed 64-bit integers in a and b, and store packed minimum values in dst.
_mm_min_epu64avx512f and avx512vl
Compare packed unsigned 64-bit integers in a and b, and store packed minimum values in dst.
_mm_min_round_sdavx512f
Compare the lower double-precision (64-bit) floating-point elements in a and b, store the minimum value in the lower element of dst , and copy the upper element from a to the upper element of dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_min_round_ssavx512f
Compare the lower single-precision (32-bit) floating-point elements in a and b, store the minimum value in the lower element of dst, and copy the upper 3 packed elements from a to the upper elements of dst.
Exceptions can be suppressed by passing _MM_FROUND_NO_EXC in the sae parameter.
_mm_mmask_i32gather_epi32avx512f and avx512vl
Loads 4 32-bit integer elements from memory starting at location base_addr at packed 32-bit integer indices stored in vindex scaled by scale using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mmask_i32gather_epi64avx512f and avx512vl
Loads 2 64-bit integer elements from memory starting at location base_addr at packed 32-bit integer indices stored in vindex scaled by scale using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mmask_i32gather_pdavx512f and avx512vl
Loads 2 double-precision (64-bit) floating-point elements from memory starting at location base_addr at packed 32-bit integer indices stored in vindex scaled by scale using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mmask_i32gather_psavx512f and avx512vl
Loads 4 single-precision (32-bit) floating-point elements from memory starting at location base_addr at packed 32-bit integer indices stored in vindex scaled by scale using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mmask_i64gather_epi32avx512f and avx512vl
Loads 2 32-bit integer elements from memory starting at location base_addr at packed 64-bit integer indices stored in vindex scaled by scale using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mmask_i64gather_epi64avx512f and avx512vl
Loads 2 64-bit integer elements from memory starting at location base_addr at packed 64-bit integer indices stored in vindex scaled by scale using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mmask_i64gather_pdavx512f and avx512vl
Loads 2 double-precision (64-bit) floating-point elements from memory starting at location base_addr at packed 64-bit integer indices stored in vindex scaled by scale using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mmask_i64gather_psavx512f and avx512vl
Loads 2 single-precision (32-bit) floating-point elements from memory starting at location base_addr at packed 64-bit integer indices stored in vindex scaled by scale using writemask k (elements are copied from src when the corresponding mask bit is not set).
_mm_mul_round_sdavx512f
Multiply the lower double-precision (64-bit) floating-point element in a and b, store the result in the lower element of dst, and copy the upper element from a to the upper element of dst.\
_mm_mul_round_ssavx512f
Multiply the lower single-precision (32-bit) floating-point element in a and b, store the result in the lower element of dst, and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_or_epi32avx512f and avx512vl
Compute the bitwise OR of packed 32-bit integers in a and b, and store the results in dst.
_mm_or_epi64avx512f and avx512vl
Compute the bitwise OR of packed 64-bit integers in a and b, and store the resut in dst.
_mm_permutex2var_epi32avx512f and avx512vl
Shuffle 32-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst.
_mm_permutex2var_epi64avx512f and avx512vl
Shuffle 64-bit integers in a and b across lanes using the corresponding selector and index in idx, and store the results in dst.
_mm_permutex2var_pdavx512f and avx512vl
Shuffle double-precision (64-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst.
_mm_permutex2var_psavx512f and avx512vl
Shuffle single-precision (32-bit) floating-point elements in a and b across lanes using the corresponding selector and index in idx, and store the results in dst.
_mm_rcp14_pdavx512f and avx512vl
Compute the approximate reciprocal of packed double-precision (64-bit) floating-point elements in a, and store the results in dst. The maximum relative error for this approximation is less than 2^-14.
_mm_rcp14_psavx512f and avx512vl
Compute the approximate reciprocal of packed single-precision (32-bit) floating-point elements in a, and store the results in dst. The maximum relative error for this approximation is less than 2^-14.
_mm_rcp14_sdavx512f
Compute the approximate reciprocal of the lower double-precision (64-bit) floating-point element in b, store the result in the lower element of dst, and copy the upper element from a to the upper element of dst. The maximum relative error for this approximation is less than 2^-14.
_mm_rcp14_ssavx512f
Compute the approximate reciprocal of the lower single-precision (32-bit) floating-point element in b, store the result in the lower element of dst, and copy the upper 3 packed elements from a to the upper elements of dst. The maximum relative error for this approximation is less than 2^-14.
_mm_rol_epi32avx512f and avx512vl
Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in imm8, and store the results in dst.
_mm_rol_epi64avx512f and avx512vl
Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in imm8, and store the results in dst.
_mm_rolv_epi32avx512f and avx512vl
Rotate the bits in each packed 32-bit integer in a to the left by the number of bits specified in the corresponding element of b, and store the results in dst.
_mm_rolv_epi64avx512f and avx512vl
Rotate the bits in each packed 64-bit integer in a to the left by the number of bits specified in the corresponding element of b, and store the results in dst.
_mm_ror_epi32avx512f and avx512vl
Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in imm8, and store the results in dst.
_mm_ror_epi64avx512f and avx512vl
Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in imm8, and store the results in dst.
_mm_rorv_epi32avx512f and avx512vl
Rotate the bits in each packed 32-bit integer in a to the right by the number of bits specified in the corresponding element of b, and store the results in dst.
_mm_rorv_epi64avx512f and avx512vl
Rotate the bits in each packed 64-bit integer in a to the right by the number of bits specified in the corresponding element of b, and store the results in dst.
_mm_roundscale_pdavx512f and avx512vl
Round packed double-precision (64-bit) floating-point elements in a to the number of fraction bits specified by imm8, and store the results in dst.
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm_roundscale_psavx512f and avx512vl
Round packed single-precision (32-bit) floating-point elements in a to the number of fraction bits specified by imm8, and store the results in dst.
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm_roundscale_round_sdavx512f
Round the lower double-precision (64-bit) floating-point element in b to the number of fraction bits specified by imm8, store the result in the lower element of dst, and copy the upper element from a to the upper element of dst.
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm_roundscale_round_ssavx512f
Round the lower single-precision (32-bit) floating-point element in b to the number of fraction bits specified by imm8, store the result in the lower element of dst, and copy the upper 3 packed elements from a to the upper elements of dst.
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm_roundscale_sdavx512f
Round the lower double-precision (64-bit) floating-point element in b to the number of fraction bits specified by imm8, store the result in the lower element of dst, and copy the upper element from a to the upper element of dst.
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm_roundscale_ssavx512f
Round the lower single-precision (32-bit) floating-point element in b to the number of fraction bits specified by imm8, store the result in the lower element of dst, and copy the upper 3 packed elements from a to the upper elements of dst.
Rounding is done according to the imm8[2:0] parameter, which can be one of:\
_mm_rsqrt14_pdavx512f and avx512vl
Compute the approximate reciprocal square root of packed double-precision (64-bit) floating-point elements in a, and store the results in dst. The maximum relative error for this approximation is less than 2^-14.
_mm_rsqrt14_psavx512f and avx512vl
Compute the approximate reciprocal square root of packed single-precision (32-bit) floating-point elements in a, and store the results in dst. The maximum relative error for this approximation is less than 2^-14.
_mm_rsqrt14_sdavx512f
Compute the approximate reciprocal square root of the lower double-precision (64-bit) floating-point element in b, store the result in the lower element of dst, and copy the upper element from a to the upper element of dst. The maximum relative error for this approximation is less than 2^-14.
_mm_rsqrt14_ssavx512f
Compute the approximate reciprocal square root of the lower single-precision (32-bit) floating-point element in b, store the result in the lower element of dst, and copy the upper 3 packed elements from a to the upper elements of dst. The maximum relative error for this approximation is less than 2^-14.
_mm_scalef_pdavx512f and avx512vl
Scale the packed double-precision (64-bit) floating-point elements in a using values from b, and store the results in dst.
_mm_scalef_psavx512f and avx512vl
Scale the packed single-precision (32-bit) floating-point elements in a using values from b, and store the results in dst.
_mm_scalef_round_sdavx512f
Scale the packed double-precision (64-bit) floating-point elements in a using values from b, store the result in the lower element of dst, and copy the upper element from a to the upper element of dst.\
_mm_scalef_round_ssavx512f
Scale the packed single-precision (32-bit) floating-point elements in a using values from b, store the result in the lower element of dst, and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_scalef_sdavx512f
Scale the packed double-precision (64-bit) floating-point elements in a using values from b, store the result in the lower element of dst, and copy the upper element from a to the upper element of dst.
_mm_scalef_ssavx512f
Scale the packed single-precision (32-bit) floating-point elements in a using values from b, store the result in the lower element of dst, and copy the upper 3 packed elements from a to the upper elements of dst.
_mm_sqrt_round_sdavx512f
Compute the square root of the lower double-precision (64-bit) floating-point element in b, store the result in the lower element of dst, and copy the upper element from a to the upper element of dst.\
_mm_sqrt_round_ssavx512f
Compute the square root of the lower single-precision (32-bit) floating-point element in b, store the result in the lower element of dst, and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_sra_epi64avx512f and avx512vl
Shift packed 64-bit integers in a right by count while shifting in sign bits, and store the results in dst.
_mm_srai_epi64avx512f and avx512vl
Shift packed 64-bit integers in a right by imm8 while shifting in sign bits, and store the results in dst.
_mm_srav_epi64avx512f and avx512vl
Shift packed 64-bit integers in a right by the amount specified by the corresponding element in count while shifting in sign bits, and store the results in dst.
_mm_store_epi32avx512f and avx512vl
Store 128-bits (composed of 4 packed 32-bit integers) from a into memory. mem_addr must be aligned on a 16-byte boundary or a general-protection exception may be generated.
_mm_store_epi64avx512f and avx512vl
Store 128-bits (composed of 2 packed 64-bit integers) from a into memory. mem_addr must be aligned on a 16-byte boundary or a general-protection exception may be generated.
_mm_storeu_epi32avx512f and avx512vl
Store 128-bits (composed of 4 packed 32-bit integers) from a into memory. mem_addr does not need to be aligned on any particular boundary.
_mm_storeu_epi64avx512f and avx512vl
Store 128-bits (composed of 2 packed 64-bit integers) from a into memory. mem_addr does not need to be aligned on any particular boundary.
_mm_sub_round_sdavx512f
Subtract the lower double-precision (64-bit) floating-point element in b from the lower double-precision (64-bit) floating-point element in a, store the result in the lower element of dst, and copy the upper element from a to the upper element of dst.\
_mm_sub_round_ssavx512f
Subtract the lower single-precision (32-bit) floating-point element in b from the lower single-precision (32-bit) floating-point element in a, store the result in the lower element of dst, and copy the upper 3 packed elements from a to the upper elements of dst.\
_mm_ternarylogic_epi32avx512f and avx512vl
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in imm8. For each bit in each packed 32-bit integer, the corresponding bit from a, b, and c are used to form a 3 bit index into imm8, and the value at that bit in imm8 is written to the corresponding bit in dst.
_mm_ternarylogic_epi64avx512f and avx512vl
Bitwise ternary logic that provides the capability to implement any three-operand binary function; the specific binary function is specified by value in imm8. For each bit in each packed 64-bit integer, the corresponding bit from a, b, and c are used to form a 3 bit index into imm8, and the value at that bit in imm8 is written to the corresponding bit in dst.
_mm_test_epi32_maskavx512f and avx512vl
Compute the bitwise AND of packed 32-bit integers in a and b, producing intermediate 32-bit values, and set the corresponding bit in result mask k if the intermediate value is non-zero.
_mm_test_epi64_maskavx512f and avx512vl
Compute the bitwise AND of packed 64-bit integers in a and b, producing intermediate 64-bit values, and set the corresponding bit in result mask k if the intermediate value is non-zero.
_mm_testn_epi32_maskavx512f and avx512vl
Compute the bitwise NAND of packed 32-bit integers in a and b, producing intermediate 32-bit values, and set the corresponding bit in result mask k if the intermediate value is zero.
_mm_testn_epi64_maskavx512f and avx512vl
Compute the bitwise NAND of packed 64-bit integers in a and b, producing intermediate 64-bit values, and set the corresponding bit in result mask k if the intermediate value is zero.
_mm_xor_epi32avx512f and avx512vl
Compute the bitwise XOR of packed 32-bit integers in a and b, and store the results in dst.
_mm_xor_epi64avx512f and avx512vl
Compute the bitwise XOR of packed 64-bit integers in a and b, and store the results in dst.
_store_mask16avx512f
Store 16-bit mask to memory
expandloadd_128 🔒
expandloadd_256 🔒
expandloadd_512 🔒
expandloadpd_128 🔒
expandloadpd_256 🔒
expandloadpd_512 🔒
expandloadps_128 🔒
expandloadps_256 🔒
expandloadps_512 🔒
expandloadq_128 🔒
expandloadq_256 🔒
expandloadq_512 🔒
loadapd_128 🔒
loadapd_256 🔒
loadapd_512 🔒
loadaps_128 🔒
loadaps_256 🔒
loadaps_512 🔒
loaddqa32_128 🔒
loaddqa32_256 🔒
loaddqa32_512 🔒
loaddqa64_128 🔒
loaddqa64_256 🔒
loaddqa64_512 🔒
loaddqu32_128 🔒
loaddqu32_256 🔒
loaddqu32_512 🔒
loaddqu64_128 🔒
loaddqu64_256 🔒
loaddqu64_512 🔒
loadupd_128 🔒
loadupd_256 🔒
loadupd_512 🔒
loadups_128 🔒
loadups_256 🔒
loadups_512 🔒
storeapd_128 🔒
storeapd_256 🔒
storeapd_512 🔒
storeaps_128 🔒
storeaps_256 🔒
storeaps_512 🔒
storedqa32_128 🔒
storedqa32_256 🔒
storedqa32_512 🔒
storedqa64_128 🔒
storedqa64_256 🔒
storedqa64_512 🔒
storedqu32_128 🔒
storedqu32_256 🔒
storedqu32_512 🔒
storedqu64_128 🔒
storedqu64_256 🔒
storedqu64_512 🔒
storeupd_128 🔒
storeupd_256 🔒
storeupd_512 🔒
storeups_128 🔒
storeups_256 🔒
storeups_512 🔒
vaddpd 🔒
vaddps 🔒
vaddsd 🔒
vaddss 🔒
vcmppd 🔒
vcmppd128 🔒
vcmppd256 🔒
vcmpps 🔒
vcmpps128 🔒
vcmpps256 🔒
vcmpsd 🔒
vcmpss 🔒
vcomisd 🔒
vcomiss 🔒
vcompresspd 🔒
vcompresspd128 🔒
vcompresspd256 🔒
vcompressps 🔒
vcompressps128 🔒
vcompressps256 🔒
vcompressstored 🔒
vcompressstored128 🔒
vcompressstored256 🔒
vcompressstorepd 🔒
vcompressstorepd128 🔒
vcompressstorepd256 🔒
vcompressstoreps 🔒
vcompressstoreps128 🔒
vcompressstoreps256 🔒
vcompressstoreq 🔒
vcompressstoreq128 🔒
vcompressstoreq256 🔒
vcvtdq2ps 🔒
vcvtpd2dq 🔒
vcvtpd2ps 🔒
vcvtpd2udq 🔒
vcvtpd2udq128 🔒
vcvtpd2udq256 🔒
vcvtph2ps 🔒
vcvtps2dq 🔒
vcvtps2pd 🔒
vcvtps2ph 🔒
vcvtps2ph128 🔒
vcvtps2ph256 🔒
vcvtps2udq 🔒
vcvtps2udq128 🔒
vcvtps2udq256 🔒
vcvtsd2si 🔒
vcvtsd2ss 🔒
vcvtsd2usi 🔒
vcvtsi2ss 🔒
vcvtss2sd 🔒
vcvtss2si 🔒
vcvtss2usi 🔒
vcvttpd2dq 🔒
vcvttpd2dq128 🔒
vcvttpd2dq256 🔒
vcvttpd2udq 🔒
vcvttpd2udq128 🔒
vcvttpd2udq256 🔒
vcvttps2dq 🔒
vcvttps2dq128 🔒
vcvttps2dq256 🔒
vcvttps2udq 🔒
vcvttps2udq128 🔒
vcvttps2udq256 🔒
vcvttsd2si 🔒
vcvttsd2usi 🔒
vcvttss2si 🔒
vcvttss2usi 🔒
vcvtudq2ps 🔒
vcvtusi2ss 🔒
vdivpd 🔒
vdivps 🔒
vdivsd 🔒
vdivss 🔒
vexpandpd 🔒
vexpandpd128 🔒
vexpandpd256 🔒
vexpandps 🔒
vexpandps128 🔒
vexpandps256 🔒
vfixupimmpd 🔒
vfixupimmpd128 🔒
vfixupimmpd256 🔒
vfixupimmpdz 🔒
vfixupimmpdz128 🔒
vfixupimmpdz256 🔒
vfixupimmps 🔒
vfixupimmps128 🔒
vfixupimmps256 🔒
vfixupimmpsz 🔒
vfixupimmpsz128 🔒
vfixupimmpsz256 🔒
vfixupimmsd 🔒
vfixupimmsdz 🔒
vfixupimmss 🔒
vfixupimmssz 🔒
vfmadd132pdround 🔒
vfmadd132psround 🔒
vfmaddsdround 🔒
vfmaddssround 🔒
vfmaddsubpdround 🔒
vfmaddsubpsround 🔒
vgatherdpd 🔒
vgatherdpd_128 🔒
vgatherdpd_256 🔒
vgatherdps 🔒
vgatherdps_128 🔒
vgatherdps_256 🔒
vgatherqpd 🔒
vgatherqpd_128 🔒
vgatherqpd_256 🔒
vgatherqps 🔒
vgatherqps_128 🔒
vgatherqps_256 🔒
vgetexppd 🔒
vgetexppd128 🔒
vgetexppd256 🔒
vgetexpps 🔒
vgetexpps128 🔒
vgetexpps256 🔒
vgetexpsd 🔒
vgetexpss 🔒
vgetmantpd 🔒
vgetmantpd128 🔒
vgetmantpd256 🔒
vgetmantps 🔒
vgetmantps128 🔒
vgetmantps256 🔒
vgetmantsd 🔒
vgetmantss 🔒
vmaxpd 🔒
vmaxps 🔒
vmaxsd 🔒
vmaxss 🔒
vminpd 🔒
vminps 🔒
vminsd 🔒
vminss 🔒
vmulpd 🔒
vmulps 🔒
vmulsd 🔒
vmulss 🔒
vpcompressd 🔒
vpcompressd128 🔒
vpcompressd256 🔒
vpcompressq 🔒
vpcompressq128 🔒
vpcompressq256 🔒
vpermd 🔒
vpermi2d 🔒
vpermi2d128 🔒
vpermi2d256 🔒
vpermi2pd 🔒
vpermi2pd128 🔒
vpermi2pd256 🔒
vpermi2ps 🔒
vpermi2ps128 🔒
vpermi2ps256 🔒
vpermi2q 🔒
vpermi2q128 🔒
vpermi2q256 🔒
vpermilpd 🔒
vpermilps 🔒
vpermpd 🔒
vpermpd256 🔒
vpermps 🔒
vpermq 🔒
vpermq256 🔒
vpexpandd 🔒
vpexpandd128 🔒
vpexpandd256 🔒
vpexpandq 🔒
vpexpandq128 🔒
vpexpandq256 🔒
vpgatherdd 🔒
vpgatherdd_128 🔒
vpgatherdd_256 🔒
vpgatherdq 🔒
vpgatherdq_128 🔒
vpgatherdq_256 🔒
vpgatherqd 🔒
vpgatherqd_128 🔒
vpgatherqd_256 🔒
vpgatherqq 🔒
vpgatherqq_128 🔒
vpgatherqq_256 🔒
vpmovdb128 🔒
vpmovdb256 🔒
vpmovdbmem 🔒
vpmovdbmem128 🔒
vpmovdbmem256 🔒
vpmovdw128 🔒
vpmovdwmem 🔒
vpmovdwmem128 🔒
vpmovdwmem256 🔒
vpmovqb 🔒
vpmovqb128 🔒
vpmovqb256 🔒
vpmovqbmem 🔒
vpmovqbmem128 🔒
vpmovqbmem256 🔒
vpmovqd128 🔒
vpmovqdmem 🔒
vpmovqdmem128 🔒
vpmovqdmem256 🔒
vpmovqw128 🔒
vpmovqw256 🔒
vpmovqwmem 🔒
vpmovqwmem128 🔒
vpmovqwmem256 🔒
vpmovsdb 🔒
vpmovsdb128 🔒
vpmovsdb256 🔒
vpmovsdbmem 🔒
vpmovsdbmem128 🔒
vpmovsdbmem256 🔒
vpmovsdw 🔒
vpmovsdw128 🔒
vpmovsdw256 🔒
vpmovsdwmem 🔒
vpmovsdwmem128 🔒
vpmovsdwmem256 🔒
vpmovsqb 🔒
vpmovsqb128 🔒
vpmovsqb256 🔒
vpmovsqbmem 🔒
vpmovsqbmem128 🔒
vpmovsqbmem256 🔒
vpmovsqd 🔒
vpmovsqd128 🔒
vpmovsqd256 🔒
vpmovsqdmem 🔒
vpmovsqdmem128 🔒
vpmovsqdmem256 🔒
vpmovsqw 🔒
vpmovsqw128 🔒
vpmovsqw256 🔒
vpmovsqwmem 🔒
vpmovsqwmem128 🔒
vpmovsqwmem256 🔒
vpmovusdb 🔒
vpmovusdb128 🔒
vpmovusdb256 🔒
vpmovusdbmem 🔒
vpmovusdbmem128 🔒
vpmovusdbmem256 🔒
vpmovusdw 🔒
vpmovusdw128 🔒
vpmovusdw256 🔒
vpmovusdwmem 🔒
vpmovusdwmem128 🔒
vpmovusdwmem256 🔒
vpmovusqb 🔒
vpmovusqb128 🔒
vpmovusqb256 🔒
vpmovusqbmem 🔒
vpmovusqbmem128 🔒
vpmovusqbmem256 🔒
vpmovusqd 🔒
vpmovusqd128 🔒
vpmovusqd256 🔒
vpmovusqdmem 🔒
vpmovusqdmem128 🔒
vpmovusqdmem256 🔒
vpmovusqw 🔒
vpmovusqw128 🔒
vpmovusqw256 🔒
vpmovusqwmem 🔒
vpmovusqwmem128 🔒
vpmovusqwmem256 🔒
vprold 🔒
vprold128 🔒
vprold256 🔒
vprolq 🔒
vprolq128 🔒
vprolq256 🔒
vprolvd 🔒
vprolvd128 🔒
vprolvd256 🔒
vprolvq 🔒
vprolvq128 🔒
vprolvq256 🔒
vprord 🔒
vprord128 🔒
vprord256 🔒
vprorq 🔒
vprorq128 🔒
vprorq256 🔒
vprorvd 🔒
vprorvd128 🔒
vprorvd256 🔒
vprorvq 🔒
vprorvq128 🔒
vprorvq256 🔒
vpscatterdd 🔒
vpscatterdd_128 🔒
vpscatterdd_256 🔒
vpscatterdq 🔒
vpscatterdq_128 🔒
vpscatterdq_256 🔒
vpscatterqd 🔒
vpscatterqd_128 🔒
vpscatterqd_256 🔒
vpscatterqq 🔒
vpscatterqq_128 🔒
vpscatterqq_256 🔒
vpslld 🔒
vpsllq 🔒
vpsllvd 🔒
vpsllvq 🔒
vpsrad 🔒
vpsraq 🔒
vpsraq128 🔒
vpsraq256 🔒
vpsravd 🔒
vpsravq 🔒
vpsravq128 🔒
vpsravq256 🔒
vpsrld 🔒
vpsrlq 🔒
vpsrlvd 🔒
vpsrlvq 🔒
vpternlogd 🔒
vpternlogd128 🔒
vpternlogd256 🔒
vpternlogq 🔒
vpternlogq128 🔒
vpternlogq256 🔒
vrcp14pd 🔒
vrcp14pd128 🔒
vrcp14pd256 🔒
vrcp14ps 🔒
vrcp14ps128 🔒
vrcp14ps256 🔒
vrcp14sd 🔒
vrcp14ss 🔒
vrndscalepd 🔒
vrndscalepd128 🔒
vrndscalepd256 🔒
vrndscaleps 🔒
vrndscaleps128 🔒
vrndscaleps256 🔒
vrndscalesd 🔒
vrndscaless 🔒
vrsqrt14pd 🔒
vrsqrt14pd128 🔒
vrsqrt14pd256 🔒
vrsqrt14ps 🔒
vrsqrt14ps128 🔒
vrsqrt14ps256 🔒
vrsqrt14sd 🔒
vrsqrt14ss 🔒
vscalefpd 🔒
vscalefpd128 🔒
vscalefpd256 🔒
vscalefps 🔒
vscalefps128 🔒
vscalefps256 🔒
vscalefsd 🔒
vscalefss 🔒
vscatterdpd 🔒
vscatterdpd_128 🔒
vscatterdpd_256 🔒
vscatterdps 🔒
vscatterdps_128 🔒
vscatterdps_256 🔒
vscatterqpd 🔒
vscatterqpd_128 🔒
vscatterqpd_256 🔒
vscatterqps 🔒
vscatterqps_128 🔒
vscatterqps_256 🔒
vsqrtpd 🔒
vsqrtps 🔒
vsqrtsd 🔒
vsqrtss 🔒
vsubpd 🔒
vsubps 🔒
vsubsd 🔒
vsubss 🔒